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Abstract

Few concepts are as central to evolution as is fitness, and yet the quantification of fitness is
often ambiguous. In particular, high-throughput experiments to measure mutant fitness in
microbes are increasingly common but vary widely in their definitions of fitness, which
makes their results difficult to compare. What are the consequences of these different fitness
statistics, and is there a best way to quantify fitness in a given context? Here we systematize
the set of possible fitness statistics according to the following three choices: 1) the encoding of
relative abundance (e.g., transforming by a log or logit function), 2) the time scale over which
to measure the change in relative abundance, and 3) the choice of a reference subpopulation
for calculating fitness in bulk competition experiments, such as those using DNA-barcoded
mutants. We show that these different choices can lead to significantly different
interpretations of mutant fitness, affecting the magnitude of fitness effects, the presence of
epistasis, and even the fitness ranking across mutants. This can confound predictions for
evolutionary dynamics and gene functions. Altogether our results demonstrate the
importance of consistent fitness definitions for reproducible results across experiments.
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Introduction

Fitness describes the fate of mutations as they arise in a population [1     ] and serves to define
other core evolutionary concepts such as trade-offs [2     ]. At the same time, fitness is an often
confusing term in evolutionary biology [3     –5     ]. It is possible to classify fitness measures by
their role in theory [6     ] and their scale of measurement [7     –9     ], but these arguments offer
little guidance on how to measure fitness with microorganisms in practice. In particular for the
field of microbial ecology and evolution, empirical fitness measurements allow us to test general
evolutionary theory with fast-growing model organisms [10     – 15     ] and can also be used to
detect microbial interactions [16     , 17     ], annotate gene function [18     , 19     ], and understand
the spread of antibiotic resistance genes [20     , 21     ].

The classic approach to measuring the fitness effects of mutations uses pairwise competition
experiments, where the mutant competes with a wild-type in co-culture [22     – 24     ]. This
approach is ideal because it closely mimics the dynamics of spontaneous mutations, and thus is
typically used in experimental evolution [10     , 12     , 25     –27     ]. For example, the Long-Term
Evolution Experiment (LTEE) has evolved Escherichia coli over tens of thousand of generations
and measured the fitness of each evolved lineage in competition with the ancestor [11     , 26     ,
28     ]. Since measuring pairwise competitions becomes infeasible for a large number of strains, a
second approach is to measure properties of genotypes in monoculture, like the growth rate, and
combine these measurements for a relative fitness estimate. Monoculture growth curves are
straightforward to measure, even for entire libraries of single-gene knock-out mutants [29     –
31     ], but empirical tests have shown that the monoculture growth rate is insufficient to predict
the mutant fitness [32     –34     ]. Summary statistics, like the area under the curve (AUC), perform
better [35     –37     ]. However, this approach breaks down for strains that engage in cross-feeding
or toxin production and any attempts to improve monoculture-based fitness estimates require
additional experiments [34     , 37     ] and do not go beyond qualitative fitness rankings [37     ].

A third and more recent approach is to measure relative fitness in bulk competition experiments,
based on high-throughput barcode sequencing [13     , 38     ]. For example, transposon-insertion
mutagenesis generates libraries of barcoded gene knockouts that can be tracked as they grow in a
single batch culture [39     ]. Estimating the fitness of each barcode allows us to identify genes that
are particularly important in the growth environment [18     , 19     , 40     ], in the given genetic
background [14     , 15     , 41     , 42     ], and in the context of an ecological community [16     , 17     ,
42     , 43     ]. Bulk fitness estimation also plays a major role to identify beneficial lineages in
experimental evolution [13     , 44     ] (not unlike the tracking of viral pathogens in public health
[45     –47     ]) and to test their fitness in new environments [48     –52     ]. Many of these studies
make different choices about the design of experiments and the calculation of fitness, but without
explaining why a certain fitness measure was used or how to compare between data sets.

The inconsistent choices for quantifying microbial fitness make it is difficult to compare fitness
across experiments, especially because different groups tend to use different definitions. For
example, the LTEE reports relative fitness per generation [11     , 26     ], whereas other evolution
experiments exclusively report relative fitness percycle [12     , 53     ]. New techniques, like
barcode sequencing, often spark their own fitness metrics [18     , 40     , 54     –56     ]. It is also not
clear what the consequences of this choice are; a different fitness metric might lead to a different
ranking of mutants in a genetic screen (and the importance we assign to those genes), besides
affecting the quantitative fitness value. The probability of fixation for spontaneous mutations
[57     , 58     ], the speed of adaptation [59     ], and the effect size for gene essentiality experiments
[18     , 19     ] all depend on our ability to estimate quantitative fitness values. This raises three key
questions: How do these fitness statistics differ, or are some equivalent? Can we say which choices
are optimal, in the light of first principles or some practical considerations? And does this tell us
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how we should design these experiments? Previous work has addressed aspects of these questions
[6     –9     , 60     ] but the arguments are scattered across disciplines and based on generic models
of population growth [6     , 7     , 9     , 61     ], rather than incorporating the specific dynamics of
microbes in laboratory experiments. Here we address these questions from a unified framework,
using realistic microbial population dynamics with empirical traits to systematically test different
fitness metrics.

Results

Predictive power varies across different relative fitness statistics
While there are other notions of fitness relevant in different evolutionary contexts (Sec. S1, Fig.
S1     ), in this article we focus on relative fitness as this is the most common object of high-
throughput laboratory experiments in microbes [18     , 26     , 40     , 55     , 56     ]. To generalize the
wide range of relative fitness statistics used in these studies, we define a genotype’s relative fitness
as any number that is sufficient to predict the genotype’s relative abundance x(t) over a short-time
horizon (Fig. S1     ). The simplest approach is to take a linear expansion of x(t) and use its slope at
time t to predict the change over a time-window Δt:

Under this linear approximation, the slope slinear = dx/dt|t constitutes a relative fitness statistic,
since it is sufficient to predict the change in relative abundance. Figure 1A      (top panel) shows a
schematic trajectory of relative abundance x(t) with two examples of this predictive approach
(dashed arrows). As we can see, the naive linear statistic of relative fitness can significantly under-
or overestimate the actual change in relative abundance, because x(t) changes nonlinearly in time.

As an alternative, we can transform the relative abundance x into a new variable m(x) that
improves the quality of prediction (Fig. 1B     ; compare [62     ]). We define an encoding as a
smooth, strictly-increasing function of relative abundance. This one-to-one mapping allows us to
predict the change in relative abundance using a linear expansion of the encoded relative
abundance, rather than the relative abundance itself:

where m−1 is the inverse of the encoding function and

is the relative fitness under the encoding m. Note that the relative fitness of neutral mutations is
always zero, independent of the encoding.

For example, Fig. 1A      (middle panel) shows the relative abundance under the log-encoding m(x)
= log x; this encoding is implicit in typical plots of relative abundance on a logarithmic scale
[44     ]. This leads to an approximately linear trajectory in the beginning, where the prediction
quality of the slope of the encoding slog is thus higher than for the slope of relative abundance
slinear (compare top and middle panels of Fig. 1A     ). However, under the log-encoding the
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Fig. 1.

Overview of the choice of encoding and the choice of timescale for quantifying relative fitness.

(A) Example trajectory of relative abundance x (upper panel) for a mutant invading and eventually replacing a wild-type
population. The same trajectory is plotted under the encoding log x (middle panel) and the logit-encoding log(x/(1 − x))
(lower panel). (B) The general flow-chart to predict the future relative abundance of a mutant given a relative fitness value sm

= dm/dt for some encoding m. The current relative abundance xt is transformed into the new variable mt = m(xt), then
projected into the future through a linear extrapolation using sm (upper horizontal arrow) and finally converted back into a
frequency xt+..6t using the decoding function m−1. (C) Four scenarios for positive mutant fitness with different underlying
population dynamics. For each scenario, we show an example trajectory of absolute abundance (stacked) for the wild-type
(dark grey) and mutant population (light grey). Each scenario is mapped as a single-dot onto the fold-change diagram (center
plot) and colored areas indicated positive (green area) and negative relative fitness per-cycle (blue area; compare Eq. (8)     ).
(D) Basic constellation for misranking between relative fitness per-cycle and relative fitness per-generation . For
a given competition (red dot), misranking occurs in a bow-tie area of the fold-change space (red shade). Any competition in
the right half of this area (grey dot) will have higher mutant fitness but lower mutant fitness (right inset). As
small plots on the left, we show possible population dynamics that generate this fold-change variation.
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prediction quality remains poor at later stages in the trajectory. In the case of Fig. 1A     , we see
that the ideal encoding is given by m(x) = logit x (bottom panel), where the logit function is defined
as

This is ideal because it transforms the nonlinear trajectory of relative abundance x(t) into a linear
trajectory that can be fully predicted from the linear expansion in Eq. (2)     .

Why is the logit function m(x) = logit x the ideal encoding of relative abundance for a fitness
statistic in this case? Since we generated the relative abundance x(t) in Fig. 1A      using logistic
dynamics, the logit function is linearly related to the inverse function of x(t) (Sec. S2). More
generally, the ideal encoding for a given relative abundance dynamics x(t) is any linear function of
the inverse m(x(t)) = at(x) + b of those dynamics. Note that the ambiguous scale a also includes log
and logit encodings with a different base of the logarithm (discussed in Ref. [7     ]). The inversion
of x(t) is equivalent to removing frequency (relative abundance) dependence from the relative
fitness statistic slinear [63     ]. For example, Fig. S2      shows that if we apply the logit-encoding to a
trajectory with non-logistic underlying dynamics (e.g., Gompertz model), the logit transform
reduces but does not entirely remove the nonlinearity in the relative abundance trajectory (see
the mathematical notes by Mallet [64     ] for more examples). We note that is possible to generalize
the concept of encodings to absolute abundance as well (Sec. S3).

Of course, the exact dynamics of microbial populations are generally not known, and if they were
known, there would be no need to make predictions using the linear expansion in Eq. (2)     . In the
absence of an exact model, there are mathematical and practical reasons for why the logit
function is a sensible encoding for relative abundance. First, logistic dynamics can be interpreted
as the lowest-order approximation to more complex dynamics of relative abundance (Sec. S2).
Second, the logit encoding is particularly suited to the binomial sampling noise in experimental
measurements of relative abundance (Fig. S3     ). Logit is the designated link function for binomial
random variables, meaning that it normalizes the measurement variance across relative
abundances (heteroscedasticity), regardless of whether the underlying dynamics are logistic
[65     –67     ]. For these reasons, we exclusively focus on the logit-based relative fitness for the
remainder of this work.

Relative fitness statistics require a choice of timescale
In practice, the relative abundance of a genotype is only available as a trajectory of discrete time
points (see crossmarks in Fig. S1C     ). To estimate the relative fitness at a given time point, we
calculate the finite difference of the encoded abundance between the current time t and the
previous time point:

where Δt is the time difference between observations. For discretized time steps it is also possible
to define a multiplicative fitness that describes the ratio, rather than the difference, of encoded
relative abundance between time points (Sec. S4).

In the case of a single mutant competing against a wild-type strain, the estimated relative fitness of
the mutant (using Eq. (5)     ) under the logit encoding is
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where xmut is the relative abundance of the mutant and xwt = 1 − xmut is the relative abundance of
the wild-type. This form of relative fitness is widely used in empirical measurements of microbial
fitness [12     , 66     ]. Note that a special property of the logit encoding is that we can rewrite Eq.
(6)      in terms of the log fold-changes of the mutant and wild-type strains:

where the log fold-change of each strain is LFC = log N (t)/N (t Δt) and N is the biomass of the strain.
The LFC is sometimes also referred to as a Malthusian parameter [9     , 26     , 68     ].

A key element of this estimate of relative fitness (Eq. (5)     ) is the time interval Δt. There are three
common ways to choose a time interval Δt in empirical measurements of microbial fitness. The
simplest is to use a fixed clock time between measurements (e.g., one day). However, many
microbial populations, especially in laboratory experiments [26     , 69     ] but also in some natural
environments [70     –72     ], grow in discrete growth cycles dictated by pulses of nutrients (batch
culture). These cycles define an intrinsic timescale of population dynamics and also determine the
time point of sampling. In this case, it is convenient to quantify relative fitness per cycle

where we have chosen the logit-encoding and Δt = 1 growth cycle in Eq. (5)     .

Another important timescale for microbial populations is the generation time. In general, the
relative fitness per cycle (Eq. (8)     ) may depend on the number of generations in the growth cycle,
and it can be valuable to normalize for this dependence, especially when comparing across
environments [26     ]. However, defining the number of generations for a population with
multiple genotypes growing at different rates is ambiguous. In the case of a single mutant
competing with a wild-type, it is common to consider only the number of generations experienced
by the wild-type strain, which is estimated by the log fold-change LFCwt = log Nwt(t)/Nwt(t − Δt). It is
convenient to express the generations in base e to match the natural logarithm in the logit-
encoding, but this could equivalently be done by converting all logarithms to base 2. Thus the
relative fitness of a mutant per generation is defined by choosing Δt = LFCwt in Eq. (5)     . In
the case of the logit-encoding, the relative fitness per-generation is

where we have replaced ratios of relative abundances with ratios of absolute abundances in Eq.
(6)      and rear-ranged to express completely in terms of log fold-changes (Eq. (7)     ). The relative
fitness per generation with the logit encoding is equivalent to the fitness statistic

used in the LTEE [26     ] and other studies [73     –77     ]. Some authors assume a

fixed number of generations per growth cycle [12     , 15     ], but since this may not be true, we use
the term “per-generation” more strictly for fitness statistics where the wild-type generations are
explicitly measured.

https://doi.org/10.7554/eLife.102635.1
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Relative fitness per-generation ranks mutants
differently than relative fitness per-cycle
Even though relative fitness of a mutant per growth-cycle (Eq. (8)     ) and per generation (Eq.
(9)     ) are both common statistics in microbial fitness measurements, they are not just equivalent
quantities in different units. One major discrepancy between these fitness statistics occurs when
the wild-type strain has no growth or experiences net death during the growth cycle because the
number of wild-type generations is not well-defined (denominator of Eq. (9)     ) [5     , 78     ]. This
occurs for microbes under high drug concentrations, as well as for microbial populations under
harsh environmental conditions as found in sediments or wastewater [79     , 80     ]. Figure 1C     
shows four qualitatively different scenarios for a mutant competing with a wild-type strain,
parameterized according to their LFCs. A comparison between relative fitness per-generation and
per-cycle only makes sense when both the wild-type and the mutant show net growth (scenario 1
in Fig. 1C     )

However, even when the LFC is positive, the relative fitness per-generation can produce different
rankings compared to the relative fitness percycle. For example, Fig. 1D      shows two mutant
genotypes (red and grey) that have opposite rankings under these fitness statistics: the grey
mutant has higher relative fitness per-cycle , but the red mutant has higher relative fitness

per-generation . The disagreement in ranking requires positive covariation in the LFCs (red

bowtie area in Fig. 1D     ), such that the mutant with higher LFC also induces a higher LFC in the
wild-type (Sec. S5, Fig. S4     ).

Fitness statistics disagree over predicted
ranking of single gene knockouts
While we have shown that relative fitnesses per-cycle and per-generation can lead to

different mu-tant rankings in principle, we need to know whether this outcome occurs under
realistic scenarios of microbial population dynamics. We thus simulate fitness rankings for gene
knockout mutants using empirically measured growth traits, based on a previously published
growth curve dataset for the single-gene knockout collection in Saccharomyces cerevisiae [29     ,
81     ]. We estimate growth traits from growth curves (Fig. 2A     ; Methods; Sec. S6) and find large
variation in lag time, growth rate, and biomass yield for the single gene knockouts (grey dots in
Fig. 2B,C     ; also see Fig. S5     ); despite the knockouts affecting multiple traits (pleiotropy), there
are only weak correlations between them. To estimate relative fitness per-cycle (Eq. (8)     ) and
per-generation (Eq. (9)     ), we simulate a pairwise competition for each knockout against the wild-
type (Fig. 2D     ) using a consumer-resource model with a single limiting nutrient (Methods) [82     ,
83     ]. While the relative fitness per-cycle and per-generation are highly correlated across mutants
over-all (Fig. S6     ), there are major differences in the ranks of individual mutants (Fig. 2E     ). For
example, measuring the relative fitness per-generation ranks one beneficial mutant (grey dot
highlighted with blue circle in Fig. 2E     ) 145 positions higher than quantifying relative fitness per-
cycle (where higher rank corresponds to higher fitness). Indeed, when we plot the set of
competitions in this fitness ranking on the LFC diagram, we find that there is many pairs of points
that have positive covariation in the mutant and wild-type LFC and thus give rise to ranking
differences (compare Figs. 2F      and 1D     ) despite a negative covariation overall (compare Figs.
2F      and S4B     ).

