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Optimization of lag phase shapes the evolution of 
a bacterial enzyme
Bharat V. Adkar1 , Michael Manhart1 , Sanchari Bhattacharyya1 , Jian Tian1, 2, Michael Musharbash1  
and Eugene I. Shakhnovich1*

Mutations provide the variation that drives evolution, yet their effects on fitness remain poorly understood. Here we explore 
how mutations in the essential enzyme adenylate kinase (Adk) of Escherichia coli affect multiple phases of population growth. 
We introduce a biophysical fitness landscape for these phases, showing how they depend on molecular and cellular properties 
of Adk. We find that Adk catalytic capacity in the cell (the product of activity and abundance) is the major determinant of muta-
tional fitness effects. We show that bacterial lag times are at a well-defined optimum with respect to Adk’s catalytic capacity, 
while exponential growth rates are only weakly affected by variation in Adk. Direct pairwise competitions between strains show 
how environmental conditions modulate the outcome of a competition where growth rates and lag times have a tradeoff, shed-
ding light on the multidimensional nature of fitness and its importance in the evolutionary optimization of enzymes.

Random mutagenesis is often used to assess the distribution of 
fitness effects in simple experimental models such as propa-
gating viruses and microbes evolving under antibiotic stress1,2. 

However, the enormous size of sequence space severely constrains 
how much of the fitness landscape over genotypes can be explored 
this way. Mechanistic and predictive insights from these experiments 
are further limited by a lack of knowledge of the molecular effects 
of mutations. Instead, a more targeted experimental approach relies 
on the concept of a biophysical fitness landscape, in which fitness 
effects of mutations are mapped through their effects on molecu-
lar traits of the mutated proteins. In this approach, biophysically 
rational genetic variation is introduced on the chromosome, and 
the molecular and phenotypic effects of that variation are analysed 
concurrently3–6. By mapping fitness effects to variation of molecu-
lar properties rather than directly to sequences of mutated proteins, 
we can dramatically reduce the dimensionality of the genotype-to-
phenotype mapping. The underlying hypothesis is that variation 
in a small number of properly selected molecular traits of mutated 
proteins can explain most of the resulting mutational variation in 
fitness, and that the relationship between these molecular traits 
and fitness is smooth and continuous. Several recent studies have  
supported this approach5–7.

The relationship between sequence variation and fitness is fur-
ther confounded by the fact that multiple life-history traits con-
tribute to fitness8, and the relative importance of these traits to the 
long-term evolutionary fate of a mutation may be highly depen-
dent on environmental and ecological conditions. While mul-
ticellular organisms are generally described by a large number of 
traits (for example, viability at various life phases, mating success, 
fecundity, and so on), unicellular microorganisms such as bacteria 
and yeast are described by relatively fewer components of fitness, 
such as the time in lag phase, the exponential growth rate, and the 
overall yield at saturation. However, even for the relatively simpler 
cases of unicellular organisms (the focus of the present study),  
all these phases of growth contribute towards the outcome when in 
competition for limited resources, and hence determine fitness3,9.  
The relative importance of these different phases of bacterial growth 

in sculpting the fitness landscape depends on the conditions of 
growth and competition10–12.

Overall, the challenge in quantitatively characterizing the bio-
physical fitness landscape is twofold: understanding fitness in terms 
of contributions from different phases of growth, and linking each 
of these components to an intermediate phenotype (molecular and 
cellular traits) that in turn are connected to their genotypes. In this 
work, we address both challenges by introducing biophysically 
rational genetic variation in the adk locus that encodes the essential 
E. coli enzyme adenylate kinase (Adk), and projecting the ensuing 
variations of fitness effects (phenotypic components such as growth 
rate and lag time) onto the biophysical traits of Adk. We find that 
a unique combination of molecular and cellular traits of Adk—the 
product of intracellular abundance and catalytic activity, which we 
term catalytic capacity—provides a useful predictor of fitness effects 
across the full range of phenotypic variation. Furthermore, we find 
that the length of the lag phase is more sensitive to variation in Adk 
catalytic capacity than is the exponential growth rate, so that the lag 
phase of the wild-type E. coli appears to be optimal with respect to 
variation in Adk catalytic capacity.

Results
Biophysical properties of Adk mutants. Destabilizing mutations 
have been shown to cause a drop in intracellular protein abundance, 
mostly through a decrease in the folded fraction of the protein3. 
Hence, in order to sample a broad range of molecular and cellular 
traits of Adk protein below the wild-type levels, we chose a set of 
21 missense mutations at 6 different positions of adk (Fig.  1 and 
Supplementary Table 1). We selected residues such that their acces-
sible surface area was less than 10% and they were at least 6 Å away 
from the catalytically active sites of Adk, so that mutations at these 
residues were likely to destabilize the protein13. For most mutants, 
we chose amino acid mutations that appeared only at low frequency 
in an alignment of 895 homologous sequences of Adk. As intended, 
the purified mutant proteins were destabilized over a wide range 
(~17 °C in terms of Tm, and ~7.5 kcal mol−1 in terms of folding Δ G) 
(Fig. 1b, Supplementary Table 1 and Supplementary Figs 1 and 2).  
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In only one case (L209I) did we change the E. coli sequence to the 
consensus amino acid at that position, and we found that it in fact 
stabilized the protein by ~1  kcal  mol−1 (Supplementary Table  1). 
Although most of the Adk mutants were less stable than the wild 
type, they nevertheless existed predominantly as monomers in 
solution (Supplementary Fig.  3). However, several mutations in 
one position—V106H, V106N and V106W—did have significant 
fractions of proteins present in higher oligomeric forms, in addi-
tion to the predominant monomeric species (Supplementary 
Fig.  3). These proteins bound 4,4′-dianilino-1,1’-binaphthyl-5, 
5’-disulfonate (Bis-ANS) dye to a higher degree compared with the 
rest of the mutants (Supplementary Fig. 4), indicating the presence 
of possible molten globule states in solution14. The proteostat dye 
that reports on protein aggregation4,15 also bound these mutants 
more strongly compared with others (Supplementary Fig. 4), clearly 
indicating a higher fraction of aggregated species. The catalytic 
efficiency (kcat/KM) of the mutant Adk proteins was distributed 
broadly, with most mutants showing a lower activity than E.  coli 
WT (Fig. 1c, Supplementary Table 1 and Supplementary Fig. 5).

