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How the growth rate of a microbial population responds to the environmental
availability of chemical nutrients and other resources is a fundamental question in
microbiology. Models of this response, such as the widely used Monod model, are
generally characterized by a maximum growth rate and a half-saturation concentration
of the resource. What values should we expect for these half-saturation concentrations,
and how should they depend on the environmental concentration of the resource?
We survey growth response data across a wide range of organisms and resources.
We find that the half-saturation concentrations vary across orders of magnitude,
even for the same organism and resource. To explain this variation, we develop an
evolutionary model to show that demographic fluctuations (genetic drift) can constrain
the adaptation of half-saturation concentrations.We find that this effect fundamentally
differs depending on the type of population dynamics: Populations undergoing periodic
bottlenecks of fixed size will adapt their half-saturation concentrations in proportion
to the environmental resource concentrations, but populations undergoing periodic
dilutions of fixed size will evolve half-saturation concentrations that are largely
decoupled from the environmental concentrations. Our model not only provides
testable predictions for laboratory evolution experiments, but it also reveals how an
evolved half-saturation concentration may not reflect the organism’s environment. In
particular, this explains how organisms in resource-rich environments can still evolve
fast growth at low resource concentrations. Altogether, our results demonstrate the
critical role of population dynamics in shaping fundamental ecological traits.

microbial evolution | Monod model | resource competition | half-saturation concentration |
selection–drift balance

Microbial populations rely on a wide range of resources, including chemical nutrients
such as sugars, minerals, and metals, as well as space, light, and prey (1). These resources
vary in abundance across time and environments, which typically elicits differences in
growth rates (2–4). A significant literature discusses how natural populations can be
classified as oligotrophs or copiotrophs (4–6), that differ, among other things, in their
growth rate response to resource concentration. The most widely used quantitative
model of the relationship between growth rate and resource concentration is attributed
to Jacques Monod (7). In the Monod model, growth rate increases linearly with resource
concentration at low concentrations, and then saturates at high concentrations, reaching
half its maximum value at some intermediate concentration of resources. This half-
saturation concentration of the growth response, also known as the Monod constant,
therefore plays a key role in determining the ability of the population to grow on scarce
resources. This suggests that lower resource concentrations in the environment may
drive populations to evolve commensurately lower half-saturation concentrations (8, 9),
one of the main predictions of resource-ratio theory (10–12). Quantitative models and
data for the dependence of growth rate on resource concentration are important both
for predicting the behavior of a population under different environmental conditions
(13–15) as well as for inferring the natural environmental niche from evolved traits of the
population. This inverse approach has been used, for example, to infer separate niches
for ammonia-oxidizing archaea and bacteria in the global nitrogen cycle based on kinetic
parameters for resource consumption (16–19).

Even though these concepts have been central elements of microbiology and
ecology for decades, there is limited experimental evidence that directly demonstrates
the evolution of growth rate response to resources. Continuous culture for 200
to 300 generations led to improved growth rates at low glucose concentrations
for Escherichia coli (20, 21) and Saccharomyces cerevisiae (22), but as the genetic
changes in these experiments are unknown, the improved growth could not be clearly
attributed to mutations (rather than physiological acclimation). The long-term evolution
experiment (LTEE) of E. coli found that the half-saturation concentration for glucose
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actually increased over the first 2,000 generations, although the
maximum growth rate at much higher glucose concentrations
significantly increased as well (23). More recently, Bernhardt
et al. (12) observed adaptation in the half-saturation concentra-
tion for phosphorus of Chlamydomonas reinhardtii when limited
for phosphorus, but they did not obtain consistent outcomes for
nitrogen and light. Perhaps the most explicit evidence so far is
from Hart et al. (24), who found that a synthetic auxotroph
strain of S. cerevisiae significantly reduced its half-saturation
concentration for lysine through genetic adaptations.

While laboratory experiments can test the basic principle,
mathematical models are better suited to exploring the wide
range of environments necessary to establish the link between
environment and evolved traits. Previous modeling studies on
this topic have focused on how tradeoffs in the growth rate
at low versus high resource concentrations define an optimum
strategy for a single strain (13) or can facilitate coexistence of
multiple strains or species when resource concentrations fluctu-
ate (25, 26). More recent work has shown how this coexistence
can spontaneously evolve if such tradeoffs constrain the effects
of mutations (27, 28). However, the evidence for these tradeoffs,
especially on spontaneous mutations, is limited (27–31). Thus,
their importance for explaining the evolved variation in growth
rate response, especially the half-saturation concentration, is
unclear.