What features of the population dynamics are responsible for the schism between relative fitness
per-cycle and per-generation? We explore this by systematically varying the mutant trait
distributions and initial conditions in our simulations (Fig. S7     ). This demonstrates that the
fitness statistics and disagree on the rank-ing if the mutants have diminished biomass

yield and are competed at a high initial frequency (50%) against the wild-type (rows A and D in

https://doi.org/10.7554/eLife.102635.1
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Fig. 2.

Comparison of mutant fitness rankings with different statistics on empirical trait variation.

(A) Overview of the growth curve dataset and the estimated growth traits for the knockout library of Saccharomyces cerevisiae
(Methods). (B) Covariation between estimated steady-state growth rate g and lag time, λ across all mutant strains (grey dots;
Pearson correlation coefficient r = −0.17, p = 7 × 10−30) as well as wild-type replicates (orange dots; r = − 0.16, p = 0.002). The
reference wild-type strain for our pairwise co-culture simulations is defined by the median trait values (black cross) of all wild-
type replicate. (C) Covariation between measured steady-state growth rate g and biomass yield Y across all mutant strains
(grey dots; r = 0.21, p = 8 × 10-44) as well as wild-type replicates (orange dots; r = − 0.06, p = 0.25). (D) Overview of pairwise co-
culture simulations. For each mutant strain (orange), we simulate a competition growth cycle against a reference wild-type
strain using the estimated traits (panel A) and laboratory parameters for the initial condition (N0 = 0.05 OD, R0 = 111 mM
glucose, x = 0.5; Methods) and quantify relative fitness of the mutant in different statistics (Eq. (8)     ,Eq. (9)     ). (E) Rank
disagreement between relative-fitness per-generation and per-cycle . For each fitness statistic, we calculate the
mutant ranking (higher rank means higher fitness and mutants with equal fitness are assigned the lowest rank in the group).
The rank difference is defined as the rank in minus the rank in . (F) Covariation between wild-type and mutant
fold-change across all simulated competitions, with mutant strains (grey dots) and wild-type replicates (orange dots). For
each wild-type replicate, we simulate a pairwise co-culture competition against the reference wild-type strain. We highlight
the mutant with the greatest rank difference (blue halo) in panel E and F, and its corresponding bow-tie area of misranking
(compare Fig. 1D     ).

https://doi.org/10.7554/eLife.102635.1
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Fig. S7     ). Intuitively, these conditions are necessary because they allow mutants to alter the wild-
type LFC. Even though the wild-type growth rate is unaffected by mutants, the wild-type LFC will
change in the presence of mutants that have lower yield because they reduce the time to resource
depletion (row D in Fig. S7     ). A change in wild-type LFC also requires the mutant to be present at
high relative abundance initially (row A in Fig. S7     ; see Sec. S7 for detailed conditions). By this
mechanism, it is possible to concoct a set of growth traits where relative fitness per-generation
and per-cycle deliver completely opposite rankings (Fig. S8     ).

As a further example, we test how the choice of fitness statistic affects conclusions from the LTEE.
We reanalyze competition data from the LTEE [11     ] using the relative fitness per-generation

(equivalent to the original definition used in those studies, ) and relative

fitness per-cycle (Sec. S8). We see that the relative fitness statistics disagree on the rank-ing of

some evolved lineages overall (Fig. S9     ) and at a given time point (Fig. S10     ). We confirm that
the long-term fitness trend in the LTEE is the same for and (Fig. S11     ), but it is

possible to construct hypo-thetical scenarios of evolution where this would not be the case (Fig.
3A-B     ). Beyond the qualitative mismatch between these fitness statistics, and can also

lead to different conclusions for the presence of epistasis between multiple mutations (Fig. 3C-
F     ,Fig. S12     ). For example, measuring relative fitness per-generation will detect negative
magnitude epistasis between a mutation that only affects lag time and a mutation that only affects
biomass yield (Fig. 3C     ), but measuring relative fitness per-cycle shows no epistasis (Fig. 3D     ).
This is because mutations that increase biomass yield increase the wild-type LFC and, in this case,
decrease the relative fitness per-generation (compare Fig. S12A      and C     ). By the same
mechanism, relative fitness per-cycle detects epistasis between mutations that affect growth rate
and biomass yield (Fig. 3F     ), but no such epistasis is present in relative fitness per-generation
(Fig. 3E     ). This again demonstrates that it is possible to arrive at different biological conclusions
from the same experimental data de-pending on the choice of fitness statistic.

Higher-order effects distort relative
fitness measured in bulk competitions
So far we have focused on measuring relative fitness in pairwise competition, but this is usually
not practical for large numbers of mutants. Measuring traits of genotypes in monocultures to
predict their pairwise relative fitness (Sec. S1) is convenient, but when we test this strategy using
our simulation framework we find that most traits perform poorly (Sec. S9, Fig. S13     ) (with some
success for the AUC, but this success depends on the choice of time scale; Fig. S14     ). Another
approach to measuring relative fitness is to use bulk competition experiments, where many
mutant genotypes compete simultaneously in a single culture and each genotype is tracked
through DNA barcode sequencing [39     , 44     ]. However, this raises the question of how well
relative fitness of a mutant in bulk competition corresponds to its relative fitness in a pairwise
competition with the wild-type, since the growth in bulk might be influenced by the presence of
other mutant genotypes, a phenomenon known as a higher-order interaction [83     –85     ].

An important choice in bulk competition experiments is the relative abundance of the library of
all mutant genotypes compared to the wild-type. The invasion of a spontaneous mutation into an
existing population is best captured by pairwise competitions with low initial relative abundance
of the mutant (Case I, Fig. 4A     ), and one way to recreate this scenario in a bulk competition is to
use a low relative abundance for the mutant library overall (Case II, Fig. 4A     ) [40     , 48     –52     ].
A practical problem with Case II is that individual genotypes in the library will have low absolute
abundances, which leads to stochasticity in the population dynamics and the sequencing
preparation [13     , 86     , 87     ]. Therefore, it is common to compete the mutant library by itself
(Case III, Fig. 4A     ) [13     , 15     , 17     –19     , 88     ].

https://doi.org/10.7554/eLife.102635.1
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Fig. 3.

Potential consequences of the choice of fitness
statistic for the interpretation of evolutionary data.

(A) Hypothetical scenario for the trait evolution in a long-term evolution experiment. An evolving population decreases in lag
time (orange line), increases in growth rate to a maximum (blue line) and keeps decreasing in biomass yield (green line). This
trend is similar to initial observations from the LTEE [94     ] (B) Corresponding long-term trend in relative fitness based on the
trait evolution in panel A. We estimate relative fitness per-cycle (grey line) and per-generation (red line) every
250 generations. Dotted grey lines mark the end of trait evolution in lag time and growth rate in panel A. For the actual
fitness trend in the LTEE, see Fig. S11     . (C) Epistasis plot for lag time and yield using relative fitness per-generation .
Colored dots show the fitness for a single mutant with shorter lag time (blue dot), a single mutant with higher biomass yield
(red dot) and a double mutant with both mutations (purple dot). (D) Epistasis plot for lag time and yield in relative fitness
per-cycle . (E) Epistasis plot for growth rate and yield in relative fitness per-generation . Colored dots show the
fitness for a single mutant with higher growth rate (blue dot), a single mutant with higher biomass yield (red dot) and a
double mutant with both mutations (purple dot). (F) Epistasis plot for growth rate and yield in relative fitness per-cycle 
. All epistais plots are based on 50:50 competition growth cycles with the wild-type (compare panels C,D and Fig. S12A-C     ,
compare panels E,F and Fig. S12D-F     ).

https://doi.org/10.7554/eLife.102635.1
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Fig. 4.

The choice of library abundance and reference group in bulk competition experiments.

(A) Overview of a pairwise competition experiment (upper row) and multiple scenarios for bulk competition experiments
(middle and bottom row) with different initial fraction of the mutant library (colored ovals) in the inoculum (open box). For
each scenario, we show a schematic growth cycle (log absolute abundance) in the inset on the right. (B) Schematic relative
abundance trajectories for a mutant compared to two alternative subpopulations. We distinguish between the total relative
abundance xi with respect to the population as a whole (height of green band in the top box) and the pairwise relative
abundance xiwt with respect to the wild-type (height of green band in the bottom box; Eq. (18)     . We indicate the sign of
total relative fitness (Eq. (22)     ) and pairwise relative fitness (Eq. (23)     ) on the right. (C) The absolute error between bulk
and pairwise competition experiments. The total relative fitness (grey dots; Eq. (22)     ) and the pairwise relative fitness (red
dots; Eq. (23)     ) for empirical knockouts (Fig. 2A     ) in bulk competition growth cycle with low mutant library abundance
(panel A, case II; Methods). The absolute error is defined as the bulk fitness statistic minus the relative fitness in pairwise
competition (Eq. (S81)     ). In the inset, the absolute error for pairwise relative fitness (Eq. (23)     ) for a bulk competition
growth cycle with high mutant library abundance (blue dots; case III). The x-axis and the red dots in the inset are identical to
the main plot. (D) The relative error in bulk competition experiments as a function of mutant library abundance in the
inoculum. Each line corresponds to a knockout in our dataset, and represents the relative error between the pairwise relative
fitness in bulk competition and the relative fitness in pairwise competition (Eq. (S91)     ). In black lines, we show the
recommended mutant library abundance for our dataset based on Eq. (10)      (xlib ≈ 24.6%) and based on Eq. (S109)      (xlib ≈
0.02%, Sec. S15).
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A second important choice is whether to quantify fitness of a mutant relative to the whole
population (“total relative fitness”; Fig. 4B     , top panel) [18     , 19     , 88     ] or relative to another
specific genotype, like the wild-type (“pairwise relative fitness”; Fig. 4B     , bottom panel; Methods)
[40     , 48     –52     ]. In the case of a mutant library growing by itself (Case III, Fig. 4A     ), it is still
possible to estimate a pairwise fitness by using known neutral mutants as the reference
population [15     , 17     ] and calculating fitness relative to this group (Secs. S10 and S11).

To test the consequences of these choices, we simulate a bulk competition (batch culture) using the
trait data for yeast single-gene knockouts and compare the es-timates of total and pairwise relative
fitness to fitness measured in pairwise competition, which we use as the ground truth (Methods).
Figure 4C      shows that the total relative fitness has systematically higher error than the pairwise
relative fitness does, since the total fitness measures the genotype relative not just to the wild-type
but to all other mutants as well (Sec. S12). For example, a mutant that grows identically to the wild-
type (neutral phenotype) has zero increase in the pairwise relative abundance, but may have a net
increase in the total relative abundance due to the poor growth of other mutants (compare top
and bottom panel in Fig. 4B     ). This affects the total relative fitness of all mutants in a uniform
way (Fig. 4C     , Sec. S12), such that total and pairwise relative fitness completely agree in the
ranking of genotypes (Fig. S15A     ).

While the pairwise relative fitness is the preferred method for estimating fitness in bulk
competitions, the presence of higher-order interactions means it still deviates from the fitness in
pairwise competitions. For the specific population dynamics in our simulation (Methods; Sec. S13,),
we decompose the higher-order interaction into two terms, a fitness-independent term and a
fitness-dependent term that acts as an amplifier for fitness values (Fig. S16     ; Sec. S14).
Intuitively, the population in bulk competition consumes resources more slowly and gives more
time for growth rate differences to accrue. The higher-order effects were tested by Levy et al.
[13     ], who compared fitness estimates for ca. 30 beneficial lineages in bulk to the fitness
estimates from pairwise competition and found that bulk fitness was typically higher, with some
variation from lineage to lineage, consistent with our results here.

Can we reduce these deviations by changing the relative abundance of the mutant library (Fig.
4A     )? When we repeat our simulation using a high mutant library abundance (Case III, Fig.
4A     ), we find that the absolute error for pairwise relative fitness increases proportionally (inset
in Fig. 4C     ). Clearly, minimizing the abundance of the mutant library minimizes the strength of
higher-order interactions (also reducing ranking disagreement (Fig. S15B,C     ).

As low mutant abundances create practical problems for experiments, it is valuable to identify a
maximum abundance for the mutant library that keeps the error from bulk fitness estimates
below a desired threshold. It is convenient to express this threshold in relative rather than
absolute terms (compare Fig. S17      to Fig. 4C     ). Figure 4D      shows the relative error from
higher-order interactions across a range of mutant library abundances and using the specific
population dynamics of our model, we derive the following rule: Assuming that the mutants in the
library only have variation in growth rate, the mutant library abundance should be below

where ϵ is the desired threshold on the relative error, gwt is the wild-type growth rate, and glib is
the growth rate of the library as a whole (Sec. S15). In the case of our single-gene knockout library,
Eq. (10)      predicts a maximum library abundance of 24.6% based on the wild-type and library
growth rate (gwt = 0.406, glib = 0.389) for a relative error ϵ = 1%. Figure 4D      shows that this
maximum library abundance keeps the relative error below 1% for high-fitness mutants (bright
yellow), because they are dominated by growth rate effects, but fails for mutants close to
neutrality because they have a trade-off between growth rate and lag time, which the estimate in

https://doi.org/10.7554/eLife.102635.1
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Eq. (10)      neglects. It is possible to derive a more precise bound that keeps the relative error
below 1% for all mutant genotypes (here: xlib = 0.02%, see vertical line in Fig. 4D     ), but this
requires prior knowledge of the trait covariation in the mutant library (Sec. S15).

Discussion

Best practices for quantifying mutant
fitness in high-throughput experiments
In this work, we have introduced a conceptual framework (summarized in Fig. 5     ) to derive
common statistics of relative fitness from three essential choices:

1. The choice of the state variable for relative abundance (encoding m; Eq. (2)      and Fig.
1B     ).

2. The choice of the time scale for the change in relative abundance (Δt; Eq. (5)     ).
3. In bulk competition experiments, the choice of sub-population that acts as the reference for

relative abundance of a chosen mutant genotype (Fig. 4B     ).

The combination of these choices leads to a range of fitness statistics, including those commonly
used in population genetics, experimental evolution, and transposon-insertion screens (Fig. 5     ).
However, as we compare these statistics in simulated competition experiments, we find that the
choice of time scale can lead to different mutant rankings (Figs. 2D      and 2E     ) and the choice of
the reference subpopulation can lead to a systematic offset in fitness values (Fig. 4C     ). Based on
these insights, we recommend the following choices for quantifying relative fitness of a mutant:

1. Use the logit encoding of relative abundance, because under the null model of logistic
dynamics this linearizes the trajectory of relative abundance and regularizes measurement
noise (Fig. S3     ).

2. Use a fixed extrinsic time scale (e.g., a single growth cycle), rather than an intrinsic time
scale (e.g., the number of generations) which introduces an additional factor of variation
between competitions.

3. In bulk competition experiments, use the pairwise fitness of the mutant relative to the
wild-type reference subpopulation (either by including a barcoded wild-type or by
grouping neutral mutants into a virtual wild-type) because this more closely matches the
relative fitness in pairwise competition.

4. Since relative fitness measurements in bulk competitions inevitably carry an error from
higher-order interactions, we recommend minimizing relative abundance of the mutant
library as practically feasible (Fig. 4D     ). For a given error tolerance, Eq. (10)      gives an
estimate for the maximum library abundance.

If measuring direct competition is not feasible, we empirically find that the area under the growth
curve (AUC) is the best approximation of the true fitness ranking (Fig. S13     ) but one must
carefully choose the time scale (Fig. S14     ). Our recommendations agree with previous criticisms
of relative fitness per-generation [5     , 8     , 9     , 78     ] and total relative fitness [60     , 89     ] but
differ from the standard practice in high-throughput genetic screens [18     , 19     , 88     ] and many
evolution experiments [33     , 75     ], including the LTEE [11     , 26     ]. The choice of the reference
group is a well recognized issue in high-throughput evolutionary studies, in which one first
estimates a total relative fitness and then subtracts a correction based on the fitness of the wild-
type [12     , 50     , 52     ] or a mean population fitness [13     , 41     , 42     , 51     , 89     ]. In contrast,
we recommend to choose the reference group at the level of relative abundance (Fig. 4B     ; Eq.
(18)     )

https://doi.org/10.7554/eLife.102635.1
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Fig. 5.