Intracellular abundance of Adk follows prediction from Boltzmann 
distribution. We then incorporated each of the 21 adk mutations 
one at a time into the E. coli chromosome using a genome-editing 
approach based on homologous recombination3,4. We measured  

the total intracellular abundance of WT and mutant Adk proteins 
using a quantitative western blot (Supplementary Table 2). The sig-
moidal dependence of total intracellular Adk abundance on folding 
stability (Δ G) (Fig. 1d) is well described by the Boltzmann distribu-
tion for two-state unfolding of proteins:

β= + ΔP
G

1
1 exp( ) (1)F

where PF is the fraction of folded molecules in the ensemble of 
intracellular Adk and β =  1/kBT, with Boltzmann constant kB and 
growth temperature T. The total measured abundance of a protein 
is its amount in the cytoplasm at steady state, achieved by a balance 
between production and degradation. Since Adk is expressed from 
a constitutive promoter in the cells, it is generally safe to assume 
that the rates of production of all mutants are similar. Under this 
assumption, the sigmoidal dependence of abundance on stability 
clearly indicates that the unfolded protein is degraded in the active 
medium of the cytoplasm.

Mutations in Adk affect lag times more than exponential growth 
rates. Mutations in Adk affect both intracellular abundance (via 
folding stability) and catalytic activity of the protein. Flux dynam-
ics theory predicts, and experiments have confirmed, that the key 
enzymatic parameter determining the flux through an enzymatic 
reaction chain is the quantity that we call catalytic capacity, defined 
as the product of intracellular abundance and enzymatic efficiency  
kcat/KM

5,6,16. Here we determine how two key components of bacte-
rial growth—the exponential growth rate and the lag time (Fig. 2a)—
depend on the total catalytic capacity of Adk in E. coli cells (Fig. 2b,c; 
also see Methods and Supplementary Figs  6–8 for estimations of 
growth parameters). We find that while only 3 out of 21 strains 
show a drop in growth rate greater than 5% of the WT, 17 strains 
show an increase in lag time for a similar change over the WT value 
(Supplementary Table  2). This suggests that the mutations in Adk 
affect the lag phase more significantly than the exponential growth 
phase. One way in which longer lag times can be observed is when a 
greater proportion of cells that come out of stationary phase are sim-
ply nonviable, as described in a recent study17. However, this appears 
not to be the major cause in our case, as lag times are fairly consis-
tent across replicates (error bars in Fig.  2c) and do not negatively 
correlate with the number of viable cells (Supplementary Fig. 9). We 
also find that the variation in total catalytic capacity of Adk corre-
lates better with the variation in lag times (Spearman’s rank correla-
tion ρ =  − 0.44, p =  0.057) than with the variation in growth rates 
(Spearman’s rank correlation ρ =  − 0.08, p =  0.737) (Supplementary 
Fig.  10). The variation in lag times is also better explained by the 
variation in catalytic capacity than with any of the Adk properties 
separately (stability, abundance or activity) (Supplementary Fig. 10). 
Surprisingly, growth rate appears to tolerate a rather large drop in cat-
alytic capacity of Adk, while lag time does not. While the nonlinear 
relationship between catalytic capacity and lag times (Fig. 2c) makes 
it difficult to determine exactly how much mutational variation in 
lag times is quantitatively explained by variation in catalytic capac-
ity, the model-independent Spearman rank correlation indicates that 
catalytic capacity predicts 20–25% of the rank variation in lag times,  
depending on the method of lag time estimation (see Methods).

WT E. coli is positioned at the cusp of the biophysical fitness land-
scape for lag time. Since almost all the designed mutants were desta-
bilizing and therefore have lower catalytic capacity than E. coli WT, 
they only provide sampling in the lower range of catalytic capacity.  
In studies so far, no evidence exists for changes in intracellular 
protein abundance for stabilizing mutations. Hence, to determine 
the dependence of growth rate and lag time on catalytic capacity 
above WT levels, we overexpressed WT Adk from a pBAD plasmid 
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Figure 1 | Biophysical and intracellular properties of Adk. a, Crystal 
structure of adenylate kinase from E. coli (Protein Data Bank ID: 4AKE30). 
The Core domain is coloured in green, while the LID and NMP domains are 
shown in white. The Cα atoms of active-site residues are shown in pink, 
and the blue spheres represent the Cα atoms of the six buried positions 
that were mutated in this study. b, Histogram showing the distribution of 
folding free energies for all mutant proteins, as determined by isothermal 
urea denaturation at 25 °C. The stability of WT is marked by a dashed line. 
c, Histogram of the catalytic activity parameter kcat/KM for all mutants. 
The dashed line indicates the WT value. d, Total intracellular abundance 
of mutant Adk proteins as a function of Δ G at 37 °C. The abundances are 
normalized to the WT value (green circle). Each data point represents the 
mean and error bars are the standard deviation over two experiments. 
The dashed line represents the fit to the Boltzmann distribution function 
described in equation (1), where kB was 1.987 cal mol−1 K−1. See related 
Supplementary Figs 1–5 and Supplementary Table 1.
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(see Supplementary Methods). We observed no significant change 
in either growth rate or lag time at higher than endogenous cata-
lytic capacity (Fig. 2b,c, Supplementary Fig. 8 and Supplementary 
Table 3). This means that while the growth rate appears to be insen-
sitive to large changes in Adk catalytic capacity both below and 
above the WT level, WT catalytic capacity appears to be situated at 
the threshold of optimizing lag time.

Next, we attempted to quantitatively compare the position of 
WT on these two fitness landscapes. To that end, we used a simple 
reciprocal Michaelis–Menten-like function to fit the relative growth 
times (growth time, τ , is reciprocal of growth rate, μ ) and lag times 
(Supplementary Fig. 11; also see equation (3) and Methods). The fitting 
parameter b, which characterizes the onset of curvature on the land-
scape (analogous to KM in the Michaelis–Menten equation for enzy-
matic rate) reports the proximity of WT to the cusp on the landscape 
(see Methods); it was 0.006 ±  0.003 for growth time and 0.019 ±  0.004 
for lag time, as compared to normalized catalytic capacity of 1 for WT. 
This shows that WT is situated closer to the cusp in terms of lag time 
as compared to growth time (equivalently, growth rate).