Here, we address this problem using both empirical and
modeling approaches. We first perform a survey of data for the
growth rate response to resource concentration across a wide
range of organisms and resources. We find that the measured
half-saturation concentrations vary over orders of magnitude,
even within some single species on the same resource, such as
E. coli strains on glucose. We also find no evidence for tradeoffs
between growth rates at low versus high resource concentrations.
To better understand the potential causes of this variation,
we model evolution for populations with a single limiting re-
source under feast-and-famine conditions (batch dynamics with
fixed biomass or fixed dilution factor) and steady-state growth
(chemostat dynamics). We show how demographic fluctuations,
known as genetic drift, inhibit selection on lower half-saturation
concentration, which leads to a general relationship between the
evolved half-saturation concentration, environmental resource
concentration, and the effective population size. Using this
result, we determine that populations with fixed-bottleneck
batch dynamics will evolve half-saturation concentrations that
are proportional to the environmental resource concentration,
but populations with fixed-dilution batch dynamics evolve
half-saturation concentrations that are practically independent
of the environment. Besides providing a testable theory for
laboratory evolution experiments, our results help to explain
how species evolving under high concentrations can maintain
fast growth at low concentrations and why evolved half-
saturation concentrations may not reflect the environment of
origin.

Results

The Monod Model Quantifies Growth Rate Response to
Resource Concentration.Consider a population of microbes
consuming a resource; we will generally focus on chemical
nutrients such as carbon or nitrogen sources, but some aspects
of the model apply to other types of resources as well (e.g.,
prey or light). While microbes consume many different resources
simultaneously (32, 33), for simplicity, here, we assume only
a single resource limits growth (SI Appendix, section S1). The

best-known dependence of population growth rate g on resource
concentration R is the Monod model (7):

g(R) = gmax · R
R + K

, [1]

where gmax is the maximum growth rate—achieved when
the resource is unlimited—and K is the concentration for
the resource at which the growth rate is slowed to half its
maximum (Fig. 1). Decreasing the half-saturation concentration
K therefore allows the population to grow faster at lower resource
concentrations. The half-saturation concentration K is not to be
confused with a related but distinct concept of R⇤ from resource-
ratio theory (10, 12). Note that theMonodmodel of Eq. 1 is used
to describe both steady state (12) and nonsteady state (25, 28)
relationships between growth rate and environmental resource
concentration. While there are many alternative models of how
growth rate depends on resource concentration (SI Appendix,
section S2 and Table S1), we focus on the Monod model due to
its wider usage and available data.

The parameter K is sometimes labeled as the affinity for the
resource (34), but this is potentially misleading as K is inversely
proportional to the ability to grow on the resource.We instead use
the term specific affinity to refer to the parameter combination
gmax/K , which measures how much the growth rate increases
per unit change in resource concentration, starting from a low
concentration (35). The specific affinity is therefore a common
measure for oligotrophic growth ability (9, 16, 19, 34). Note
that both K and gmax are required to fully characterize the
growth rate dependence; for example, the specific affinity gmax/K
alone does not suffice because while it describes the growth rate
response at low concentrations, it does not define the range of
low concentrations (which is determined separately by K ). Since
we are primarily interested in how these traits evolve in relation
to the environmental concentration R, we focus primarily on the
half-saturation concentration K since one can directly compare
it to R.

One can derive the Monod model of Eq. 1 by modeling
biomass growth as a two-step process, in which uptake of the

Fig. 1. Monod model of growth rate response to resource concentration.
The population growth rate g(R) as a function of the external resource
concentration R for two hypothetical strains: a wild-type (green) and a derived
mutant strain (orange), with equal maximum growth rates (gmax = 1) but
di�erent half-saturation concentrations (Kwt = 5, Kmut = 3). The Inset
shows a magnified view at low concentrations near Kwt and Kmut (dotted
vertical lines). Note that the growth rates do not fully overlap at the highest
concentration shownbut eventually converge to the same value gmax outside
the range of this plot.
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external resource into the cell occurs at a rate proportional to
the external concentration R (36). However, the dependence
of growth rate on resource concentration expressed by Eq. 1 is
surprisingly robust to additional model complexities (37, 38),
albeit with the resulting traits gmax and K being emergent
properties of whole cells or populations. In particular, the half-
saturation concentration K is not equivalent to the Michaelis–
Menten constant for resource uptake kinetics (37, 39, 40), despite
the mathematical similarity between the Michaelis–Menten and
Monod models (Eq. 1); this is because the Monod model
describes the whole process of producing new biomass, of which
uptake is just one step.