Flow-diagram for the quantification of relative fitness from time-series data.

Given the relative abundance of the mutant genotype at two consecutive timepoints (e.g. the start and end of a growth
cycle), the user has to choose an encoding (Fig. 1A-B     ) and the time-scale for evaluating the change in relative abundance
(Eq. (5)     ). In bulk competition experiments, multiple definitions of relative abundance are possible depending on the choice
of the reference subpopulation (compare Fig. 4B     ; Methods). Each combination of these choices (dashed black lines) leads
to a different fitness statistic and we summarize our recommendations (thick black line) in the discussion.

https://doi.org/10.7554/eLife.102635.1
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Consequences of fitness quantification
choices for microbial ecology and evolution
The quantitative differences between relative fitness statistics affects our ability to make
evolutionary predictions. In particular, the fixation probability of a spontaneous mutation
depends on the magnitude of relative fitness compared to other timescales like mutation and drift
[57     , 58     ], and in microbial populations with clonal interference, it depends on the entire
distribution of fitness effects [59     , 90     ]. For example, multiplying the mutation rate with an
incompatible measure of fitness would lead to predicting the wrong speed of adaptation. In the
context of multiple mutations in the same cell, different fitness statistics can lead to different
conclusions about the presence of magnitude epistasis (Fig. 3C-F     ), and in the context of gene
essentiality tests, they may affect the outcome of a significance test (e.g., using log or logit with the
test statistic in Ref. [18     ]).

Using different fitness statistics can even lead to differences in mutant rankings (see Fig. S8      for
an extreme case). Since measurements often serve as a first screen to narrow down the
investigation to the top set of genes [17     , 40     ], a difference in mutant ranking means the
investigation might miss out on relevant genes because of the choice of fitness statistic.

Other sources of discrepancy in quantifying mutant fitness
Besides the conceptual choices of fitness quantification discussed in this article, experimental
limitations can create discrepancies between replicate fitness measurements of the same mutant
[36     , 50     , 91     ]. For example, relative abundance measurements entail sampling uncertainties
(when we sample liquid for colony counting or DNA sequencing) [44     , 60     , 61     ], copy number
variation [18     , 44     ] as well as PCR jackpots and sequencing read errors [13     , 86     , 87     ].
Furthermore, there will inevitably be some variation in initial condition between replicates and
fluctuations during the fitness assay [36     , 87     , 91     ]. On one hand, the conceptual choices for
quantifying fitness can mitigate experimental uncertainty. For example, the logit encoding
normalizes the sampling errors over the time series of relative abundance (Fig. S3B     ). On the
other hand, there is sometimes a trade-off between conceptual choices and experimental
precision, such as the choice of the initial mutant library abundance, which needs to be low to
minimize higher-order interactions and yet high enough to minimize sampling uncertainty [44     ].
Future work will need to elucidate the interplay between conceptual and experimental sources of
discrepancy in fitness measurements.

How general is the disagreement between fitness statistics?
The discrepancy between relative fitness per-cycle and per-generation (Figs. 1D      and 2E     ), as
well as the offset in the total relative fitness compared to pairwise fitness (Fig. 4C     ) will hold
under any form of population dynamics. However, the details of the population dynamics do
matter for the higher-order interactions that cause the discrepancy between relative fitness from
bulk and pairwise competitions (Fig. 4D     ). The empirical evidence for the presence and
mechanisms of higher-order interactions in microbial populations is limited [83     –85     ].
Nevertheless, the fact that we see the fact that we see higher-order interactions even under
competition for a single resource suggests that these effects will be present under more complex
dynamics. Indeed, a comparison of mutant fitness measurements found systematic overestimates
for fitness from bulk compared to pairwise competitions [13     ]. Since this could not be explained
by the offset from using total relative fitness, it is indicative of higher-order interactions. Future
work should provide more comparisons between relative fitness from bulk and pairwise
competitions to better understand higher-order interactions.

https://doi.org/10.7554/eLife.102635.1
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Methods

Inferring growth traits for the single-
gene knockout collection in Yeast
We use a previously published dataset [29     ] for the single-gene knockout collection in
Saccharomyces cerevisiae [81     ], where the authors track growth of each genotype for 47 hours in
monoculture, using microwell plates with defined growth medium. We download this growth
curve dataset from the PROPHECY database [92     ], choosing specifically the dataset measured in
Synthetic Defined medium. We last accessed the PROPHECY website (http://prophecy.lundberg.gu.se
/     ) in March 30, 2020, but as of May 30, 2024, the website no longer seems accessible and
included a reformatted version of the data with our code repository (https://github.com/justuswfink
/24FitnessQuantification     ). From the raw timeseries of optical density, the authors subtracted a
background correction based on blank wells, applied another correction for nonlinearity at high
optical densities and smoothed the growth curve to remove electrical noise [29     ].

We start with the curves in the published dataset (9951 curves) and apply further trimming and
smoothing steps (Sec. S6). From this data we calculate the time series of instantaneous per-capita
growth rate N −1dN/dt (where N is the optical density) and identify time windows where the rate is
approximately constant, which we interpret as distinct growth phases (Sec. S6). We only include
curves that have a single phase of constant exponential growth followed by a stationary phase of
approximately zero growth (9424 curves).

We quantify the biomass yield, maximum growth rate, and the lag time from each remaining
curve as follows. First, we estimate the initial abundance Ninitial (average optical density over first
three time points) and the final abundance Nfinal (average optical density over stationary phase)
from the growth curve. Then we calculate the biomass yield as Y = (Nfinal − Ninitial)/R(0), where
R(0) = 111 mM (20 g/L) is the initial concentration of glucose (assuming glucose is the single
limiting resource). To estimate the maximum growth rate, we average the instantaneous growth
rate over the exponential phase. Finally, we estimate the lag time from the intersection of the log
initial abundance (log N0) with the slope of the maximum growth rate during the exponential
growth phase [93     ]. We excluded curves with negative initial OD, curves with negative inferred
lag times, and curves with a low quality of fit between the measured time series and a simulated
curve based on the inferred trait values (R2 < 0.95; see below for the model). Our final database
includes trait estimates for 9195 curves, which represents 92.4% of the original dataset [29     ].

Each single-gene deletion strain was measured in two technical replicate growth curves, using a
second plate with identical layout in the same plate reader. Some genotypes have only one
estimate of the growth traits because the other replicate did not pass our filters (273 genotypes),
but for most genotypes we retain two replicate estimates in our final dataset (4163 genotypes); a
few genotypes even have three (2 genotypes) or four replicate estimates (54 genotypes) because
these genotypes were included multiple times by the original authors [29     ]. From these
replicates we finally calculate the average yield, growth rate, and lag time for each geno-type. The
dataset also contained many replicate growth curves of the wild-type strain, 374 of which passed
our filters. Since wild-type traits inferred from these replicates had large variation (potentially due
to measuring the wild-type across many different plates and days), we define the wild-type trait as
the median, not the mean. Although the wild-type measurements included in this dataset have
large trait variation (orange dots in Fig. 2B,C     ), the fact that the variation across knockouts is
significantly greater for growth rate (Levene’s test p = 1.3 × 10−9) and lag time (Levene’s test p =
0.025) and that the replicate measurements of gene knockouts are correlated (Fig. S5     ) suggests
that these trait measurements do capture true genetic variation. In contrast, the variation in
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biomass yield across knockouts is not significantly different from the variation across wild-type
replicates (Levene’s test p = 0.44), suggesting that the variation in biomass yield is driven by non-
genetic factors like the abundance or batch of resources used for each growth measurement.

Simulating population dynamics in competition experiments
Throughout this work, we model the competition between a set of genotypes during a single batch
culture growth cycle using the following model of population dynamics [82     , 83     ]:

where Nj is the absolute abundance, xj(0) the initial relative abundance, gj(t, R) the growth rate,
and Yj the biomass yield of genotype j, where the genotypes include a wild-type as well as one or
more mutants. The initial absolute abundance of all genotypes together is N0, and the
concentration of the single limiting resource is R with initial value R0. Note that Eq. (11b) assumes
that cells consume resources only for biomass growth and not for maintenance of existing
biomass.

To capture the sigmoidal shape of typical growth curves with a lag phase, exponential growth
phase, and saturation phase (e.g., Fig. 2A     ), we model the dependence of growth rate on time and
resource concentration as

where Θ is the step function:

In this model, a genotype has an initial lag phase of time λj where no growth occurs, followed by a
phase of constant exponential growth at rate gj, and ending when the resource concentration R
reaches zero. The time to resource depletion, which we also call the saturation time, is defined by
the implicit equation R(tsat) = 0. The simple form of the growth response (Eq. (12)     ) means that
the absolute abundance of genotype j at saturation is

and its log fold-change is

To calculate relative fitness per-generation (Eq. (9)     ) or per-cycle (Eq. (8)      with Δt = 1), we
numerically determine the saturation time tsat by integrating the biomass and resource dynamics
(Eq. (11)     ) as described in previous work [82     , 83     ]. We note that it also possible to derive an
approximate expression for the saturation time tsat which we use for our theoretical calculations
(Sec. S7).

https://doi.org/10.7554/eLife.102635.1
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Testing total and pairwise relative
fitness in bulk competition experiments
We explore total and pairwise relative fitness as two alternative measures of fitness in bulk
competition experiments, and defined as follows. Consider a population with multiple genotypes
such that each genotype i has absolute abundance Ni(t) at time t. The total relative abundance of
the genotype is

The “total” here refers to the fact that this is the abundance of genotype i relative to all other
genotypes in the population. Similarly, we can think of the definition of relative fitness discussed
in the main text (Eq. 3     ) as the total relative fitness of this genotype under an encoding m:

However, sometimes we want to track the dynamics of a genotype relative to another specific
genotype; for example, to follow the fate of a mutant against the wild-type in a bulk competition
experiment. For a pair of genotypes i ≠ j, we thus define the pairwise relative abundance

which is the relative abundance of genotype i in a subpopulation of genotype i and j. To predict the
change in the pairwise relative abundance, we can use the slope

which defines the pairwise relative fitness of genotype i with respect to genotype j. In the special
case of a population with only two strains, the pairwise relative fitness and total relative fitness
are identical but they may differ with more than two genotypes (Sec. S12).

It is also possible to define the total and pairwise relative fitness statistics as finite differences over
a time interval, rather than as instantaneous derivatives. For example, we can define them over a
growth cycle starting at t = 0 and ending at t = tsat:

For these fitness statistics in the bulk competitions, we use the logit encoding

https://doi.org/10.7554/eLife.102635.1


Justus Wilhelm Fink et al., 2024 eLife. https://doi.org/10.7554/eLife.102635.1 19 of 74

where we have rewritten in the form that it is pre-sented in bulk competition experiments

[15     , 51     , 52     ]. The logit encoding has mathematical advantages for coarse-graining the
relative fitness of genotype groups (Sec. S10) but using the log encoding is another common choice
in the literature [17     , 41     , 50     ]. However, the relative abundances of the individual mutants
in our simulated bulk competition experiments are low enough that these two encodings are
approximately equivalent (logit x ≈ log x for x ≪1).

Unlike the comparison between per-cycle and per-generation relative fitness where we focused on
rank differences (Fig. 2E     ), here we can evaluate absolute differences in fitness estimates
because the total and pairwise fitness in bulk fitness are measured in the same units as the
relative fitness in pairwise competition. For all mutant genotypes, we calculate the absolute error
between these bulk fitness estimates (Eq. (22)     ,(23)) and the rel-ative fitness in pairwise
competitions (Eq. (6)     ), which we take as the ground truth (Fig. 4C     ). Note that the pairwise
competition could depend on the initial relative abundance of the mutant; we have chosen a very
low rel-ative abundance (10−6) that mimics a mutant arising de novo and where this dependence
is very weak.
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Supplementary Information

S1. Different types of fitness under
example models of population dynamics
We distinguish between three related but distinct notions of fitness [1     ], all based on predicting
dynamics of a population [2     –5     ]. The first type of fitness is absolute fitness, which is a property
of a single genotype by itself and serves to predict the change in the genotype’s absolute
abundance N(t) over a future time window Δt (Fig. S1A     ). This is important for questions about
extinction and evolutionary rescue [6     ]. The second type of fitness is relative fitness, which is a
property of two geno-types as it describes how the relative abundance x(t) of one genotype
changes compared to the other over a time Δt (Fig. S1B     ). This is important to determine the
fixation probability of new mutations [7     , 8     ]. In general these dynamics are stochastic [7     ,
9     , 10     ], but throughout this paper we focus on their average behavior across replicate cultures
(as sketched in Fig. S1C     ).

A practical challenge of working with relative fitnesses is that they must be measured between all
pairs of geno-types in co-culture competitions. Therefore it is common to infer relative fitness of
two genotypes based on some individual properties of the genotypes [11     –14     ]. We denote this
third notion of fitness as the fitness potential ; it is a property of an individual genotype, but unlike
the absolute fitness, it has no meaning by itself; it is the ratio or difference of fitness potentials that
is used to derive relative fitness between two genotypes [15     , 16     ]. The collection of fitness
potential values across a large set of genotypes forms a fitness landscape [17     , 18     ]. We note
that fitness as defined here gives information about short-time dynamics but not necessarily the
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long-term outcome (compare [19     ]). For example, this excludes the ratio of growth rates [14     ,
20     ] or the resource concentration R* in chemostat equilibrium [21     ] since these quantities
cannot tell you how fast the absolute or relative abundance is changing.

In this section we explicitly calculate relative fitness of a mutant under a few example models of
population dynamics, using the different encodings of relative abundance as described in the
main text (Fig. 1A     ). Consider a competition coculture between a wild-type genotype with
absolute abundance Nwt(t) and a mutant genotype with absolute abundance Nmut(t). We can
describe their dynamics according to the ordinary differential equations (ODEs)

Note that the per-capita growth rates gwt and gmut of each genotype can depend on both genotypes
to reflect competition or other interactions. The relative abundance of the mutant genotype at
time t is

The dynamics of the mutant relative abundance are therefore described by

As defined in the main text (Eq. (3)     ), the relative fitness of a mutant is sm = dm/dt for an
encoding m(x) of the relative abundance x. Under the trivial linear encoding (m(x) = x), the relative
fitness is therefore just the right-hand side of the relative abundance ODE (Eq. (S3)     ):

For the log encoding m(x) = log x, we use the identity d log x/dt = x−1dx/dt to obtain the log-encoded
relative fitness:

https://doi.org/10.7554/eLife.102635.1
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Finally, for the logit encoding m(x) = logit x = log(x/(1 − x)), we use the identity d logit x/dt = x−1(1 x)
−1dx/dt to obtain the logit-encoded relative fitness:

By comparing relative fitness values under the linear encoding (Eq. (S4)     ) and under the logit
encoding (Eq. (S6)     ), we see how the logit encoding has removed the explicit dependence on the
mutant relative abundance (factors of x and 1− x), although there can be implicit dependence on
the mutant relative abundance within the per-capita growth rates of each strain (gwt and gmut)
due to density-dependent growth rates.

If the per-capita growth rates gwt and gmut (Eq. (S1)     ) are constants, then these constant growth
rates also act as fitness potentials since they each depend only on a single genotype but their
difference determines relative fitness (under the logit encoding, Eq. (S6)     ) between the
genotypes. The growth rate is not a fitness potential under more complex dynamics, however. For
example, consider a competition model with explicit density dependence:

where the growth rates decrease as the genotype abundances reach their carrying capacities Kwt
and Kmut, and the maximum growth rates at low abundances are rwt and rmut. In this case, the
relative fitness under the logit encoding is (from Eq. (S6)     )

In this case, there is no fitness potential because it is not possible to separate Eq. (S8)      into a
difference between terms that only depend on each genotype separately.

S2. The role of logistic population
dynamics in logit-encoded relative fitness
Here we show how the logit encoding of relative abundance is related to the logistic model of
population dynamics. For a relative abundance x, logistic dynamics are

where r is the exponential rate at which relative abundance increases from low values. This form
emerges from the general dynamics of relative abundance (Eq. (S3)     ) when the difference in per-
capita growth rates gmut and gwt is constant. Once can also interpret the logistic model as a lowest-
order approximation for more complex dynamics. That is, consider a general equation for relative
abundance:

https://doi.org/10.7554/eLife.102635.1
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for an arbitrary function f (x). Since this function must obey the boundary conditions f (0) = 0 and f
(1) = 0 (the relative abundance must stop changing when it either goes extinct or fixes), a
polynomial expansion of f (x) must have roots at these values:

Thus the logistic model in Eq. (S9)      is a lowest-order approximation even when the true
dynamics are more complex.