A computational model demonstrates advantage of shorter lag at 
low carrying capacity. This data highlights the pleiotropic effects 
of mutations on different phases of bacterial population growth, 
which raises the question of how pleiotropy shapes the evolution-
ary fate of a mutation. We explore this issue by considering the 
outcome of binary competitions between strains18. We first simu-
lated binary competitions over a wide range of growth rates and lag 
times in media conditions that allow for either 5-fold or 500-fold 
increases over the initial population at carrying capacity, which is 
analogous to low and high carrying capacity conditions (Fig.  3a)  
(see Methods). We found that there is a significant tradeoff between 
lag times and growth rates in determining the winners of binary 
competitions, with lag playing a more important role at low carrying 
capacity (Fig. 3a)—implying that beneficial lag provides a greater 
fitness advantage under strongly nutrient-limiting conditions.

Experimental evidence to demonstrate advantage of shorter lag 
at low carrying capacity. To realize varying nutrient conditions in 
binary competition experiments, we explored the growth of E. coli 
over a range of glucose concentrations, mimicking the variation of 
carrying capacity in simulations, and found that only the carrying  
capacities (the fold excess over the initial population) are propor-
tional to glucose concentration, with minimal effects on lag time and 

growth rate (Fig. 4). This suggests that observing the outcome of the 
competition at different time snapshots in a nutrient-rich medium 
is equivalent to running the competition at different glucose con-
centrations (carrying capacities). To evaluate the predictions from 
simulations, we carried out two sets of binary competition experi-
ments based on the overall distribution of growth rates and lag times 
(Fig.  3b). First, we selected strains exhibiting a tradeoff between 
growth rate (μ) and lag time (λ) (μ1 >  μ2 and λ1 >  λ2) (inset of Fig. 5b). 
Second, we tested competition between strains that differ in their lag 
times but have nearly indistinguishable growth rates (μ1 ≈  μ2 and 
λ1 >  λ2) (inset of Fig. 5c). In all cases, a strain with shorter lag time is 
expected to dominate at lower carrying capacity conditions (corre-
sponding to the competition outcome at early time points where the 
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Figure 2 | Traits of population growth. a, Schematic of estimation of lag time and growth rate. The representative data points (solid grey circles) were 
plotted as ln(OD) versus time, and were fitted to a four-parameter Gompertz function (equation (2)) (cyan line). The red line is a tangent at the inflection 
point of the function. The slope of the tangent is considered as the growth rate (μ) and the time required to reach the maximum growth rate or the 
inflection point is taken as the lag time (λ) (vertical dashed line). b,c, Relative growth rate (μ/μWT) (b) and relative lag time (λ −  λWT) (c) as functions of 
catalytic capacity, which is defined as abundance ×  kcat/KM (using experimentally measured abundance and activity values). The mutant data is shown 
in grey circles, whereas red circles represent the BW27783 strain with varying degrees of overexpression of WT Adk from a pBAD plasmid. Data for WT 
is shown in green. The data points represent mean and error bars represent s.e.m. of parameters derived from growth curves of 2–3 bacterial colonies 
(biological replicates). See Supplementary Figs 6–11 and Supplementary Tables 2 and 3. The direction of increasing fitness is also indicated.
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Figure 3 | Binary growth competition. a, The growth of individual strains 
was modelled as per the Gompertz equation (equation (2)). The growth 
parameters for strain 1 were fixed to those obtained for WT Adk (dashed 
grey lines) while those for strain 2 were generated randomly over a wide 
range of growth rates (0.005 to 0.030 min− 1) and lag times (50 to 250 min). 
The contour plot shows the fraction of strain 1 (WT) at saturation when the 
competition is carried out under two different conditions of fold increase in 
growth over initial population. The red and black dashed lines indicate the 
neutrality regions where both strains have equal proportions at saturation. 
The areas below the neutrality lines (filled with solid lines) represent  
the parameter space where strain 2 wins the competition (fraction of  
strain 2 >  0.5). b, Scatter plot of measured growth rate (μ) versus lag 
time (λ). The data points represent the mean and error bars the s.e.m. of 
parameters derived from 2–3 bacterial colonies (Supplementary Table 2). 
The growth rate and lag time appear to be statistically independent of each 
other across the Adk mutant strains (Spearman’s ρ =  0.31, p =  0.15).
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fold increase over initial population is low); however, this advantage 
would be lost at later time points if its growth rate is lower than that of 
the competing strain (Fig. 5a). In the second scenario, the advantage 
due to short lag is expected to persist even at high carrying capac-
ity conditions because the growth rates of the competing strains do 
not differ. We estimated the relative proportions of the two strains 
by a quantitative PCR (qPCR)-based mismatch amplification muta-
tion assay (MAMA) approach19 (see Methods and Supplementary 
Fig. 12). As expected in the first scenario, L083F and V106H domi-
nated at earlier time points when competed against A093I and 
L209I, respectively, due to their shorter lag times (λL083F  <   λA093I  
and λV106H <  λL209I) (Fig. 5b). Eventually their fractions dropped below 
0.5 at later time points (equivalent to high carrying capacity), when 
the growth rates determine the competition output (μL083F <  μA093I 
and μV106H  <   μL209I) (Fig.  5b). Similarly, for the second scenario, 
despite having similar growth rates (μWT ≈  μY182V ≈  μL209A), the frac-
tion of WT was always maintained above 0.5 as it spends a shorter 
time in the lag phase compared to Y182V and L209A (Fig. 5c). The 
early advantage of WT due to its shorter lag phase determined the 
competition fitness throughout the whole growth cycle.

Discussion
A complete mapping of mutational fitness effects would require 
sampling a practically infinite number of mutations—an impossible 
proposition. Instead, we can project fitness onto a fairly small num-
ber of molecular properties of proteins5–7,20. Within this paradigm, 
the identity of a particular mutation does not matter as much as 
its effect on essential biochemical and biophysical properties of the 
proteins in question. Our 21 engineered mutations in Adk, along 
with the overexpression data, allow us to outline the biophysical fit-
ness landscape, covering a wide range of variation of the physical 
parameters of the Adk protein. This data shows that we can collapse 
several molecular phenotypes into a single effective molecular trait—
the product of protein abundance and activity kcat/KM (catalytic 
capacity)—which quantitatively determines the biophysical fitness  
landscape (Fig. 2b,c). That is, Fig. 2 indicates that phenotypic traits 
exhibit (within uncertainties of experimental measurements) a 
monotonic dependence on a single molecular trait, catalytic capac-
ity, thereby making the corresponding biophysical fitness landscape 
‘smooth’ and qualitatively predictive. Indeed, Adk catalytic capacity 
explains a significant fraction of rank variation in lag times, validat-
ing the use of a low-dimensional biophysical fitness landscape for 
semi-quantitative mapping of fitness effects.

These results illustrate how the evolutionary endpoint of molec-
ular traits may depend fundamentally on the multidimensional 
nature of fitness, with the relative importance of different compo-
nents of fitness depending on the environment and lifestyle of the 

organism. It has been argued that endogenous molecular traits are 
established as a result of mutation–selection balance21, with the final 
outcome depending on the relative strengths of selection and genetic  
drift as determined by the population structure22,23. Here we 
encounter a more complex situation where mutations in the essen-
tial enzyme Adk change multiple fitness components. In this case, 
the mutation–selection balance apparently resulted in disparate 
outcomes for the two fitness components with respect to the molec-
ular trait, placing lag time at the cusp while keeping the exponen-
tial growth rate farther within the plateau region of its respective 
biophysical fitness landscape. Such an outcome may reflect differ-
ent strengths of selection on growth and lag. The relative strength 
of selection on these fitness components depends crucially on the 
environmental conditions (such as nutrient availability and so 
on)24. Our studies of binary competitions (Figs 3 and 5) highlight 
this scenario by showing how the environmental parameter of car-
rying capacity can determine winners and losers in evolutionary 
dynamics. Although the lag time of a population can depend not 
only on the environment but also on the population’s specific his-
tory (for example, how long it was previously in stationary phase), 
the fundamental role of Adk in metabolism suggests that its effects 
on lag time are likely to be common across conditions and histories.  
The deep connection between the ecological history of species and 
optimization of biophysical traits of their proteins is a subject for 
future studies.

Much of our current understanding of microbial cultures and 
fitness comes from experiments done in the laboratory, where 
strains are typically grown under a large supply of nutrients. The 
situation might be very different in the wild, however, where bac-
teria and other microbes have to survive under harsh conditions of 
nutrient starvation, extreme temperature, and other environmen-
tal stresses25–27. For example, E. coli is the predominant facultative 
anaerobe in the gastrointestinal tract28, which allows it to thrive in 
fluctuating environments of differing oxygen concentrations (such 
as in the small versus the large intestine). In these circumstances, 
organisms are likely to spend only a minute fraction of their life 
cycle in the exponential growth phase, while undergoing many 
cycles of lag–growth–saturation as new resources become available 
and old ones are exhausted. It is therefore intuitive to expect that 
there has been strong selection in favour of organisms that can not 
only divide rapidly during exponential growth, but that can also 
wake up quickly from their lag phase and respond to newly available 
resources. Our study demonstrates how this selection may shape 
individual molecular traits.

This work highlights the relationship between various compo-
nents of fitness and the molecular properties of modern enzymes—
the endpoint of evolutionary selection. An interesting question  

Figure 4 | Growth curves at various nutrient concentrations. a–d, Growth curves of strains with WT Adk obtained under varying glucose concentrations in 
supplemented M9 medium (a). The fitted growth curve parameters are shown as functions of glucose concentration: fold increase over initial population 
at saturation (K) as derived from a Gompertz fit (b), relative growth rate (μ/μ0.2) (c), and relative lag time (λ −  λ0.2) (d). The growth rates and lag times are 
estimated from analysis of growth curve derivatives and are normalized relative to the respective values at 0.2% glucose concentration.
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that is beyond the scope of this current work is how modern vari-
ants emerged in evolutionary dynamics. To that end, mapping  
reconstructed ancestral species onto the biophysical fitness land-
scape of Adk (and other enzymes) appears to be a promising direc-
tion for future research.

Methods
Selection of mutations. Mutations at relatively buried positions generally  
result in decreased stability and lower fitness13,29. Hence we selected the sites  
for mutagenesis with side-chain accessibility of less than 10%. In addition, the 
selected sites were also away from the active-site residues, or active-site contacting 
residues, and a minimum of 6 Å away from the inhibitor Ap5A binding sites  
(PDB ID: 1AKE). The structure of Adk is divided into three domains: LID (residues 
118–160), NMP (residues 30–67), and Core (residues 1–29, 68–117, and 161–214). 
We define the active-site residues as those whose accessible surface area changes 
by at least 5 Å2 in the presence of the inhibitor Ap5A. A similar criterion was used 
to define the residues contacting the active site. Altogether 4 residues from the 
LID domain, 3 from the NMP domain, and 28 from the Core domain satisfy these 
criteria. Of the 28 sites from the Core domain, we randomly chose 6 to mutate.  
We chose the identities of the mutations to span various sizes of the side chains  
and a range of conservation. We derived the conservation from the multiple 
sequence alignment of 895 sequences for Adk collated from the ExPASy database 
(as of November 2012).

Generation of mutant strains. We generated the strains with WT and mutant 
adk with chloramphenicol- and kanamycin-resistance genes on either end of the  
adk gene using a genome editing approach described previously3. Since the adk gene 
is flanked by two repeat regions (REPt44 and REPt45) on the WT chromosome,  
we extended the homology required for recombination up to the middle of the 
adjacent genes.

Growth curve measurements and media conditions. WT and mutant strains 
were grown overnight at 30 °C from single colonies in a supplemented M9 medium 
(0.2% glucose, 1 mM MgSO4, 0.1% casamino acids, and 0.5 μ g ml−1 thiamine). 
OD600 was measured for all the strains and the cultures were then normalized to 
whichever had the lowest OD. The normalized cultures were diluted 1:100 in fresh 
supplemented M9 media and the growth curves were monitored in triplicates 
using Bioscreen C at 37 °C. We derived the growth parameters by fitting ln(OD) 
versus time with the four-parameter Gompertz function (see below). The error in 
replicates was found to be 2–3% on average, and it did not improve significantly 
upon increasing the number of replicates.