The logistic differential equation in Eq. (S9)      has the solution

The logit encoding of the logistic relative abundance has linear dependence on time:

This is another way to see why the relative fitness under the logit encoding (the time derivative of
Eq. (S13)     ) is constant under logistic dynamics. Mathematically, this occurs because the logit
function is the inverse of the logistic dynamics (Eq. (S12)     ), up to a shift and rescaling. Thus if the
relative abundance dynamics are different from logistic (Eq. (S9)     ), the logit encoding no longer
exactly linearizes the trajectory of relative abundance and thus is no longer the optimal encoding
for relative fitness (see example in Fig. S2     ).

S3. Definition of absolute fitness for a genotype
Here we give an explicit definition of a genotype’s absolute fitness, analogous to the definition of
relative fitness in the main text (Eqs. (1)     –(3)     ). Conceptually, absolute fitness is any number
that is sufficient to predict a geno-type’s absolute abundance N over a short time window. Let an
encoding m(N) be any smooth, strictly-increasing function of the absolute abundance N. We can
then predict the absolute abundance over a time window Δt using a linear expansion of the
encoded abundance (analogous to main text Eq. (2)      for relative fitness):

where m-1 is the inverse of the encoding function and

is defined as the absolute fitness of the genotype under the encoding m (analogous to main text Eq.
(3)      for relative fitness; see also Fig. 1B     ). For example, the absolute fitness of a genotype under
the log encoding m(N) = log N is the per-capita growth rate:

In general, the ideal encoding of absolute abundance is the inverse function of the absolute
abundance trajectory N(t) (up to a shift and rescaling), so that the first-order expansion in Eq.
(S14)      is exact and the absolute fitness am is sufficient to determine changes in absolute
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abundance up to any future time. The log encoding m(N) = log N is therefore ideal when absolute
abundance grows or decays exponentially, while the logit encoding m(N) = logit N is ideal for a
population that grows with logistic density dependence (Eq. (S7)      in case of a single genotype).

Absolute fitness and relative fitness are related, since the relative abundance of a genotype is
determined by normalizing its absolute abundance by the absolute abundance of all genotypes in
the population. Specifically, the relative fitness of a genotype is determined by the absolute
fitnesses for all genotypes in the population. For example, in the case of two genotypes, the
relative fitness under the logit encoding (Eq. (S6)     ) is the difference between the genotypes’
absolute fitness under the log en-coding (Eq. (S16)     ). In the case of constant per-capita growth
rates, these log-encoded absolute fitnesses also act as fitness potentials.

S4. Relative fitness predictions in discrete
time: additive vs. multiplicative form
In our framework, relative fitness is a statistic that predicts relative abundance in an additive
equation (Eq. (2)     ) but sometimes the dynamics of individual genotypes are modeled using a
multiplicative form of fitness. In this section, we show how these multiplicative fitness statistics
are related to the additive fitness statistics, in particular for the logit encoding.

We consider a population of a wild-type and a mutant genotype, where we track the mutant’s
relative abundance over multiple rounds of competition (e.g. growth cycles)

and the variable x changes each round according to some underlying population dynamics.

In a modeling approach typical to many studies in population genetics [22     ], these population
dynamics are captured in the genotype-specific growth factors

which drive the update equation for the mutant relative abundance

which is the discrete-time analogue to a differential equation (Eq. (S1)     ). We divide Eq. (S19)     
by 1 − x(r + 1) to obtain the form

which allows us to recognize the ratio of growth factors fmut/fwt as a relative fitness statistic, since
it is sufficient to predict the relative abundance of the mutant genotype (under the encoding m(x) =
x/1 − x). But the statistic fmut/fwt acts as a multiplying factor in Eq. (S20)     , whereas the general
form of relative fitness sm (Eq. (2)     ) acts as an additive factor. What’s the relationship between
the multiplicative and the additive form of discrete-time relative fitness statistics?

https://doi.org/10.7554/eLife.102635.1
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To describe discrete rounds of population dynamics in our framework, we treat the relative
abundance x(r) as samples from a continuous timeseries, separated by a time-gap Δt = t(r + 1) −
t(r). For a chosen encoding m, The relative abundance of the mutant genotype in the future round
is predicted by

since this is how we defined relative fitness sm in Eq. (2)      This relative fitness acts as additive
factor, but we apply the exponential function on both sides of Eq. (S21)      to obtain the updated
equation

where the additive fitness  together with the timescale Δt acts as a multiplicative factor.

Specifically for the logit encoding m(x) = logit x we have

We compare Eq. (S23)      to Eq. (S20)      and solve for the relative fitness of the mutant genotype

as a function of the growth factors fmut, fwt. Using the definition of the growth factors (Eq.
(S18)     ), we see that Eq. (S24)      is simply the discrete-time relative fitness for the logit encoding
in terms of the mutant and wild-type LFC (Eq. (S30)     ). As a general point, we note that the
growth-factor fmut qualifies as an absolute fitness (since it is sufficient to predict the absolute
abundance N(r+1)), but does not constitute a relative fitness statistic (since we also need to know
fwt, see Eq.(S20) or Eq. (S24)     ).

More generally, for a given encoding function m(x) we define the mutant’s multiplicative relative
fitness over a discrete growth cycle as

where sm is the additive relative fitness for this growth-cycle under the chosen encoding (Eq.
(3)     ) and Δt is the duration of the growth-cycle in time units that match sm. Equation (S25) shows
that the additive fitness sm has time units, but the multiplicative fitness does not and is formally a
dimensionless quantity. These dimensionless units are preserved in the approximate formula

which is the first-order expansion of Eq. (S25)      in the limit of weak selection (|smΔt| ≪1). For
example, if we choose to measure relative fitness with the logit encoding on the time-scale per-
cycle (Δt = 1 cycle), we get

which is the same multiplicative fitness as if we choose to measure the relative fitness on the time-
scale pergeneration (Δt = LFCwt):

https://doi.org/10.7554/eLife.102635.1
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In both cases, the time-units for the discrete-time additive fitness cancel in the product term.

So how would a mutant ranking in the multiplicative fitness wlogit rank a set of mutant genotypes
compared to the fitness statistics  or  Equation (S27) shows that the multiplicative

fitness statistic wlogit agrees with the relative fitness per-cycle slogit, but can differ from the
ranking in the relative fitness per-generation  as both terms of the product in Eq. (S28)     
depend on the mutant (compare Fig. 2F      and Sec. S7).

Finally, we address the question how the relative fitness  agrees in the ranking with the

multiplicative fitness wlogit, but disagrees with the fitness statistic defined in the Long-Term
Evolution Experiment [23     ] as

By comparing Eq. (S29)      to the multiplicative fitness in Eq. (S26)     , we see that the LTEE fitness
statistic W does not derive from the general form of the multiplicative fitness (Eq. (S25)     ) as all
statistics derived from this approximation have a multiplying factor Δt that cancels the units of
time in sm. The fact that the LTEE fitness statistic W (Eq. (S29)     ) misses the term LFCwt compared
to the logit-based multiplicative fitness wlogit (Eq. (S28)     ) means that the objects have different
units of time, and different rankings.

S5. Derivation of mismatch conditions for
relative fitness per-cycle and per-generation
In this section, we derive the conditions for a ranking mismatch between the relative fitness per-
cycle and per-generation (for the logit-encoded relative abundance) across a set of competition
experiments. Consider a batch culture where a competing wild-type and mutant genotype have log
fold-changes LFCwt and LFCmut over a single growth cycle. The LFCs are convenient variables to
describe these dynamics since we can express the mutant’s relative fitness per-cycle as (main text
Eq. (8)     )

and the mutant’s relative fitness per-generation as (main text Eq. (9)     )

Here we assume both LFCs are nonzero (so that measuring fitness per-generation is meaningful;
see discussion in main text).

To determine how these two fitness statistics lead to different rankings, we consider two
competition experiments A and B, which may represent two different mu-tants competing against
the same wild-type or the same mutant tested in two different environments. A mismatch in
ranking occurs when the fitness per-cycle in competition is highest in B, while the fitness per-
generation is highest in A:

https://doi.org/10.7554/eLife.102635.1
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We insert the expressions for relative fitness per-cycle (Eq. (S30)     ) and per-generation (Eq.
(S31)     ) into Eq. (S32)      to rewrite the condition for ranking mismatch in terms of the LFCs:

For a given competition A, Eq. (S33)      defines an area in the space of LFCs where competition B
can lie such that competitions’ fitness is ranked differently per-cycle versus per-generation (Fig.
1D      shows an example as the red-shaded area). Biologically, these constraints describe a
situation where both the mutant and wild-type LFCs are higher in competition B than in
competition A (i.e., so that they gray point is up and to the right of the red point in Fig. 1D     ), but
the LFC increases must be sufficiently balanced between the mutant and wild-type (i.e., so that the
point lies within the red area in Fig. 1D     ).

Typically, however, the LFCs of the wild-type and the mutant are not independent, since these
LFCs are jointly constrained by the fact both strains compete for the same finite resources. For
example, assume that a single limit-ing resource with concentration R is consumed in proportion
to the growth of each genotype’s biomass according to

where Ywt and Ymut are the wild-type and mutant biomass yields (stoichiometry of biomass to
resource).

We can integrate Eq. (S34)      to obtain

The growth cycle stops when no resource remains (R(t) = 0), such that

where we have expressed the genotype abundances at the end of the growth cycle in terms of
their LFCs. Equation (S36) thus entails a constraint between the wild-type and mutant LFCs. For a
set of a mutant competitions with the same initial resource concentration R(0), initial abundances
Nwt(0) and Nmut(0), and yields Ywt and Ymut, the mutant and wild-type LFCs are constrained by Eq.
(S36)      to fall along a one-dimensional curve (black line in Fig. S4A     ). Geometrically, we see that
this constraint on LFCs is incompatible with the requirements for a ranking mismatch between
fitness per-cycle and pergeneration for a pair of mutant competitions (compare black line and red
shaded areas in Fig. S4A     ). However, if some mutant competitions deviate from this constraint,
for example by having different yields Ymut or initial conditions Nwt(0) and Nmut(0), then ranking
mismatches may be possible (Fig. S4B     ).
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Justus Wilhelm Fink et al., 2024 eLife. https://doi.org/10.7554/eLife.102635.1 27 of 74

S6. Analysis of growth curves to identify growth phases
In this section, we describe in more detail how we identify growth phases from the original
dataset of growth curves and use this to choose a subset of curves that matches the simplified
growth dynamics of our population dynamics model (Fig. 2A     ). As mentioned in the main text
(Methods), we downloaded this original data from the PROPHECY DATABASE (http://prophecy
.lundberg.gu.se/     ), downloading specifically the dataset for growth in Synthetic Defined medium
as first analysed and reported in [24     ]. The original growth curve data is already corrected for
background and instrument non-linearities [24     ] (summarized in Methods), but we decided to
apply additional corrections as follows: To begin with, we concatenate the original 51 data files
(for different plate reader runs) into a single, consecutive dataframe and manually handle a
duplication in one of the files (Experiment NO. 18). This file has no measurements for the first
timepoint (t = 0) due to technical error in the original data export [24     ] and for curves from this
experimental run, we set the initial time point to NAN value in Python, meaning that these points
will be ignored for any subsequent calculations of averages. More generally, we decided to trim
the first four timepoints of all growth curves (equivalent to 1h20min from 47h total) and remove
OD measurement below a noise threshold (OD = 0.001) as this improves the quality of the fit later
on.

After pre-processing, we estimate a smooth time series for the instantaneous growth rate in each
growth curve, using a previously published script gaussianprocess.py by Swain et al. [25     ] that
implements the Gaussian Process approach to smoothing (download from https://swainlab.bio.ed.ac
.uk/software.html     ). We apply this script to the logarithmic absolute abundance log OD, and
reconstruct a smoothed trajectory f(t) ≈ log OD(t) as well as the first derivative df /dt and the
second derivative d2f/d2t [25     ]. Effectively, the script estimates three hyperparameters that
capture the shape of each curve and we find that the estimation works best if we constrain the
parameter ranges as outline in Table. S1     .
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TABLE S1.

Parameter settings for Gaussian Process optimisation.
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With a smoothed time series at hand, we now identify ‘plateaus’ of constant growth rate using the
functions available in Scipy [26     ]. For each growth curve, we start by identifying so-called
‘plateau seeds’, which are small intervals where the second derivative is below a chosen threshold
d2f/d2t< 5 · 10−6. For each ‘plateau seed’ k in the growth curve, we calculate the average growth
rate ĝk in the time-window of the plateau. Due to some noise in the second derivative, we find
many ‘plateau seeds’ that are adjacent and need to be merged. To do so, we iterate over the
‘plateau seeds’ in the growth curve and merge the current candidate k with the previous plateau k
- 1, except one of the following conditions is true:

Both plateaus seeds have a duration that is too long (equal or greater than 100 minutes).
The transition time between the plateau seeds is too large (equal or greater than 200
minutes).
The first plateau has a significantly different growth rate that the second one, sucht that
the following equation is satisfied

where gk, gk−1 are the average growth rate in each plateau (per minute).

Empirically, we find that the duration of these merged plateaus is shorter than what one would
expect from visually inspecting the growth curve. Therefore we extend the remaining plateaus in
each growth curve as follows: For each plateau, we estimate the lower and upper growth rate df
/dt in the time window and take this as a growth rate corridor. We extend the plateau to the left,
until df /dt leaves that growth rate corridor, and similarly extend to the right. By definition, the
resulting plateau is equal or larger to the original time-window and we recal the average growth
rate over the time window.

From this analysis, we obtain a list of growth phases for each curve that allows us to choose a
subset of curves that match our model of population dynamics (Methods). We only choose curves
that have two plateaus, where the first plateau has significant growth (exponential phase), and the
second plateau has no growth (stationary phase). Here we define significant growth as the average
growth rate in the plateau time window is larger or equal to 0.0011 per minute. This forms the set
of growth curves that we use to estimate growth traits (9424 curves).

S7. The saturation time in our model of population dynamics
In this section, we restate an explicit expression for the saturation time tsat in pairwise
competition that was derived in earlier work and allows us to see how mutants can influence
resource depletion and the wild-type LFC (Eq. (15)     ). Using the same model of population
dynamics (Methods, Eq(11)), previous work [27     , 28     ] derived an approximate formula for tsat
that shows how it depends on the underlying parameters:

where

is the effective lag time of the population,
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is the effective e-fold growth time (reciprocal exponential growth rate) of the population,

is the effective yield of the population, and

is the log fold-change of the total biomass, which depends on the initial absolute abundance N0 of
all genotypes and the initial concentration of resources R0.

Equation (S38) shows how each competing genotype influences the saturation time tsat and thus
the LFCs of all other genotypes via Eq. (15)     . For example, adding a mutant with slow growth rate
increases the effective doubling time (Eq. (S40)     ), while a mutant with long lag time will increase
the effective lag time (Eq. (S39)     ). Genotypes also influence the saturation time (Eq. (S38)     )
through the effective yield , which is the harmonic average of yields for all genotypes (Eq.
(S41)     ). The harmonic aver-age means that adding mutants with low biomass yield Yj can
significantly shorten the saturation time, but mutants that are more efficient (high Yj) have little
influence on the duration of the growth cycle. Note that genotypes must be at sufficiently high
relative abundance to significantly influence the effective population traits, since each the
contribution of each genotype j is weighted by its relative abundance xj.

S8. Analysis of fitness trajectories from
the long-term evolution experiment
A previous analysis of the Long-Term Evolution Experiment (LTEE) performed by Wiser et al.
[29     ] found that evolved populations of Escherichia coli increased in relative fitness over 50,000
generations without converging to a maximum fitness. Here we re-analyze the same data by
directly comparing the relative fitness (under the logit encoding) per-cycle  and per-

generation  to see if the choice of fitness statistic changes the conclusion. The experimental

protocol of the LTEE has been described elsewhere [23     , 30     ], but we briefly summarize the
main aspects: Starting with a single ancestral strain of E. coli, 12 replicate populations were
inoculated in 1988 and are perpetually grown in batch cultures with serial transfers, such that 1%
of the population biomass is transferred to fresh growth medium each day. Samples from each
replicate population are stored every 500 generations, leading to a record of evolved populations
over time [30     ].