Fitting growth data and estimation of growth parameters. In our study, we 
define lag time (λ) as the time required to achieve the maximum growth rate  
(μ) (Fig. 2a). Growth time (τ) was defined as reciprocal of growth rate μ.  
Since it has the same units as lag time, it is more convenient to use for the statistical 
analysis and data fitting (Supplementary Fig. 11).

We used two different methods to infer these parameters: (A) direct  
analysis of growth curve derivatives, and (B) fits to the Gompertz function  
(Supplementary Fig. 6).

In method A, we took the growth rate as the maximum value of the derivative 

− Δ
Δ

t t t
t

ln(OD( ) / OD( ))

where Δ t is 15 minutes. The lag time was then the earliest time at which this 
maximum growth rate was achieved.

For method B, we used the following four-parameter Gompertz function  
to fit ln(OD) versus time plots:
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where K is the fold increase over initial population at saturation, the maximum 
growth rate is μ =  ln(K)/(b exp(1)), and the lag time λ is the time taken to achieve 
the maximum growth rate.

For both methods, we considered only data points with OD600 ≥  0.02. The 
instantaneous derivatives of all growth curves show the presence of a distinct peak 
at OD600 values greater than 0.02 (Supplementary Fig. 6), indicating monoauxic 
growth and also asserting that the derived growth parameters are unaffected due  
to ignoring the lower OD data.

The μ  and λ  estimated from the two aforementioned methods are strongly 
correlated (Pearson’s r =  0.80, p =  1.4 ×  10−5 for μ, and r =  0.71, p =  3.0 ×  10−4 
for λ) (Supplementary Fig. 7). However, the uncertainty in the fitted parameters 
appears to be less than the uncertainty in the parameters obtained from the 
derivatives, which are limited by the low time resolution of the experimental data 
(acquired at an interval of 15 min).

The growth rate (μ) and lag time (λ) appear to be statistically independent of 
each other across the Adk mutant strains (Spearman’s ρ =  0.31, p =  0.15; Fig. 3b). 
Hence it is conceivable that selection can act separately on these two traits, which is 
further illustrated by the different fitness landscapes observed when projected onto 
the axis of catalytic capacity (Fig. 2b,c).

Statistical tests for mutational variation in growth and lag phases. We estimated 
the monotonic relationship between various growth traits and molecular/
cellular properties of Adk mutant proteins using Spearman’s rank correlation 
ρ (Supplementary Fig. 10). Due to the nonlinear relationship between these 
properties, we used the square correlation coefficient ρ2 to measure the fraction 
of variance of fitness component ranks explained by the variance of ranks of the 
molecular/cellular properties. The agreement between growth parameters derived 
using instantaneous derivatives and Gompertz fit were estimated by Pearson’s 
correlation coefficient (Supplementary Fig. 7). We excluded V106N from all 
statistical analysis and data fitting as its lag time is ~13 s.d. away from the average 
lag time of all other strains.

Quantification of the location of WT on the fitness landscapes. A Michaelis–
Menten-like elasticity curve function has been used previously5,6,16,20 to fit  
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Figure 5 | Tradeoffs between lag and exponential growth in binary competitions. a, Fraction of the first strain as a function of time in simulated binary 
competitions. We modelled the growth of each strain using the Gompertz four-parameter equation (equation (2)) with experimentally measured growth 
rate and lag time values. The initial OD for individual strains was assumed to be 0.006 at the start of competition, and growth was assumed to saturate at 
an OD of 0.6. Despite having similar growth rates, the fraction of WT in WT +  L209A and WT +  Y182V competitions was always above 0.5 owing to the 
advantage it gained due to shorter lag time (scenario 2 in the main text). L083F and V106H dominate at earlier time points where fold increase in growth 
over initial population is low (equivalent to low carrying capacities) due to their short lag times compared to their respective competitors. However, at 
longer times (high carrying capacities), the advantage due to lag is lost due to their lower growth rates. b,c, Experimental validations of the predictions  
in a using a qPCR-based mismatch amplification mutation assay (MAMA). The fraction of competing strains was estimated using equation (4). The data 
points are mean and error bars represent standard deviation of two measurements. See Supplementary Fig. 12. The growth rates and lag times for the 
competing pairs are shown in insets.
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the dependence of growth rate on catalytic capacity. Since we are considering 
growth and lag times rather than rates, we use a reciprocal form of the  
Michaelis–Menten-like function for fitting relative growth time (τ/τWT) and  
relative lag time (λ/λWT) versus catalytic capacity (Supplementary Fig. 11):

= × +a bRelative growth trait ( catalytic capacity)
catalytic capacity (3)

where a is the asymptotic value of the trait for infinitely large catalytic capacity, 
and b is the catalytic capacity when the trait equals twice the asymptotic value (2a). 
Since catalytic capacity is normalized by WT, b serves as a measure of how close to 
the cusp the WT is on the respective landscapes. For fits in Supplementary Fig. 11, 
we empirically set a =  1, which enables easy comparison of parameter b for lag time 
and growth time plots.

Simulation of binary competition. We simulated the competition of two strains 
by using the Gompertz function (equation (2)) to model the growth of individual 
strains. The initial population (OD0) for both strains was equal, and growth ceases 
when ∑ ∑ = KOD / ODi t i i i, 0, , where K is the fold increase over initial population 
that is allowed by the given environmental condition, analogous to its carrying 
capacity. We considered two different values of K (5 and 500). We set μ1 and λ1 to 
values derived experimentally for the WT Adk strain (Supplementary Table 2), 
while the growth rates and lag times for the second competing strain were varied 
randomly across the intervals 0.005 to 0.030 min−1 (for growth rate) and 50 to 
300 min (for lag time).