Previous work performed competition experiments between the ancestral population and each
evolved population (every 500-2000 generations) by combining them in equal proportions and
growing them over a single batch culture growth cycle, with measurements of their initial and
final absolute abundances taken by colony counting [29     ]. This data has been prepared in a
convenient format by Good et al. [31     ] and is available for download at https://github.com
/benjaminhgood/LTEE-metagenomic/blob/master/additional_data/Concatenated.LTEE.data.all.csv     . For
a few of the 12 populations, the time series is truncated: population Ara+6 has competition
measurements up to generation 4000, population Ara-2 has competition measurements up to
generation 30,000, and population Ara+2 has competition measurements up to generation 32,000
[29     ]. Note that the evolved population tested in these competitions is not a single genotype, but
a sample of multiple genotypes that were present in that evolving population at that time. From
these values of absolute abundance, we compute the log fold-change (LFC) of the evolved and
ancestral populations in each competition and then calculate the evolved population’s relative

https://doi.org/10.7554/eLife.102635.1
https://github.com/benjaminhgood/LTEE-metagenomic/blob/master/additional_data/Concatenated.LTEE.data.all.csv


Justus Wilhelm Fink et al., 2024 eLife. https://doi.org/10.7554/eLife.102635.1 31 of 74

fitness percycle (Eq. (S30)     ) and per-generation (Eq. (S31)     ). The original dataset has two to four
replicate measurements for each evolved sample, corresponding to a repeat of the competition
experiment at a different day [29     ]. Initially, we collect all competition experiments into a single
dataset (n = 928 competitions) and find that relative fitness per-generation and per-cycle differ in
the ranking of these competitions (Fig. S9A,B     )For example, one competition is ranked 261
positions lower in relative fitness per-generation than per-cycle (where higher ranks indicate
higher fitness). The scatter occurs because the biomass yield evolves downward over time [32     ,
33     ]. We can understand the ranking mismatch from the underlying LFCs in the competition
experiment (Fig. S9C     ), that show considerable scatter, with some mutant-wild-type pairs in a
positive covariation (compare Fig. S9C      and Fig. 1D     ). The scatter occurs because the biomass
yield evolves downward over time [32     , 33     ], shifting the wild-type LFCs downward in 50:50
competitions with the evolved populations (horizontal trend across time points in Fig. S9C     ).

We can also construct a timeseries of relative fitness for each population and compare fitness
rankings at a individual time points. For each of the 12 populations in the LTEE, we define the
relative fitness per-generation  at time t by averaging the value  across all competition

experiments with the frozen sample from time t. Simlarly, we define a timeseries of relative fitness
percycle  for each population. In summary, we can pool all time series into a single dataset

(with the truncation described above) and test how the two statistics rank the 12 populations at
any point in the experiment. We find that the mismatch between relative fitness per-cycle and per-
generation is consistenly low at all time points (Fig. S10     ), with a few exceptions (for example, at
generation 4,000 the two statistics disagree on the top six populations).

A key result from previous analysis on this dataset is that the evolving populations increase
indefinitely in relative fitness, rather than leveling off at some maximum fitness value. The
original analysis by Wiser et al. [29     ] tested the long-term trend by fitting the statistic

 to a hyperbolic model of the time series:

where t is the evolutionary time point at which the evolved population is measured against its
ancestor, and f(t) is the fitness statistic measured from that competition (here fitted to the
measured values of W). The important feature of the hyperbolic model is that it assumes that
relative fitness saturates at a maximum fitness over long times (limt→∞ f(t) = 1 + a). To contrast this
model, they also tested a power law

under which fitness increases without bound over long times (limt→∞ f(t) = ∞). To repeat this
analysis with the fitness statistics  and  used in this article, we must adjust the models

to account for the fact that W takes 1 as its neutral value (occurring at t = 0 by definition) while
 and  are zero under neutrality.

Thus we use

as the hyperbolic model and
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as the power law model.

As a control against the original analysis of Wiser et al. [29     ], we first perform our own fit of the
time series of the relative fitness per-generation  to the hyper-bolic (Eq. (S45)     ) and the

power law (Eq. (S46)     ) models. Wiser et al. compared their two models using the Bayesian
Information Criterion [29     ], but since the models have the same number of parameters this is
mathematically equivalent to comparing the values of R2. Figure S11A      shows that in our
analysis, the power law model has a higher quality of fit (R2 = 0.701) than the hyperbolic model
does (R2 = 0.682) for the fitness statistic , consistent with the original result by Wiser et al. for

the statistic  [29     ]. Since the equations for the hyperbolic model only differ in the

constant offset (compare Eqs. (S43)      and (S45)     ), our fit of  to Eq. (S45)      is

mathematically equivalent to the fit of W to Eq. (S43)     . Therefore, our fit should give the exact
same results as the original publication [29     ] in the case of the hyperbolic model (but we couldn’t
fit the fitted values a, b in [29     ] so we were unable to check it). This is not true for the power law,
because the modified power law used by Wiser et al. [29     ] (Eq. (S44)     ) includes the offset within
the parentheses, rather than as an added constant outside (compare Eq. (S44)      to Eq. (S46)     ).
This means that the fit of W to the power law with an initial value of 1 (Eq. (S44)     , fitted values α
= 0.00515, β = 0.0950; matching [29     ]) is different from the fit of  to the power law with an

initial value of zero (Eq. (S46)     , fitted values α = 0.000007, β = 0.299891).

We next perform a new analysis by calculating the relative fitness per-cycle  from the same

timeseries data (12 timeseries pooled together, one for each line) and fitting this fitness statistic to
the same hyperbolic (Eq. (S45)     ) and power law (Eq. (S46)     ) models. As shown in Fig. S11B     ,
we find that the power law model outperforms the hyperbolic model for the per-cycle fitness,
consistent with the model performance for the per-generation fitness. This suggests that Wiser et
al.’s original conclusion about fitness increasing with-out bound [29     ] is robust to the choice of
fitness statistic.

As we previously mentioned, the fitness measurements of all replicate populations are not
uniform across time (Fig. S11A     ): there are fewer fitness measurements at late time points
(generation 34,000 and higher) because three populations were eventually excluded from the
fitness measurements [29     ]. To further corroborate our results, we thus repeat the model fits
using a single time series of the evolved fitness, rather than fitting the models to a all 12 fitness
time series simultaneously. We calculate the average fitness per-generation  and per-cycle

 in the evolution experiment as the average across all 12 populations at each time point and

fit this population-averaged time series to the hyperbolic (Eq. (S45)     ) and power law (Eq. (S46)     )
models (Wiser et al [29     ] refer to this as a fit to the “grand mean“). Figure S11C,D      shows that
the power law still has a better quality of fit than the hyperbolic model does, and we thus conclude
that the increasing fitness trend reported by Wiser et al. [29     ] is also robust to the uneven
distribution of measurements over time.

We note that the quality of fit R reported in the main text of Wiser et al. [29     ] differs from the
quality of fit we show on our plots. While both studies performed the fits of the models on all 12
populations simultaneously, Wiser et al. [29     ] evaluated the quality of fit by calculating R for the
fitted model (blue and pink lines in Fig. S11A     ) against the fitness time series averaged over
replicates (grey points in Fig. S11C     ). That is, they fit the model to the data without averaging
over population but calculate quality of fit using the population-averaged data. Since we believe
this was inconsistent, we have followed a more standard approach of calculating the quality of fit
on the same input data used for the fit (i.e., correlating the blue and pink lines in Fig. S11A      with
grey points in the same plot). As a consequence, the correlations between the fitted models and
data reported in the original publication (hyperbolic R = 0.969, power law R = 0.986; see [29     ])
are systematically higher than the values we find in our re-analysis (hyperbolic R = 0.826, power
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law: R = 0.837; take square root of the values in Fig. S11A     ). Although the long-term fitness
dynamics in the case of the LTEE are robust to the choice of fitness statistic, we note that it is
possible to construct scenarios of microbial growth trait evolution where relative fitness saturates
in one statistic but not in the other (Fig. 3     ). For theory work that on the long-term trend and
other models than the powerlaw or hyperbolic model tested here, see [34     –36     ].

S9. Testing AUC and other fitness potentials
using simulated competition experiments
In this section we explain our tests of estimated fitness potentials against true relative fitness in
simulated competition experiments. We first focus on the area under the growth curve (AUC),
which is defined as

where N(t) is a growth curve of absolute abundance (or a proxy such as optical density) and teval is
a cut-off time for evaluating the area. Many previous studies [12     , 15     , 16     , 37     , 38     ] and
growth curve analysis packages [39     ] have used this definition. The idea of AUC is that, unlike
estimated fitness potentials that only account for individual traits of a genotype’s growth (e.g.,
growth rate or lag time; see below), the AUC literally integrates the whole growth dynamics into a
single number. For example, both fast growth rate and short lag time are manifested in greater
AUC. Note that while one can attempt to use the AUC as an approximate fitness potential (as we
investigate here), it is not a measure of absolute fitness (Sec. S3) since it is insufficient to predict
changes in absolute abundance (i.e., the area under the growth curve does not determine the
change in absolute abundance from beginning to end).

To compute the AUC for the set of single-gene deletion genotypes in our data set, we first simulate
a growth curve for each genotype under the population dynamics model in Eq. (11)      with the
traits estimated from the original data (Methods). We use simulated growth curves, with trait
values inferred from the measured growth curves, rather than the actual measured growth curves
since we are comparing the AUCs to relative fitness also from simulations of competitions; we do
not have actual competition data for these genotypes, so it would be an apples-to-oranges
comparison if we used AUCs from the actual growth curve data. Furthermore, in empirical growth
curves, the AUC is also influenced by technical variation in the initial biomass N0 and the initial
concentration of resources R0, so using simulations removes these effects.

Figure S14A      shows the distribution of saturation times tsat (as defined for the population
dynamics model in Methods) numerically calculated for all simulated growth curves of the
deletion mutants. We calculate the AUC for each growth curve using Eq. (S47)      with an
evaluation time of teval = 16 hours, since that includes the stationary phase in the vast majority of
our simulated growth curves (Fig. S14A     ). From the mutant’s AUC we calculate the AUC-based
estimator of the mutant’s relative fitness

where AUCwt is the AUC for a simulated growth curve of the wild-type (using the median wild-type
traits in our database; see Methods). We then simulate a single growth cycle of the mutant
competing against the wild-type (Eq. (11)      with equal initial abundance of the mutant and wild-
type) to calculate the mutant’s “true” (under the model assumptions) relative fitness per-cycle with
the logit encoding . We simulate both the coculture and the monoculture growth dynamics

with the same initial biomass N0 = 0.05 OD and resource concentration R0 = 111 mM [24     ].
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Repeating this analysis for all mutant genotypes in the dataset, we calculate the Spearman rank
correlation between the AUC-predicted relative fitness from monoculture ŝAUC and the true
relative fitness in competition  (Fig. S13     , column C).

The success of the AUC depends on the evaluation time teval, which sets the time window from
which information is captured from the growth curve by the integral (Eq. (S47)     ). Figure S14B–
D      shows the correlation between the relative fitness in coculture  and the AUC estimator

ŝAUC (Eq. (S48)     ) for three values of teval: the mean saturation time of all genotypes in
monoculture (teval ≈ 13 hours), a significant longer value (teval ≈ 24 hours), and an intermediate
value (teval = ≈ 16 hours; used for Fig. S13     ). For short evaluation times (teval ≈ 13 hours), the AUC
underestimates the fitness of mutants with long lag but fast growth, which leads to a nonlinear
relationship between the AUC estimator and the true relative fitness (compare Fig. S14B      and
Fig. S14C     ). For long evaluation times (teval = 24 hours), there is greater scatter between the AUC
predictor and true relative fitness for the highest fitness mutants (compare spread in Fig. S14D     
and Fig. S14C     ). Intuitively, these mutants have short lag time or fast growth rate and saturate
early in monoculture, so their AUC values are effectively set by the biomass yield, which has no
predictive value on the competition outcome. In summary, Fig. S14B–D      shows a trade-off
between accurately ranking highly-deleterious mutants (which needs long teval) and ranking
highly-beneficial mutants (which need short teval).

Besides AUC it is possible to use other features of the monoculture growth curve as approximate
fitness potentials. For example, one can use the monoculture growth rates alone as fitness
potentials:

or the monoculture lag times:

Another possible fitness potential is the absolute abundance at saturation, which in our model of
population dynamics (Eq. (11)     ) is proportional to the biomass yield:

Finally, one can also use the difference in the monoculture log fold-changes (LFCs):

This looks similar to the definition of relative fitness percycle (Eq. (S30)     ) but is distinct because
it uses the LFCs in monoculture rather than the true LFCs in coculture (which may be different).

We test each of these fitness potentials against the relative fitness in pairwise competition, using
different input datasets of trait variation and the ‘GNU Parallel’ command to speed up the
simulation process [40     ]. Figure S13      rows B and C show that growth rate and lag time can act
as perfect fitness potentials if that trait is the only trait with variation across mutants. This is
because the relative fitness is proportional to differences in each of these traits when they are the
only source of variation (see Sec. S13). Section S13 also shows that differences in biomass yield
(Ymut − Ywt) have no effect on fitness by themselves, which is why the biomass yield of the strains
in monoculture is a poor fitness potential to estimate relative fitness. This large but neutral
variation in the biomass yield across mutants in our datasets means that the LFC is also a poor
fitness potential.
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All of these trait-based fitness potentials are outperformed by the AUC, which provides the best
approximation of the mutant fitness ranking in coculture under realistic trait variation (Fig.
S13     , row A). More broadly, it is important to treat absolute and relative fitness, as well as fitness
potentials, as distinct concepts, serving different purposes [1     , 41     ]. As we show here in
simulation (Fig. S13     ), and others have shown in experiments [15     , 16     , 42     , 43     ],
measuring fitness potentials is not enough to demonstrate that a mutant genotype will outcompete
the wild-type.

S10. Coarse-graining pairwise relative
fitness in multi-genotype populations
In this section, we point out the specific advantages of the logit-encoding for coarse-graining
pairwise relative fitness in bulk competition experiments. While the pair-wise relative fitness is
defined for any encoding m, the logit encoding endows it with some convenient mathematical
properties not shared by other encodings (e.g., the log encoding). The logit encoding of the
pairwise relative abundance has the property

meaning that it is antisymmetric under exchange of the indices i and j (logit xij = − logit xji) and
additive across pairs of indices (logit xij = logit xik + logit xkj). Since the logit-encoded pairwise
relative fitness is just the time derivative of the logit function (Eq. (19)     ), it carries equivalent
properties of antisymmetry and additivity:

We also note that the logit encoding of the pairwise relative abundance has the property:

Rescaling the relative abundances of either genotype thus does not change the pairwise relative
fitness (since it only shifts the logit by a constant, which does not affect its derivative). This means
that pairwise relative fitness is an “intensive” property of a genotype, analogous to intensive
properties in statistical mechanics (such as temperature) that do not scale with system size. For
example, if we split a mutant genotype into two subgroups (e.g., differentiated by a neutral
marker), the pairwise relative fitness of each mutant subgroup with respect to the wild-type will
be the same as the pairwise relative fitness of the mutant genotype as a whole compared to the
wild-type. In contrast, the logit-encoded total relative fitness does not satisfy this property since
logit(axi) ≠ logit xi+ constant.

When the encoding m is the logit function, the pairwise relative fitness per-cycle still satisfies the
above properties (antisymmetry and additivity with respect to indices i, j, and invariance under
relative abundance rescaling) since those are properties of the underlying logit encoding. This is
also apparent from interpreting the per-cycle fitness statistic as an integral of the instantaneous
statistic:
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S11. The relative fitness between
coarse-grained groups of genotypes
In this section, we generalize the concept of pairwise relative fitness to pairs of genotype groups
rather than pairs of individual genotypes. In a multi-genotype population with non-overlapping
subsets of genotypes 𝒜 and ℬ, define

as the relative abundance of 𝒜 genotypes compared to ℬ genotypes at time t. Analogous with Eq.
(19)     , we define the fitness of group 𝒜 relative to group ℬ as

for an encoding m. Under the logit encoding, it turns out that the fitness between these two groups
can be conve-niently expressed as a weighted average of the pairwise fitness between the member
genotypes in each group:

To prove Eq. (S60)     , we first note that

Thus we can rewrite the logit-encoded relative pairwise fitness between 𝒜 and ℬ as

where we have invoked Eq. (S61)      on the second line. We can expand each term on the right-
hand side of Eq. (S62)      as

and then insert Eq. (S63)      into Eq. (S62)      to obtain
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where we have collected the normalization factors (sums over relative abundances in 𝒜 and ℬ) as
a single prefactor. We then rewrite each product of sums in Eq. (S64)      as

to finally obtain

Identifying the term in the inner parentheses as the pair-wise selection coefficient  (Eq.
(19)     ) then results in Eq. (S60)     .

Equation (S60) establishes that the relative fitness between a pair of genotype groups is a weighted
sum of relative fitnesses between individual pairs of genotypes in those groups, but this holds for
relative fitness defined at an instant in time (since it is based on derivatives). For relative fitness
defined over a finite time interval (e.g., a growth cycle in batch culture), an analogous but
approximate result holds. We first write the relative fitness over a growth cycle time interval as an
integral over the instantaneous relative fitness (inserting Eq. (S60)      into Eq. (S57)     ):

where tsat is the end time of the growth cycle (Methods, Sec. S7). The integral in Eq. (S67)      is
difficult to calculate as the relative abundance trajectories xi(t), xj(t) depend on the relative fitness
of the genotypes  in a non-trivial way. Instead, we make the approximation that the

relative abundances do not change significantly over time of the growth cycle (xi(t) ≈ xj(0)) and can
thus pass the integral through the sums in Eq. (S67)      to show that the per-cycle relative fitness
between a pair of genotype groups is approximately also a weighted sum of per-cycle relative
fitnesses:

Conceptually, assuming the relative abundances are approximately constant over the growth cycle
is equivalent to assuming selection is weak; one can also show this mathematically by expressing
the relative abundances xi(t) in terms of the pairwise relative fitnesses  in Eq. (S67)      and

keeping only terms to leading order in .
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We finally note that the total relative fitness (instantaneous Eq. (17)      and per-cycle Eq. (20)     ) is
a special case of the relative fitness between groups (Eqs. (S60)      and (S68)     ) where 𝒜 is the
single genotype i and ℬ is all other geno-types besides i:

S12. Fitness error from the frame of
reference in bulk competition experiments
Here we calculate the error that arises from measuring the total relative fitness of each mutant in
a bulk competition experiment of a mutant library, rather than the pairwise relative fitness
between each mutant and the wild-type. We call this difference the error from the frame of
reference, the frame of reference being either the whole population in total fitness or the wild-type
in pairwise fitness. Note that this is an error between two different fitness quantifications of the
same bulk competition experiment; Sec. S14 addresses the error (arising from higher-order
interactions) between fitness quantifications in bulk versus pairwise competition experiments.
Here we only consider relative fitness under the logit encoding and measured per growth cycle, so
we drop these labels to simplify notation.

Consider a bulk competition experiment of a wild-type and a library of large number of mutants
over a single batch growth cycle of time tsat (Methods). The total relative fitness of mutant i is (Eq.
(20)     )

while its pairwise relative fitness compared to the wild-type is (Eq. (21)     )

Using the coarse-graining rules from Sec. S11 (namely Eqs. (S68)      and (S70)     ), we can express
the total relative fitness of mutant i as a weighted sum of the pairwise relative fitnesses between
the mutant and the wild-type and between the mutant and the rest of the mutant library:

where the notation lib \ i refers to the mutant library excluding the mutant i. The approximation
here is due to our assumption in Eq. (S68)      that selection is weak enough that the relative
abundances of genotypes do not change too much over the growth cycle. Since we can rewrite the
pairwise relative fitness between mutant i and the rest of the library as a difference between i and
the wild-type and the rest of the library and the wild-type (using Eq. (S55)     )

we insert this into Eq. (S73)      to obtain
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The difference between the total and pairwise relative fitness is therefore

Since mutant libraries in these experiments typically contain hundreds or thousands of mutants,
the contribution of a single mutant i is small and thus we can assume that the properties of the
mutant library excluding mutant i (lib \ i) are approximately the same as the library as a whole (so
that xlib\i ≈ xlib, slib\i,wt ≈ slib,wt). This allows us to further simplify the error as

Equation (S77) shows why this offset between the total and pairwise relative fitnesses is
approximately independent of the focal mutant i (hence the constant shift for all mutant points in
main text Fig. 4C     ). The sign of the error from the frame of reference depends on the mean
fitness of the mutant library: a mutant library that is overall deleterious relative to the wild-type
(slib,wt < 0) causes the total relative fitness for a mutant σi to overestimate the mutant’s pairwise
relative fitness si,wt. Intuitively, this is because the total relative fitness is comparing the mutant to
a mixed population of wild-type and other mutants, which are on average worse competitors than
the wild-type, which thus makes the mutant appear to be better than if it is just compared to the
wild-type alone (compare top and bottom panel in Fig. 4B     ). Equation (S77) also shows that the
error from the frame of reference can be reduced if the mutant library is neutral relative to the
wild-type (slib,wt = 0) or the mutant library has small relative abundance in the culture biomass
(xlib ≪ 1). In bulk competition experiments with barcoded mutant libraries, these assumptions are
often not met since the mutant libraries tend to be overall deleterious (as in our simulated bulk
competition for the yeast single-gene knockouts, see Fig. S6     ) and are inoculated at a high
relative abundance [44     –48     ] Since this makes the error in Eq. (S77)      significant, we instead
recommend including barcoded wild-type strains as references in the bulk competition, so that
pairwise fitness can be quantified relative to that (Eq. (S72)     ) rather than using the total relative
fitness. By using a mix of barcoded wild-type cells and non-barcoded wild-type cells it is further
possible to optimize this protocol and save on sequencing investment [49     ].

Finally, we want to point out a difference between the best practice we recommend here
(Discussion) and a wide-spread practice in estimating fitness estimates in bulk competition
experiments. In practice, transposon-seq experiments that grow the mutant library by itself start
with an estimate of total relative fitness, and then subtract the median total relative fitness of the
knockouts [45     –47     , 50     ] or a mean total relative fitness [44     , 51     , 52     ]. However, these
corrections are not explicitly founded in the choice of a reference group (like a set of neutral
genotypes or a wild-type), making the correction appear ad-hoc [45     , 47     , 50     ], or the
reference is a strain that is not part of the culture, like in the fitness estimates for barcoded
lineages that are evaluated against the initial ancestor without that ancestor actually being
present [44     , 51     , 52     ]. To make things more confusing, even those studies that do include a
wild-type then describe their method as an estimate of total relative fitness of the mutant under
the log encoding, subtracted by the total relative fitness of the wild-type under the log-encoding
[49     , 53     , 54     ]. The result is a pairwise relative fitness under the logit-encoding (Eq. (23)     )
but presenting it this way obscures that choice of encoding and the relationship to the classic,
logit-based selection coefficient used in pairwise competition experiments (Eq. (6)     ). We hope
that our framework can provide more clarity: The choice of the reference group happens at the
level of relative abundance, by calculating a pairwise relative abundance (Eq. (18)      or Eq.
(S58)     ), and this removes the need for any correction on the fitness values themselves.
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S13. Pairwise relative fitness using an
explicit model of population dynamics
In the model of population dynamics (Methods, Eq. (11)     ), we can calculate the pairwise relative
fitness of genotypes based on the approximation of the saturation time (Sec. S7; [27     , 28     ]). The
pairwise relative fitness of genotype i relative to genotype j (per-cycle and under the logit
encoding) is

where

The e-fold growth time for genotype j is τj = 1/gj, and the terms Δλij = λi − λj and Δτij = τi − τj are the
differences between the two genotypes lag times and growth times. Since the terms in Eq.(S78d)
depend on the covariation between growth and lag, we interpret these terms as couplings between
the growth and lag phases; they are zero if only two genotypes are present.

S14. Fitness error from higher-order interactions
between pairwise and bulk competition experiments
In this section, we calculate the error in relative fitness of a mutant arising from higher-order
interactions in bulk competition experiments with large mutant libraries, compared to the “true”
relative fitness in pairwise competitions between just the focal mutant and wild-type alone. Here
we only consider relative fitness under the logit encoding and measured per growth cycle, so we
drop these labels to simplify notation. Let the pairwise relative fitness of mutant i compared to the
wild-type (Eq. (21)     ) be

in the pairwise competition with the wild-type alone, and
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in the bulk competition with all other mutants in the library. The superscripts pair and bulk
indicate that the dynamics of xi,wt(t) and the saturation time tsat may be different in the two
competitions. The difference between these two measurements of relative fitness is

Since the difference between the bulk and pairwise competitions is the presence of the other
mutants in the library, we interpret this difference as the fitness error from higher-order
interactions among the mutants.

We now calculate how this error depends on the underlying growth traits of the genotypes using
the population dynamics model (Methods, Eq. (11)     ); and the explicit expression for relative
fitness from Sec. S13. Based on the approximate pairwise relative fitness in this model (Eq.
(S78)     ), the relative fitness in the pairwise competition is the sum of two terms

while the relative fitness in the bulk competition is the sum of three terms

where the third term represents the coupling between growth and lag phases present only in
populations with more than two genotypes (Eq. (S78d)). We define the higher-order effects on the
selection for lag time as

Using Eq. (S78b), we can express this in terms of the underlying traits as

where  is the difference in effective e-fold growth times (Eq. (S40)     ) in
the bulk competition and in the pairwise competition of mutant i and the wild-type.

We similarly define the higher-order effects in the selection on growth rate as

and calculate  and  from Eq. (S78c) to get the expression

where LFCbulk is the log fold-change (Eq. (S42)     ) of the total biomass in the bulk competition and
LFCpair,i is the log fold-change of the total biomass in the pairwise competition between mutant i
and the wild-type. We note that total biomass growth in the bulk competition LFCbulk depends on
the mutant library through the effective biomass yield (Eq. (S41)     ), but this dependence is weak
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because the yield enters only logarithmically into Eq. (S42)     . We thus assume that the bulk and
pairwise competition have equal biomass growth (LFCbulk ≈ LFCpair,i) for all mutants i such that
the higher-order effect on the growth rate selection (Eq. (S87)     ) is proportional to the increase in
the mean doubling time

Since this has the same form as the higher-order effect on lag time selection in Eq. (S85)     , we can
combine Eq. (S88)      and Eq. (S85)     ) into

Because the effective growth time in the pairwise competition  is approximately just the

effective growth time of the wild-type alone τwt (assuming the mutant is competed against it at low
initial relative abundance), this means that

That is, the relative error of lag and growth selection from higher-order interactions is
approximately independent of the individual mutant, but rather depends on properties of the
wild-type (τwt) and the whole mutant library (through ). This is why we observe an

approximately constant slope across all mutants in Fig. S16      (dark orange points) when
comparing the error against the pairwise relative fitness. The slight deviation from the constant
slope is due to our approximation that the LFCs are the same between the bulk and pairwise
competitions; this is a good approximation for the yeast deletion library but not exactly true, and
hence causes a slightly different scaling between the growth Δsgrowth and lag Δslag error terms
compared to Eq.(S90).

Finally, we note that the growth-lag coupling terms  do not have a simple scaling with

pairwise relative fitness since they depend quadratically on trait differences; this is shown as the
bright orange points in Fig. S16     . In the main text, we therefore refer to Δsi,wt,lag + Δsi,wt,growth as
the fitness-dependent error and the  as the fitness-independent error from higher-

order interactions.

S15. Choosing the mutant library abundance
in bulk competition experiments
Section S14 showed that measuring relative fitness of a mutant in a bulk competition (with a
library of other mutants also present) entails an error due to higher-order interactions among the
mutants, compared to measuring relative fitness in a pairwise competition consisting of just the
mutant and wild-type. Here we show how this error depends on the relative abundance of the
mutant library in the bulk competition, so that we can estimate the range of library abundances
that keep the error below a desired threshold.

Calculating the relative error on fitness

Let the absolute error in relative fitness from higher-order interactions for a mutant i be Δsi,wt (Eq.
(S81)     ). Let the relative fitness of this mutant in a pairwise competition be  (Eq. (S79)     ).

Since the error Δsi,wt depends on the relative abundance xlib of the whole mutant library, our goal

https://doi.org/10.7554/eLife.102635.1


Justus Wilhelm Fink et al., 2024 eLife. https://doi.org/10.7554/eLife.102635.1 43 of 74

is to determine what range of xlib keeps the error in relative fitness (compared to the “true”
relative fitness in the pairwise competition) below a chosen threshold ϵ:

In Sec. S14 we calculated the dependence of Δsi,wt on the underlying growth traits. However, since
here we are mainly concerned with the dependence on the library abundance xlib, we present an
alternative calculation that better captures that dependence.

We start by pointing out that we can express the relative fitness in pairwise (Eq. (S79)     ) and bulk
competitions (Eq. (S80)     ) in terms of the saturation times for these competitions, using the
explicit solution to the population dynamics model in Eq. (14)     :

We can thus express the error from higher-order interactions (Eq. (S81)     ) as

where Δgi,wt = gi − gwt. Equation (S94) shows that the mutant library affects the fitness of
individual mutants  by changing the saturation time. Mathematically, this is equivalent to

the results of Sec. S14, which showed how the difference in effective e-fold growth times 

between bulk and pairwise competitions primarily mediated the higher-order effects, but
expressed in terms of the saturation time tsat (which is not identical to  but related through Eq.
(S38)     ). The error in Eq. (S94)      is also proportional to the growth rate advantage of the mutant
compared to the wild-type. In particular, mutant geno-types that only differ in lag time are not
affected by the mutant library since their advantage is accrued once at the beginning of the
growth cycle and therefore does not scale with the total time of competition.

According to Eq. (S38)     , the saturation time tsat depends on the effective lag time  (Eq.
(S39)     ), effective e-fold growth time  (Eq. (S40)     ), and the log fold-change LFC (Eq. (S42)     )
for the competition. To simplify the calculation, we introduce a few assumptions. We assume all
mutants have the same yields Yi such that the LFCs in the bulk and pairwise competitions are
identical (LFCbulk = LFCpair). We also assume that the relative abundance of the mutant in the
pairwise competition is small enough that the saturation time in that case is set entirely by the
wild-type traits:

Note that this means that the difference in saturation times is independent of the specific mutant i;
the only dependence of the mutant i on the overall error from higher-order interactions is through
the difference in growth rates in Eq. (S94)     .

We can thus write the fitness error as

https://doi.org/10.7554/eLife.102635.1


Justus Wilhelm Fink et al., 2024 eLife. https://doi.org/10.7554/eLife.102635.1 44 of 74

The dependence on the mutant library relative abundance xlib is contained within the effective
traits  and  of the bulk competition. Using the definitions in Eqs. (S39)      and

(S40)     , we can show that

Inserting Eqs. (S97)      and (S98)      into Eq. (S96)     , we obtain

where Δλlib,wt = λlib − λwt is the difference in lag times, and Δτlib,wt = τlib − τwt the difference in e-
fold growth times (reciprocal growth rates), between the library (defined according to Eq. (S39)     )
and the wild-type. All the dependence on the library relative abundance xlib is now contained in
the fraction outside the square brackets in Eq. (S99)     .

Since the relative fitness of the mutant library as a whole compared to the wild-type in bulk
competition is (using Eq. (S78)     )

we can rewrite Eq. (S99)      as

This shows that a mutant library that is neutral relative to the wild-type in the bulk competition
 removes the error from higher-order interactions, even when that neutrality is

based on a trade-off between growth rates and lag times (Δ λ lib,wt =−Δ τlib,wt LFC bulk). We note
that the error of higher-order interactions (Eq. (S101)     ) appears similar to the error from the
frame of reference (Eq. (S77)     , but the former includes the relative mutant growth rate Δgi,wt/gwt
as an additional pre-factor.

Calculating the upper bound on relative abundance of the mutant library

To calculate the maximum relative library abundance that keeps the relative error below the
threshold ϵ, we input the absolute error in Eq. (S99)      into the relative error bound of Eq. (S91)     
and rearrange to isolate the dependence on the library abundance xlib:
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where

depends on the focal mutant i but does not depend on the library abundance xlib. The left-hand
side of Eq. (S102)      varies between zero and one as a function of xlib. This means that if ϵ Ai > 1,
any value of xlib will satisfy Eq. (S102)     , meaning that the relative error on mutant i from higher-
order interactions will always be less than ϵ. For example, this holds when the mutant i has the
same growth rate as the wild-type (Δgi,wt = 0, which causes Ai → ∞), even if it varies in lag time
and/or other mutants have variation in growth rates.