Binary growth competition and quantification. The overnight cultures for 
individual strains were grown for 16 hours at 30 °C. These cultures were mixed in 
proportions of 1:1, diluted to an OD of 0.01 in fresh supplemented M9 media, and 
then regrown at 37 °C. The samples were drawn at different time points, and the 
OD was adjusted to 2.0, either by concentration or dilution. 5 μ l of OD 2.0 culture 
was eventually diluted in 45 μ l of lysis solution (QuickExtract DNA extraction 
solution (Epicentre)) to reach OD 0.2. Genomic DNA extracted from 50 μ l of OD 
0.2 culture was diluted 5,000 times and used as a template. The individual strains 
in the competition were differentially amplified using allele-specific primers and 
quantified by a qPCR-based mismatch amplification mutation assay method19 using 
the QuantiTect SYBR Green PCR kit (Qiagen). A 150-bp-long non-mutagenic 
amplicon of adk gene was amplified as a reference to quantify total genomic DNA. 
The fraction of the competing strains was determined using the following equation:

= ˆ − − −C C C Cfraction 2 (( ) ( ) ) (4)t t t t,ref ,1 competition ,ref ,1 pure

where Ct represents threshold cycle of qPCR, ‘ref ’ and 1 are the PCR reactions for 
amplifying the reference and the first allele in competition, and ‘competition’ and 
‘pure’ describe the condition of culture.

Data availability. All raw data for growth curves of adk WT and mutant 
strains, as well as WT overexpression in E. coli BW27783 strains, are included as 
Supplementary Dataset 1.
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Supplementary Methods

Mutagenesis and protein purification

Adenylate kinase (Adk) is encoded by the adk gene, which was cloned under the T7-lac

promoter in pET28a(+) vector (Invitrogen) between NdeI and XhoI restriction sites. We carried 

out mutagenesis with a pair of 30-35 bp long, partially-complementary primers and the inverse 

PCR technique using KOD hot-start DNA polymerase. The mutations were centered in the 

complementary regions of the primers. The mutagenic plasmids were transformed in E. coli

DH5α cells for faithful propagation and storage, and in E. coli BL21(DE3) for protein 

overexpression and purification. The His-tagged proteins were purified by Ni-NTA affinity 

chromatography (Qiagen) and subsequently passed through a HiLoad Superdex 75 pg column 

(GE). The monomeric peak was collected, concentrated and eventually stored in 10 mM

potassium phosphate buffer (pH 7.2). The concentration of the proteins was measured by BCA 

assay (ThermoScientific) with BSA as standard.

Biophysical characterization

Thermal denaturation: We assessed the thermal stability of WT and mutant proteins by 

differential scanning calorimetry (nanoDSC, TA instruments) using 20 µM of protein. The scans 

were carried out from 10 to 90 °C at a scan rate of 90 °C/hr. The thermodynamic parameters 

were derived by fitting the data to a two-state unfolding model using NanoAnalyze (TA 

instruments). We also carried out thermal denaturation using the melt-curve module of BioRad 

CFX96, with Sypro Orange dye as a probe for unfolding as described earlier1. The dye was 

added to the final concentration of 5× in a 25 µl reaction volume containing 4 µM of protein in 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0149 | www.nature.com/natecolevol 2

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41559-017-0149


10 mM potassium phosphate buffer (pH 7.2). The data were fit to a standard four-parameter 

sigmoidal equation to obtain apparent melting temperatures.

Urea denaturation: We carried out isothermal urea denaturation with WT and mutant proteins to 

assess the stability of the proteins to chemical denaturants. We incubated 5 µM of protein for 

~4 hrs at 25 °C with varying concentrations of urea (0-8 M). The urea concentrations were 

estimated by refractive index measurements. The denaturation was monitored by measuring the 

ellipticity at 222 nm using a CD spectrometer (Jasco). The melt data was fitted assuming a model 

of two-state unfolding with linear free energy as described earlier2,3. The m-value was fixed to 

3300 cal/mol/M for fitting.

Gel filtration: We assessed the oligomeric status of purified proteins by gel filtration using 50 µg

of protein on sephadex 75 analytical columns.

ANS and proteostat binding: We used 12 µM of bisANS for assessing binding to 2 µM of 

protein in 10 mM potassium phosphate buffer (pH 7.2). The excitation and emission wavelengths 

were set to 395 nm and 490 nm, respectively. 2 µM of protein was incubated with 3.5 mM of the 

proteostat dye in 1× assay buffer (Enzo LifeSciences). For this the excitation and emission 

wavelengths were set to 550 and 600 nm, respectively.

Enzyme activity: We measured the activity of Adk in terms of ADP formation by an end-point 

assay as described earlier4. Briefly, the concentration of AMP was fixed to 500 µM and ATP 

concentration was varied from 0 to 500 µM in an enzymatic reaction. 5 nM of Adk was used to 

initiate the reaction and 500 µM of Ap5A was used for quenching at 20, 40, and 60 second time 

points. The amount of ADP formed was measured by LDH-Pyruvate kinase-coupled reaction

and the kinetic parameters were derived by fitting the data to the Michaelis-Menten equation.
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Adk overexpression: The adk gene was cloned in a pBAD plasmid and transformed in the 

E. coli BW27783 strain (CGSC#12119). This strain constitutively expresses the arabinose 

transporter (araE) which enables uniform uptake of arabinose. The cells were induced with 

increasing concentrations of arabinose from 0 to 0.05%.

Intracellular protein abundance: Cells were grown in supplemented M9 medium for 4 hours at 

37 °C, harvested and subsequently lysed with 1× BugBuster (Novagen) and 25 units/ml of 

Benzonase. Total amount of proteins in cell lysate was estimated by BCA assay. The specific 

fraction of Adk was determined by SDS-PAGE followed by western blot using rabbit anti-Adk 

polyclonal antibodies (custom- raised by Pacific Immunology). We used experimentally derived 

protein abundance values for all analysis reported in this study.