We thus next consider the case where ϵ Ai < 1. We multiply both sides of Eq. (S102)      by the
denominator on the left-hand side (always positive) to obtain

and then collect all the terms involving xlib on the left hand side:

Since ϵ Ai < 1, the factor multiplying xlib on the left-hand side of Eq. (S105)      must be positive and
thus we can divide both sides to obtain an upper bound on the library abundance xlib such that
the relative error on fitness is less than ϵ :

Since ϵ will typically be small, we can simplify the right-hand side of Eq. (S106)      by
approximating it to first-order in ϵ :

This approximation holds as long as ϵ Ai(glib - gwt)/glib ≪ 1.

The maximum mutant library abundance determined by Eq. (S106)      or (S107) is specific to a
single mutant genotype i, meaning that the relative fitness errors for other mutants may exceed ϵ
even if the inequality for mutant i is satisfied. To keep the relative fitness errors for all mutants
less than ϵ, we need to choose a library abundance  such that

This means that Eq. (S107)      must be satisfied for all mutants j:
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Thus we must determine the minimum value of Aj over all mutants j. Using the definition in Eq.
(S103)     , Aj is minimized for the mutant with minimum vale of

where we have calculated the pairwise relative fitness in Eq. (S92)      using  from Eq.

(S95)     . Mutants that minimize Eq. (S110)      are those with tradeoffs between lag times and
growth rates such that their overall pair-wise relative fitness with respect to the wild-type is zero.
This makes sense, since these mutants will have a relative fitness close to zero in the pairwise
competition , but nonzero fitness relative to the wild-type in the bulk competition as

the relative selection on the lag time and growth rate shifts (e.g.,  in Eq. (S78)     ).

Special case of variation in growth rates only

To determine an even simpler estimate on the maximum mutant library abundance, we consider
the special case where genotypes vary only in growth rates and not lag times. Using the definition
in Eq. (S103)     , Ai = glib/(gwt - glib) for all mutants i, and thus there is a single bound on library
abundance for all mutants (using Eq. (S107)     ):

This is the same as Eq. (10)      in the main text.

We test Eq. (10)      using our simulated competition data for the yeast single-gene deletion library
(Methods) with variation in all three traits: lag time, growth rate, and biomass yield (Fig. 2B-C     ).
We compute the growth rates of the mutant library (glib = 0.389 h−1 using Eq. (S40)     ) and the
wild-type (gwt = 0.406 h−1). Using a relative error threshold of ϵ = 0.01, the maximum mutant
library relative abundance according to Eq. (10)      is xlib = 24.6%. Figure 4D      shows that this
mutant library abundance indeed is able to keep the relative error below the threshold for
mutants with high relative fitness, but, as expected, this mutant library abundance fails for
mutants close to neutrality.

We furthermore compute the maximum library abundance with Eq. (S109)     , based on the
precise trait variation in our dataset. The mutant library has an effective lag time λlib = 1.95 h
(compared to wild-type lag time λwt = 1.92 h) and an effective e-fold growth time τlib = 2.57 h
(compared to the wild-type τwt = 2.46 h), leading to an overall negative relative fitness

 based on a LFC value of LFCbluk = log 100 (a typical fold-change in our dataset)

and the limit of low relative abundance of the library. We insert these trait values into Eq.
(S109)      and obtain a maximum mutant library abundance  Figure 4D      shows

that this much smaller mutant library abundance is able to keep the relative error below the
desired threshold for all mutant genotypes. Note, however, this is still not fully exact since we
have ignored the underlying variation in biomass yield in our trait dataset.
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Fig. S1.

Predicting the absolute and relative abundance of microbial populations.

A) Example timeseries of absolute abundance for a single microbial population (light grey). The observer (eye symbol) of the
timeseries at time t can ask about the future trend in absolute abundance (arrows). (B) Example timeseries of absolute
abundance for two microbial strains, that may represent a population of wild-type and mutant. The absolute abundance of
the wild-type strain (light grey) is stacked on top of the absolute abundance of the mutant strain (dark grey). Similarly, the
observer (eye symbol) can ask about the future trend for the absolute abundance of the mutant population or the wild-type
population in this co-culture. (C) The relative abundance for the mutant strain corresponding to panel (B). We sketch the
mean relative abundance x over time (green line) inferred from multiple replicates (rectangles). An error band (light green)
around the timeseries demonstrates the variation between replicates. The observer (eye symbol) can ask about the future
trend for the relative abundance of the mutant population (arrows).

Fig. S2.

The effect of encodings on a non-logistic relative abundance trajectory.

Example rajectory of relative abundance x (top panel) for a mutant invading and eventually replacing a wild-type population,
simulated with the Gompertz equation .Below, we show the Gompertz trajectory under the encoding log x
and the logit-encoding log(x/(1 - x)). Compare to Fig. 1A      for a trajectory simulated with the logistic equation.
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Fig. S3.

The advantages of the logit-encoding for linear regression to relative abundance time-series data.

(A) Linear regression to the example trajectory for mutant relative abundance from Fig. 1A     . Given the true relative
abundance x(t) (green line), we sample the relative abundance at a set of intermediate timepoints (grey dots; top row)
assuming a binomial distribution and fit a linear regression line (red line; top row). We transform samples of raw relative
abundance x (grey dots; top row) into the log-encoded abundance log x (grey dots; middle row) and fit a linear regression
(red line; middle row). Similarly, we fit a regression the logit-encoded abundance logit x (bottom row). (B) Corresponding
residuals plot for the regressions in panel A. The sampled relative abundance values (grey dots; panel A) are compared to the
fitted regression (red line; panel A) to calculate the residuals (grey dots; this panel). A red line traces the mean value of the
residuals. We observe that the residuals under the logit-encoding (bottom row) show no systematic trend in the mean
residuals (red line) and have constant variation across timepoints (grey dots).

Fig. S4.

The variation of wild-type and mutant log fold-change under resource consumption constraints

(A) Schematic fold-change variation under a perfect resource consumption constraint between wild-type and mutant. Each
dot corresponds to a mutant strain in a 50:50 competition growth cycle with the wild-type strain (Sec. S5). The wild-type LFC is
lower in competition with mutants that have very high LFC (red dots) because more resources are consumed by mutant cells.
For our model of population dynamics, we can calculate this constraint exactly (black line: Eq. (S36)     ). We highlight the bow-
tie area of misranking (red shading; compare Fig. 1D     ) for two mutants and show the correlation between relative fitness
per-cycle  and per-generation  in the inset. (B) Schematic fold-change variation that deviates from the resource
consumption constraint. Additional variation between the competition growth cycles, e.g., due to variation in the biomass
yield of the mutant strains, means that the fold-change values do not fall on a single resource consumption constraint (black
line; same as in panel A). This can give rise to rank differences in relative fitness per-cycle  and per-generation 
(inset) for those mutants (orange, blue and green dots) that fall in the bow-tie area of the focal strain (red dot).
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Fig. S5.

Replicate measurements for growth rate, lag time and yield in our empirical trait dataset.

(A) Covariation of growth rate between replicate measurements of the knockouts (grey dots; Pearson correlation coefficient r
= 0.94, p = 0.00). Each dot represents a mutant genotype from the single-gene knockout collection in Saccharomyces cerevisiae
[55     ] as measured by Warringer et al. [24     ]. For the vast majority of genotypes in our dataset (n = 4163 out of n = 4492
knockouts) we are able to fit two traits from two independent growth curve measurements (Fig. 2A     ; Methods). (B)
Covariation of lag time between replicate measurements of the knockouts (grey dots; r = 0.90, p = 0.00) (C) Covariation of
biomass yield between replicate measurements of the knockouts (grey dots; r = 0.43, p = 4.81 × 10-188).

Fig. S6.

The distribution of fitness effects under relative fitness per-cycle and per-generation.

(A) Distribution of relative fitness per-cycle  for the knockouts (grey) and wild-type replicates (orange) in our dataset

(Fig. 2A     ), based on the fitness data from Fig. 2E     . (B) Distribution of relative fitness per-generation . Based on the

fitness data in Fig. 2E     . Covariation in fitness ranks between relative fitness per-cycle  and per-generation . For
each fitness statistic, we calculate the mutant ranking (higher rank means higher fitness and mutants with equal fitness are
assigned the lowest rank in the group), based on the rank data from Fig. 2F     .
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Fig. S7.

Exploring alternative conditions for misranking
between fitness statistics in yeast gene-deletion data.

(A: top row) Small mutant frequency x = 0.01. (B: second row) Standard mutant frequency x = 0.5, but no variation in lag time.
(C: third row) Standard mutant frequency x = 0.5, but no variation in growth rate. (D: fourth row) Standard mutant frequency
x = 0.5, but no variation in biomass yield. (E: bottom row) Standard mutant frequency x = 0.5, but only positive variation in
biomass yield. See Fig. 2      for the default case and panel legends.
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Fig. S8.

Example dataset with anti-correlation between relative fitness per-cycle and per-generation.

(A) Covariation between growth rate and lag time for a synthetically generated dataset of mutants (grey dots) and a single
wild-type (orange dots). The variation here may represent the standing variation in an evolved population with improved
growth rate and lag time over the wild-type ancestor. The graphic overlap between points means they appear as a single line.
(B) Covariation between growth rate and biomass yield for the mutants (grey dots) and wild-type (orange dot) in this
synthetic dataset. The variation here is specifically chosen to generate anticorrelation between relative fitnes per-cycle and
per-generation. (C) Covariation between relative fitness per-cycle  and per-generation  for the mutants in panel
A-B. We simulate pairwise competitions for all mutants against the wild-type with the exact same settings as for the empirical
dataset (Fig. 2D     ; Methods). (D) Covariation between mutant and wild-type fold-change in the competitions. Based on the
competition data in panel C (grey dots), we estimate the LFC values for all mutant-to-wild-type competitions (grey dots). We
highlight the bow-tie area of misranking for the mutant with the lowest overall fold-change (red shading; compare Fig.
1D     ). A dashed black line shows the isocline for zero relative fitness per-cycle (Eq. (8)     ). (E) Distribution of relative fitness
per-cycle  for the mutants in panel A-B. Based on the fitness data from panel C. (F) Distribution of relative fitness per-

generation  for the mutants in panel A-B. Based on the fitness data from panel C.
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Fig. S9.

Comparison of mutant fitness rankings across the complete LTEE competition dataset.

(A) Covariation between relative fitness per-cycle  and per-generation  for evolved populations of the LTEE. We
calculate the fitness statistics based on the competition data published by Wiser et al. [29     ], who measured the fitness every
250-500 generations (color bar). Each line of the LTEE contributes roughly two competitions per time-point due to replicate
measurements [29     ] (Sec. S8). (B) Rank disagreement between relative fitness per-cycle  and per-generation 
for evolved populations of the LTEE. For each fitness statistic, we calculate a ranking (higher rank means higher fitness and
mutants with equal fitness are assigned the lowest rank in the group; compare Fig. 2F     ). The rank difference is defined as
the rank in  minus the rank in . We highlight the evolved population with the greatest rank difference (blue halo).
(C) Covariation between the wild-type and mutant fold-change for the competition data from the LTEE [29     ]. The term
’mutant’ (y-axis) refers to an evolved populations at a given time-point from one of the 12 lines of the LTEE. We highlight the
evolved population with the greatest rank difference (blue halo; compare panel B) and draw its corresponding bow-tie area
of misranking between  and  (red shading; compare Fig. 1F     ). The coloring in all panels refers to the time-point
at which the evolved population was sampled from the LTEE.
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Fig. S10.

Rank difference between relative fitness per-cycle
and per-generation as a function of time in the LTEE.

For each of the 12 lines in the LTEE, we compute the relative fitness per-cycle  and per-generation  as a function
of time, by averaging the data from the LTEE competition dataset [29     ] across replicate measurements (Sec. S8). For some
lines, the time-series is truncated due to measurement difficulties [29     ]. Based on the quantitative fitness values  and

, we compute fitness rankings between the replicate lines at any given timepoint (higher rank means higher fitness and
mutants with equal fitness are assigned the lowest rank in the group; compare Fig. 2F     ). The rank difference is defined as
the rank in  minus the rank in , and we combine the rank difference between all pairs of evolving lines to
compute the maximum rank difference at each time-point. At three chosen time-points (t = 4000, t = 15000, t = 30000
generations), we show the correlation between relative fitness per-cycle  and relative fitness per-generation 

(each dot corresponds to one of the 12 lines in the LTEE). We quantify the correlation between  and  with the
Spearman rank correlation ρ (panel title). Colors indicate the time-point and correspond to the color bar in Fig. S9     .
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Fig. S11.

Long-term fitness trends in the LTEE under relative fitness per-cycle and per-generation.

(A) Fit of a hyperbolic model (pink line; Eq. (S45)     ) and a power-law model (cyan line; Eq. (S46)     ) to a pooled time-series of
relative fitness per-generation . We pool the fitness per-generation  from all 12 lines of the LTEE into a single
dataset (grey dots) and repeat the fits of Wiser et al [29     ] (Sec. S8). We compute the fraction of variance explained R2 as a
measure for the quality of fit (hyperbolic model: R2 = 0.682, power-law model: R2 = 0.701). (B) Fit of hyperbolic (pink) and
power-law models (cyan) to a pooled time-series of relative fitness per-cycle . Similar to panel A, we pool the relative

fitness-per cycle  from all 12 lines of the LTEE into a single dataset (grey dots) and identify a the best fit for the
hyperbolic model (R2 = 0.756) and and the power-law model (R2 = 0.764). (C) Fit of hyperbolic (pink) and power-law models
(cyan) to an averaged time-series of relative fitness per-generation . Following the ’grand-mean’ averaging strategy

outlined in Wiser et al. [29     ], we compute the average relative fitness per-generation  across all evolving lines (grey
dots; Methods) and identify a the best fit for the hyperbolic model (R2 = 0.938) and the power-law model (R2 = 0.964). Note
that the fraction of variance explained in is much higher compared to panel A, because the averaged time-series has fewer
points (Sec. S8). (D) Fit of hyperbolic (pink) and power-law models (cyan) to an averaged time-series of relative fitness per-
cycle . Simlar to panel C, we compute the average relative fitness per-cycle  across all evolving lines in the LTEE
and identify the best fit for the hyperbolic model (R2 = 0.953) and the power-law model (R2 = 0.966). For a comparison
between our results and the original fit by Wiser et al [29     ], see Sec. S8.
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Fig. S12.

Comparing magnitude epistasis between relative fitness per-cycle and per-generation.

(A) Simulated competition growth cycle for a single mutant with short lag time (blue line) in co-culture with a wild-type strain
(grey line). We simulate the co-culture using the same settings as for our empirical dataset (Fig. D; Methods). In the top, we
show the final relative abundance of the mutant xf, the relative fitness per-cycle  (Eq.(8)) and per-generation  (Eq.

(9)     ). (B) Simulated competition growth cycle for a single mutant with higher biomass yield (red line), competing against
the same wild-type as in panel A (grey line) (C) Simulated competition growth cycle for a double mutant (purple line) with
shorter lag time (as in panel A) and higher biomass yield (as in panel B). Compare panel A-C to Fig. 3C-D      for the epsistasis
plot. (D) Simulated competition growth cycle for single mutant with higher growth rate (blue line). (E) Simulated competition
growth cycle for a single mutant with higher biomass yield (red line), same as panel B. (F) Simulated competition growth cycle
for a double mutant (purple line) with higher growth rate (as in panel D) and higher biomass yield (as in panel E). Compare
panel D-F to Fig. 3E-F      for the epistasis plot.
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Fig. S13.

Predicting relative fitness with monoculture proxies under different scenarios of trait variation.

(AA) Covariation between growth rate and lag time in our empirical trait distribution (same as Fig. 2B     ). (AB) Covariation
between growth rate and biomass yield in our empirical trait distribution (same as Fig. 2C     ). (AC) Quality of prediction for
different monoculture proxies under the trait distribution in panel AA-AB. As the ground truth, we estimate the relative fitness
per-cycle  using a simulated 50:50 competition growth cycle (Fig. 2D     ; Methods). For each genotype i, we compute
the growth rate difference Δ g = gi − gwt, the lag time difference Δ lag = λi−λ wt and the difference in biomass yield Δ yield = Yi −
Ywt. Additionally, we compute the difference in log fold-change Δ LFC = LFCi − LFCwt and the difference in area under the curve
ΔAUC = AUCi − AUCwt from simulated monoculture growth curves (Sec. S9). We quantify the agreement between the
monoculture proxy and the relative fitness per-cycle  using theSpearman correlation coefficient ρ, which reflects the
agreement in ranking. (B: second row) Modified trait distribution with no variation in lag time. (C: third row) Modified trait
distribution with no variation in growth rate. (D: fourth row) Modified trait distribution with no variation in biomass yield.
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Fig. S14.