Estimation of viable cells in saturating culture: The overnight culture was grown in 

supplemented M9 medium for 16 hours at 30 °C and the proportion of live:dead cells was 

measured using Live/Dead BacLight Bacterial Viability Kits (Molecular Probes) according to the 

manufacturer’s instructions. Briefly, 1×108 cells (in a volume of 1ml) were mixed with 3 µl of a 

1:1 proportion of Syto9 dye and Propidium Iodide (PI). The mixture was incubated in the dark 

for 15 minutes, following which the fluorescence was measured at 530 nm and 630 nm. Syto9 

dye stains live cells and emits fluorescence at 530 nm (green), while PI stains dead cells and can 

be detected at 630 nm (red). The ratio of fluorescence values at 530 nm:630 nm corresponds to 

the proportion of live:dead cells in that sample which was eventually used to estimate the 

percentage of live cells in a sample, according to the manufacturer’s instructions. An 

exponentially growing culture (considered as 100% live) and cells treated with 70% ethanol for 

1 hour (considered 100% dead) were mixed in different known proportions, and their 

530:630 nm ratio was used to generate a standard curve.
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Supplementary Fig. 1: Thermal unfolding monitored by Differential Scanning Calorimetry 

(DSC) for WT (black trace) and 20 different Adk mutant proteins (red trace). The molar heat 

capacity (Cp) is shown as a function of temperature. The scan rate was 90 °C/hr. The data was 

fitted to a two-state thermal unfolding model to derive the thermodynamic parameters.
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Supplementary Fig. 2: Isothermal urea denaturation curves at 25 °C for WT (black dots) and 

mutant Adk proteins (red dots). The fraction unfolded (Fu) is plotted as a function of denaturant 

concentration. Protein denaturation was monitored by recording the CD signal at 222 nm. The 

data was fit to a two-state unfolding model.
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Supplementary Fig. 3: Analytical gel-filtration profile of WT and 20 mutant Adk proteins on a 

Superdex-75 column at room-temperature. The absorbance at 280 nm is shown as a function of 

elution volume. For comparison all the monomeric peaks were normalized to 1. WT Adk along 

with most other mutant proteins elutes at the expected position for a monomer. Exceptions were 

V106H, V106N and V106W, where additional peaks appear at much higher molecular weights.
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Supplementary Fig. 4: Aggregation propensity and molten-globule states of mutant proteins. 

Bar plots represent the extent of ProteoStat and ANS binding to WT and mutant Adk proteins. 

The proteins on the x-axis are arranged in decreasing order of stability from left to right.
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Supplementary Fig. 5: Enzyme activity of Adk mutants at 25 °C measured as described in 

Supplementary methods. The initial velocity, shown as a function of ATP concentration, was 

calculated as the amount of ADP produced per minute by 1 nmol of Adenylate Kinase. The 

concentration of AMP in all experiments was fixed to 500 µM. The data (gray circles) was fitted 

using the Michaelis-Menten equation of enzyme activity to extract relevant parameters (fitted 

line in red).
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Supplementary Fig. 6: Representative growth curves of (a) WT, (b) A093I, and (c) L209S 

strains. Each growth curve is shown as ln(OD) vs time plot (left y-axis). The experimental data is 

shown in gray circles and the Gompertz fit is shown in solid red line. The instantaneous time 

derivative of the ln(OD) data is shown in blue line (right y-axis). The strains were chosen to 

illustrate the quality of the fit across different range of growth rates and lag times (see 

Supplementary Table 2 for growth parameters).
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Supplementary Fig. 7: Correlation between growth parameters derived from Gompertz fitting 

and maximum-derivative method (a,b). The parameters derived from both the methods correlate 

very well as indicated by Pearson’s correlation parameters (r and p-values). The data points 

represent mean and error bars are s.e.m. of parameters derived from 2-3 bacterial colonies (see 

Supplementary Table 2).
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Supplementary Fig. 8: Traits of population growth. (a) Relative growth rates ( )WTµ µ and (b) 

relative lag time ( )WTλ λ− obtained from analysis of growth curve derivatives shown as a 

function of catalytic capacity which is defined as abundance cat Mk K× . The mutant data is 

shown in gray circles, whereas red circles represent the BW27783 strain with varying degrees of 

overexpression of WT Adk from a pBAD plasmid. Data for WT is shown in green. The data 

points are mean and error bars are s.e.m. of parameters derived from 2-3 bacterial colonies (see 

Supplementary Table 2). Fig 2 is an equivalent figure with growth rate and lag times obtained 

after fitting the raw data with Gompertz equation (equation (2)).
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Supplementary Fig. 9: Percentage of live or viable cells of WT and mutant Adk strains at 

saturation (16 hours of growth) versus their population lag time. The cultures were grown 

overnight at 30 °C, and then stained using fluorescent dyes Syto9 (specific for live cells) and 

propidium iodide (specific for dead cells). The data points are mean and error bars represent 

standard deviation of 2 biological replicates. WT Adk strain is shown in green.
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Supplementary Fig. 10: Scatter plots of growth parameters (carrying capacity, growth rate and 

lag times) and molecular and cellular properties of Adk. Parameters were obtained using (a) 

Gompertz fit and (c) analysis of growth curve derivatives. Panels (b) and (d) show Spearman’s

correlation coefficients (ρ) and p-values for each of the sub-plots in panels (a) and (c) 
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respectively. The highest correlation values in each panel are highlighted in yellow. V106N was 

excluded from all correlation calculations.
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Supplementary Fig. 11: (a) Relative growth time ( )WTτ τ and (b) relative lag time ( )WTλ λ as 

a function of catalytic capacity ( )abundance cat Mk K× . The dashed line shows a fit to Eq. 3,

where the asymptote ( )a was assumed to be 1. The KM-like parameter b for growth time was 

0.006 and that for lag time was 0.019, which indicates that the WT catalytic capacity is closer to 

the cusp for lag time than for growth time. The mutant data is shown in gray circles, whereas the 

overexpression data is shown in red. In green is shown WT, while the blue circle indicates 

V106N which was omitted from the fitting. The error bars represent s.e.m. of parameters derived 

from growth curves of 2-3 bacterial colonies (biological replicates). See Supplementary Tables 2

and 3 for the parameters.
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Supplementary Fig. 12: Schematic representation of binary growth competition experiments 

and estimation of relative proportion of competing strains. The strains (1) and (2) are mixed in 

1:1 proportion and were grown at 37 °C. Samples were drawn at different time points, 

normalized for OD, and genomic DNA was extracted. The proportions of individual strains were 

estimated by a qPCR method employing mismatch amplification mutation assay method (see 

Methods). We designed a set of primers to differentially amplify the strains by matching the 3’-

end of one of the primers to the site of mutation and using Taq DNA polymerase for 

amplification.
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Supplementary Table 2: Intracellular abundance and growth parameters of adk mutants