The choice of the cut-off time for evaluating the area under the curve

(AUC). (A) Distribution of saturation times in mono-culture for the knockouts (grey bars) and wild-type replicates (orange
bars; not visible) in our empirical dataset (Fig. 2A     ). The saturation time tsat is defined as the time when the limiting
resource is depleted (R(tsat) = 0) and can be estimated numerically from the trait data (Methods). Three vertical lines indicate
example choices for the cut-off time teval of the AUC: the most frequent saturation time (teval = 13 hours; purple line), an
external timescale (teval = 24 hours; blue line) and as saturation time half-way in the decay of the distribution (teval = 16 hours;
black line). (B) Covariation between relative fitness per-cycle  and AUC with a short cut-off time. We compute the AUC
from a simulated monoculture knockouts (grey dots) and wild-type replicates (orange dots) using the cutoff time teval = 13
hours (Sec. S9). As the ground truth, we take the relative fitness per-cycle  from a pairwise competition (Fig. 2A     ). As a

red line, we show the best fit from a linear regression of  to the AUC. (C) Covariation between relative fitness per-cycle

 and AUC with an intermediate cut-off time (teval = 16 hours). (D) Covariation between relative fitness per-cycle 
and AUC with a longer cut-off time (teval = 24 hours).
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Fig. S15.

The error in mutant fitness rankings between bulk and pairwise competition experiments.

(A) Rank difference between total relative fitness and pairwise relative fitness in a bulk competition growth cycle with low
mutant library abundance (Fig. 4A     , case II). Based on the fitness data in Fig. 4C     , we calculate a mutant ranking for total
relative fitness in bulk (Eq. (22)     ) and a ranking for pairwise relative fitness in bulk (Eq. (23)     ) (higher rank means higher
fitness and mutants with equal fitness are assigned the lowest rank in the group). The rank difference is defined as the rank
in total relative fitness  and minus the rank in pairwise relative fitness . (B) Rank difference between
pairwise relative fitness in bulk (Eq. (23)     ) and the relative fitness per-cycle in a pairwise competition (Eq. (8)     ). Based on
the pairwise relative fitness at low mutant library abundance in Fig. 4C      (red dots; case II), we calcuate a mutant ranking for
pairwise relative fitness in bulk (Eq. (23)     ) and a mutant ranking for the relative fitness per-cycle in pairwise competition
(Eq. (8)     . The rank difference (red dots) is defined as the rank in bulk competition minus the rank in pairwise competition.
(C) Rank difference between pairwise relative fitness in bulk and the relative fitness per-cycle in a pairwise competition for
two different cases of the bulk competition. Based on the fitness data in the inset of Fig. 4C     , we estimate a mutant ranking
for pairwise relative fitness (Eq. (23)     ) in the case of a bulk competition growth cycle with high mutant library abundance
(blue dots; compare Fig. 4A     , case III). For each case, the rank difference is defined as the rank in the bulk competition
minus the rank in pairwise competition and the rank difference for case II (red dots) is identical to the data in panel B. All
fitness statistics in this figure are based on the logit-encoding, however, since the underlying relative abundances are small (x
≪ 1), it is approximately equivalent to the log-encoding (log x ≈ logit x).
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Fig. S16.

A decomposition for the error from higher-order interactions in bulk competition experiments.

For a bulk competition growth cycle with low mutant library abundance (Fig. 4A     , case II), we calculate the pairwise relative
fitness (Eq. (23)     ) for the knockouts in our empirical dataset (Fig. 2A     ) using a previously established approximation
[28     ] (Sec. S13). The error from higher-order interactions is defined as the pairwise fitness in bulk minus the fitness in
pairwise competition. Based on the approximation for our model of population dynamics (Sec. (S13)), we derive a
decomposition that separates the absolute error into two terms that we call the fitness-dependent error term (dark dots) and
the fitness-independent error term (light dots). For full details on the decomposition, see Sec. (S14).
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Fig. S17.

The relative error between bulk and pairwise competition experiments.

(A) Comparing the relative error between total and pairwise relative fitness in bulk. Based on the absolute error in Fig. 4C     ,
we estimate a relative error for the total relative fitness (grey dots; Eq. (22)     ) and pairwise relative fitness (red dots; Eq.
(23)     ) in a bulk competition growth cycle with low mutant library abundance (Fig. 4A     , case II). The relative error of each
bulk statistic is defined as the absolute error (Fig. 4C     ), divided by the fitness in pairwise competition (Eq. (S91)     ). A
dashed grey line indicates the threshold of 1% relative error. (B) Comparing the relative error between the components of
higher-order interactions. Based on the absolute error from higher-order interactions in Fig. S16     , we estimate the relative
error for the fitness-dependent (dark dots) and the fitness-independent error component (light dots). Here the relative error
is defined as the absolute error component (Fig. S16     ), divided by the relative fitness per-cycle in pairwise competition (see
Sec. S14 for details). (C) Comparing the relative error between low and high mutant library abundance in bulk. Based on the
absolute error in the inset of Fig. 4C     , we estimate a relative error for the pairwise relative fitness at low mutant library
abundance (red dots; Fig. 4A     , case II) and high mutant library abundance (blue dots; Fig. 4A     , case III). The relative error
for each case is defined as the as absolute error (Fig. 4C     ; inset), divived by the fitness in pairwise competition (Eq.
(S91)     ). On the x-axis, we plot the absolute value of relative fitness per-cycle in the pairwise competition.
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Reviewer #1 (Public review):

The authors point out that the fitness estimates obtained from different experimental assays
(monoculture, pairwise competition, or bulk competition) are not generally equivalent, not
even with regard to the fitness ranking of different genotypes. Using a computational model
based on experimentally measured growth phenotypes for knockout strains in yeast, as well
as data from Lenski's Long Term Evolution Experiment (LTEE), they derive a set of best
practice rules aimed at extracting the optimal amount of information from such experiments.

The study is very complete on a technical level and I have no suggestions for further
analyses. However, I feel the readability and the conceptual focus of the manuscript could be
significantly improved by rearranging the material with regard to the contents of the main
text vs. the Methods and the Supplement. Detailed recommendations:

(1) Regarding readability, the large number of references to material in the Methods and
Supplement fragment the main text and make it difficult to follow.

(2) Conceptually, it seems to me that the current presentation obscures the reasons why we
should care about fitness in the first place. In the first paragraph of Results, the authors
define fitness "as any number that is sufficient to predict the genotype's relative abundance
x(t) over a short-time horizon". To me, this seems like an extremely narrow and not very
interesting definition. Instead, I view fitness as an intrinsic property of a genotype that allows
us to predict its performance
under a range of conditions, including in particular conditions that are different from the
experimental setup that was used to obtain the fitness estimates. The latter viewpoint is well
expressed in Supplementary Section S1, where the authors discuss the notion of fitness
potential. I would recommend to move at least part of this discussion to the main text. By
comparison, the arguments in favor of the logit encoding that currently opens the Results
session are rather straightforward and could be shortened significantly.

(3) Similarly, the modeling strategy used in this work is quite subtle and needs to be
explained more fully in the main text. The authors use growth traits (lag time, growth rate,
and yield) extracted from monoculture experiments on a yeast knockout collection and feed
them into a specific mathematical model to simulate pairwise and bulk competition
scenarios. Since a key claim of the work is that monoculture experiments are generally poor
predictors of competitive fitness, the basis for this conclusion and the assumptions on which
it is based need to be described clearly in the main text. In the current version of the
manuscript, this information has
been largely relegated to the Methods section.

https://doi.org/10.7554/eLife.102635.1.sa3

Reviewer #2 (Public review):

Summary:

The manuscript "Quantifying microbial fitness in high-throughput experiments" provides a
comprehensive analysis of the various approaches to quantifying fitness in microbial
evolution, focusing on three primary factors: encoding of relative abundance, time scale of
measurement, and the choice of reference subpopulation. The authors systematically explore
how these choices impact fitness statistics and provide recommendations aimed at
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standardizing practices in the field. This manuscript aims to highlight the impact of differing
fitness definitions and the methodologies utilized for analysis and how that can significantly
alter interpretations of mutant fitness, affecting evolutionary predictions and the overall
understanding of genetic interactions in the experiments. Although this manuscript focuses
on a critical issue in the quantification of fitness in high throughput experiments, it heavily
relies on only one experimental dataset (Warringer et al 2003) and one organism i.e, Yeast
(Saccharomyces cerevisiae) grown in a defined medium, the environmental influence is not
completely captured. While the theoretical framework is strong, more experimental
examples with more organisms (i.e., more datasets) in their analysis and comparison would
enhance the manuscript, especially its conclusion.

Strengths:

The choices for quantifying fitness in evolution experiments are critical and highly relevant
given the increasing prevalence of high-throughput experiments in evolutionary biology. The
authors methodically categorize fitness statistics and their implications, providing clarity on
a complex subject. This structured approach aids in understanding the nuances of fitness
measurement. The manuscript effectively highlights how different choices in fitness
measurement can influence fitness rankings and the understanding of epistasis, which is
important for modeling evolutionary dynamics.

Weaknesses:

The theoretical framework is robust, but the manuscript could benefit from more empirical
examples to illustrate how different fitness quantification methods lead to varied conclusions
in experiments. The discussion on the choice of reference subpopulation could be expanded
with the influence of the environment or the condition. Different types of reference groups
might yield different implications for fitness calculations, and further elaboration would
enhance this section. The authors overgeneralize some findings; for instance, the implications
of fitness measurement choices could vary significantly across different microbes or
experimental conditions. A more detailed discussion would strengthen the conclusion.

Overall, this manuscript is a significant contribution to the field of evolutionary biology,
addressing a critical issue in the quantification of fitness but lacks more experimental
support to make it a wider claim. By systematically exploring the factors that influence
fitness measurements, the authors provide valuable insights that can guide future research -
the framework is computationally thorough but needs a more detailed explanation of
concepts instead of generalizing. Further work is needed, particularly to incorporate
empirical examples and expand certain discussions to include environmental variation and
their impact, which would improve clarity and applicability.

https://doi.org/10.7554/eLife.102635.1.sa2

Reviewer #3 (Public review):

Summary:

The authors present analyses of different fitness measures derived from empirical data from
yeast knock-out mutants and the long-term evolution experiment (LTEE) with Escherichia coli
to explore discrepancies and identify preferred methods to estimate relative fitness in high-
throughput experiments. Their work has three components. They first discuss the different
"encodings" of relative abundance data and conclude that logit transformations are preferred
because they transform nonlinear abundance trajectories into linear trajectories with greater
predictive power. Next, they compare per-generation with per-growth cycle relative fitness
estimates inferred from simulations of pairwise competitions based on published growth
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traits for the yeast strains and on published pairwise competition measurements for the LTEE
data. Both data sets show quantitative and qualitative (i.e. rank order) discrepancies of
estimates across different time scales, which are highlighted by considering possible
underlying causes (i.e. trade-offs between growth traits) and consequences (i.e. epistasis
among mutations affecting different growth traits). Finally, the authors compare simulated
pairwise and bulk (i.e. where many mutants compete during a growth cycle in a single
environment) competition assays based on the yeast knock-out mutants and demonstrate an
optimal ratio of collective mutants to wild-type strains that minimizes both sampling error
and overestimation of fitness estimates when compared with pairwise competitions.

Strengths:

The study deals with a highly relevant topic. Fitness is central to general evolutionary theory,
but also poorly defined and implies different traits for different organisms and conditions.
For microbes, which are often used in evolution experiments, high-throughput experiments
may yield different measures to quantify abundance over time, from individual growth traits
to bulk competition experiments. Hence, it is relevant to consider discrepancies among those
measures and identify preferred measures with respect to predicting population dynamics
and evolutionary processes. The present study contributes to this aim by (i) making readers
aware of differences among commonly used fitness estimates, (ii) showing that simulated
(yeast) and calculated (E. coli) competitive fitness may differ across time scales, and (iii)
showing that bulk competitions may yield relative fitness estimates that are systematically
higher than pairwise competitions. The study is rather thorough on the theory side, with
extensive derivations and analyses of various fitness measures using their resource
competition model in the Supplementary Information. The study ends with a few practical
recommendations for preferred methods to infer relative fitness estimates, that may be
useful for experimentalists and stimulate further investigations.

Weaknesses:

The study has several limitations. Perhaps the most apparent limitation is the lack of a clear
answer to the question of which fitness measure is best "in the light of first principles". The
authors show clear discrepancies between fitness estimates across different time scales or
using different reference genotypes in bulk competition and provide useful
recommendations based on practical considerations (e.g. using pairwise competitions as the
"golden standard"), but it remains unclear whether these measures provide the greatest value
for the questions researchers may want to answer with them (e.g. predict shifts in genotype
frequencies).

A second limitation is that the authors analyse fitness differences arising solely from resource
competition, whereas microbes often interact via other mechanisms, e.g. the production of
anticompetitior toxins, cross-feeding of metabolites, or lack of growth to enhance their
persistence in stress conditions. Without simulations of these processes, understanding
discrepancies among fitness measures is necessarily limited. In addition, the analysis of
trade-offs between growth traits causing these discrepancies during resource competition
seems confounded by biases in measurement error or parameter estimation, at least for
growth rate and lag time (Figure 2B), where the replicate estimates for the wildtype show a
similar negative correlation.

Third, the study does not validate relative fitness predictions from growth traits (as is done
for the yeast mutants) with measured relative fitness estimates using competition assays,
while such data are available, e.g. for the LTEE. This would strengthen their inferences about
preferred fitness measures.

Fourth, the analysis of epistasis between mutations affecting different growth traits (shown
in Figure 3) based on the LTEE data could be better introduced and analysed more
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comprehensively. Now, the examples given in panels C-F seem rather idiosyncratic and
readers may wonder how general these consequences of using fitness estimates based on
different time scales are.

Finally, the study is generally less accessible to experimentalists due to the extensive and
principled treatment of specific population dynamic models and fitness inferences. This may
distract from the overarching aim to identify fitness measures that are most accurate and
useful for predictions of population dynamics and evolutionary processes. In this light, the
motivation for the initial discussion of the importance of how to best encode relative
abundance (Figure 1) is unclear. Also, the conclusion, that logit encoding is preferred,
because it linearizes logistic growth dynamics and "improves the quality of predictions", is
not further motivated. Experimentalists using non-linear models to infer fitness from growth
curves or competition assays may miss the relevance of this discussion.

https://doi.org/10.7554/eLife.102635.1.sa1

Author response:

We thank all three reviewers and the editors for their detailed comments on our manuscript.
The two main themes of this feedback concern the paper’s generality and its presentation.
Reviewers #2 and #3 raise questions about how the discrepancies in fitness statistics we
report will be realized across organisms, environments, and in models with interactions
beyond resource competition (e.g., toxicity or cross-feeding). All reviewers and the editors
have also expressed the need for the presentation to be improved, including a broader
introduction to the concept of fitness (Reviewer #1), a clearer explanation of our model
(Reviewer #1), better explanations of how quantifying fitness answers key biological
questions (Reviewer #3), and improvements to the most technical sections to ensure
accessibility to experimentalists (Reviewer #3).

In light of these comments, we wish to clarify that the goal of this paper is to provide a proof-
of-principle for how different choices in quantifying fitness can lead to different analysis
outcomes. Since the focus of this paper is on the theoretical concepts, we focus on a few
example data sets and a simple model to demonstrate the existence of these discrepancies.
While other organisms and environments, especially with more complex growth dynamics
and interactions, could certainly have additional or different discrepancies in fitness
statistics, we believe the simplicity of our approach is valuable because it demonstrates that
even basic features of microbial growth (common across systems) with realistic parameter
values are sufficient to cause significant differences in fitness depending on these
quantification choices. We agree with the reviewers that a systematic documentation of how
these fitness discrepancies are empirically realized is important, but we believe that question
is best explored in separate future works that can focus fully on this empirical rather than
theoretical question.

We plan to revise the manuscript in several ways, following the suggestions of the three
reviewers and the editor. First, we will better articulate the main goal and conclusions of this
manuscript, especially its generality and limitations. Second, we will work to streamline and
clarify several points in the main text identified by the reviewers to make it more accessible
and useful to a broader audience, especially experimentalists who routinely measure fitness
in their work. We are grateful to the reviewers and the editor for their time and effort in
assessing the manuscript, and we look forward to providing an updated version that
addresses these concerns.
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