Adk strain Fold-increase, Ka error in Kb Growth rate, µa

(min-1)
error in µb Lag time, λa,c

(min)
error in λb Abundanced error in 

abundancee

WT 30.0 1.3 0.0234 1.09E-04 146.4 0.5 1.00 0.00
L082F 28.8 1.8 0.0233 1.39E-04 146.7 2.0 0.79 0.05
L082V 24.4 0.4 0.0229 1.45E-04 158.2 1.3 n.d.f n.d.f

L083A 22.6 0.4 0.0228 9.49E-05 162.0 1.2 0.90 0.08
L083Fg 27.3 1.0 0.0182 1.17E-04 152.9 0.2 1.19 0.10

L083I 23.4 0.3 0.0228 1.25E-04 163.6 2.0 0.91 0.02
L083T 22.9 0.1 0.0231 2.12E-04 164.8 1.8 0.89 0.03
A093F 27.8 2.7 0.0235 2.75E-04 152.2 3.1 0.93 0.03
A093Ig 25.8 0.2 0.0244 3.00E-04 187.2 6.6 0.82 0.07
A093L 24.0 0.5 0.0232 2.12E-04 165.6 3.5 0.80 0.13
A093Y 24.0 0.4 0.0237 3.08E-04 171.7 4.0 0.75 0.23
V106A 25.0 0.1 0.0238 1.95E-04 170.4 3.4 0.95 0.21

V106Hg 24.6 1.3 0.0197 1.33E-04 150.9 2.9 0.11 0.10
V106L 24.4 1.1 0.0236 1.95E-04 167.2 4.3 0.76 0.05

V106N 5.9 0.1 0.0137 3.62E-04 305.8 13.2 0.01 0.00
V106W 23.4 0.6 0.0242 2.61E-04 179.7 1.7 0.20 0.01

Y182F 24.0 0.5 0.0239 1.06E-04 170.4 1.8 0.68 0.09
Y182V 23.7 0.6 0.0236 1.39E-04 174.6 0.5 0.48 0.08
L209A 24.5 0.4 0.0234 1.06E-04 169.9 1.4 0.46 0.07
L209F 30.6 0.7 0.0238 1.64E-04 155.7 1.6 0.68 0.05
L209I 25.8 0.7 0.0241 4.84E-05 169.1 2.5 0.63 0.14
L209S 21.0 0.9 0.0175 7.67E-04 174.4 3.2 0.34 0.07

a parameters derived by fitting Gompertz equation (equation (2)) to ln(OD) vs time at 37 C
b SEM derived from 3 bacterial colonies (biological replicates)
c time required to achieve maximum growth rate
d abundance measured after 4h of growth at 37 C
e standard deviation derived from 2 bacterial colonies (biological replicates)
f not determined
g growth parameters derived from 2 bacterial colonies (biological replicates)
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Supplementary Table 3: Intracellular abundance and growth parameters of WT adk overexpression from pBAD plasmid in E. coli  BW27783 strain

arabinose 
concentration

(%)

Carrying capacity, 
Ka s.d. in Kb Growth rate, µa

(min-1)
s.d. in µb Lag time, λa,c

(min)
s.d. in λb Abundanced s.d. in abundancee

no plasmid 29.5 2.5 0.0195 5.10E-04 126.7 1.0 1.00 0.10
0.00E+00 32.0 0.5 0.0195 2.00E-04 127.2 0.7 4.20 0.42
3.05E-06 30.9 1.8 0.0191 2.00E-04 127.2 2.0 13.73 1.37
1.22E-05 31.3 1.0 0.0197 2.00E-04 125.0 0.4 5.39 0.54
4.88E-05 27.1 1.0 0.0199 2.65E-04 135.7 1.1 21.55 2.15
1.95E-04 32.7 0.9 0.0191 1.00E-04 127.5 1.2 91.27 9.12
7.81E-04 31.6 2.5 0.0192 2.52E-04 127.0 2.1 205.31 20.51
3.13E-03 32.6 1.6 0.0192 4.73E-04 126.1 1.4 250.39 25.02
5.00E-02 28.4 3.1 0.0195 3.61E-04 127.1 2.5 278.69 27.84

a parameters derived by fitting Gompertz equation (equation (2)) to ln(OD) vs time at 37 C
b standard deviation of 3 replicates (from single bacterial colony)
c time required to achieve maximum growth rate
d abundance measured after 4h of growth at 37 C
e standard deviation derived from 2 bacterial colonies (biological replicates)

©
 2017 M

acm
illan Publishers Lim

ited, part of Springer N
ature. A

ll rights reserved.

N
ATU

RE ECO
LO

GY & EVO
LU

TIO
N

 | D
O

I: 10.1038/s41559-017-0149 | w
w

w
.nature.com

/natecolevol 
21

SU
PPLEM

EN
TA

RY IN
FO

RM
ATIO

N

http://dx.doi.org/10.1038/s41559-017-0149

	Optimization of lag phase shapes the evolution of a bacterial enzyme
	Results

	Biophysical properties of Adk mutants. 
	Intracellular abundance of Adk follows prediction from Boltzmann distribution. 
	Mutations in Adk affect lag times more than exponential growth rates. 
	WT E. coli is positioned at the cusp of the biophysical fitness landscape for lag time. 
	Shorter lag imparts advantage at low carrying capacity: A computational model. 
	Shorter lag imparts advantage at low carrying capacity: Experimental evidence. 

	Discussion

	Methods

	Selection of mutations
	Generation of mutant strains
	Growth curve measurements and media conditions
	Fitting growth data and estimation of growth parameters
	Statistical tests for mutational variation in growth and lag phases
	Quantification of the location of WT on the fitness landscapes
	Simulation of binary competition
	Binary growth competition and quantification
	Data availability

	Acknowledgements
	﻿Figure 1﻿﻿ |﻿﻿ ﻿ Biophysical and intracellular properties of Adk.
	﻿Figure 2﻿﻿ |﻿﻿ ﻿ Traits of population growth.
	﻿Figure 3﻿﻿ |﻿﻿ ﻿ Binary growth competition.
	﻿Figure 4﻿﻿ |﻿﻿ ﻿ Growth curves at various nutrient concentration.
	﻿Figure 5﻿﻿ |﻿﻿ ﻿ Tradeoffs between lag and exponential growth in binary competitions.