Half-Saturation Concentrations Vary Widely Across Resources
and Organisms. To explore the diversity of microbial growth re-
sponses, we have compiled 247 measurements of half-saturation
concentrations K from previously published studies (Methods,

Dataset S1, and SI Appendix, Fig. S1), substantially extending
previous surveys (41–44). Fig. 2A shows an overview of this data,
sorted by resource. The data include a wide range of resources,
with phosphate, glucose, and nitrate having the largest number
of measurements due to their emphasis in marine and laboratory
systems. Organisms include prokaryotes and eukaryotes as well
as autotrophs and heterotrophs (marked by different symbols in
Fig. 2A).

Measured values of the half-saturation concentration K vary
over several orders of magnitude, ranging from below 10�6 µM
(for thiamine and vitamin B12) to above 104 µM (for one glucose
measurement). This variation is not attributable to measurement
uncertainties, which never exceeded 20% in the studies that
reported them. It also is not an artifact of technical aspects of the
measurements (SI Appendix, Fig. S2) such as temperature (linear
regression, R2 ⇡ 0.089, P ⇡ 1.2 ⇥ 10�5) or experimental
method (linear regression, R2 ⇡ 0.160, P ⇡ 1.3 ⇥ 10�3),

A

B C D

Fig. 2. Survey of measured half-saturation concentrations. (A) Complete set of half-saturation concentrations K for the Monod model of growth rate (Eq. 1) in
our survey, grouped by resource (in decreasing order of number of data points). Each point represents a di�erent measurement; color indicates whether the
organism is a prokaryote (green) or eukaryote (orange), and shape indicates whether the organism can grow as an autotroph (square) or only as a heterotroph
(circle). Dashed lines mark concentrations of one molecule per cell for approximate prokaryotic and eukaryotic cell volumes (45). (B) Subset of K measurements
from panel A for glucose, grouped by taxon (only those with at least two measurements). We use the taxonomic identity given in the original publications,
where an ending in sp. means that the isolate is a representative of the genus but was not identified at the species level. Symbols are the same as in panel
A. For brevity, we use “glucose half-saturation” to refer to the half-saturation concentration for glucose as the limiting nutrient. (C) Subset of K measurements
from panel A for phosphate, grouped by taxon (with at least three measurements). (D) Subset for silicate, grouped by taxon (with at least two measurements).
SI Appendix for additional plots with K measurements for nitrate (SI Appendix, Fig. S4A) and ammonium (SI Appendix, Fig. S4B).
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nor does the variation appear to be systematically biased by
experimental design such as the degree of preacclimation to
the growth medium (SI Appendix, Fig. S3). We furthermore
find no evidence for a major bias from simultaneous limitation
(colimitation) for other resources besides the focal resource
(SI Appendix, section S1).

Instead, most variation of concentrations K corresponds to
variation in the identity of the organisms and resources themselves
(SI Appendix, Fig. S2A). Fig. 2B shows a subset of measurements
on glucose, which have systematic differences in K between taxa.
For example, measurements of S. cerevisiae and Streptococcus
almost all have K values higher than those of E. coli (Mann–
Whitney U test, P ⇡ 1.40 ⇥ 10�6). Phosphate and silicate
similarly show significant variation between species (Fig. 2C and
D), as do nitrate and ammonium (SI Appendix, Fig. S4). Even
within some taxa, there is large variation ofK ; glucoseK in E. coli
varies over four orders of magnitude (Fig. 2B). This variation
within a single resource and taxon does not appear to be explained
by technical covariates of the measurements (SI Appendix,
Fig. S2B) but rather corresponds to genetically distinct strains of
E. coli (SI Appendix, Fig. S5), suggesting that even subspecies-level
genetic variation can lead to significant differences in the half-
saturation concentrationK . Indeed, Ferenci (46) reported single-
target genes, like the membrane-associated lamB or the stress-
factor rpoS, that affect the half-saturation concentration of E. coli
on glucose when mutated. The genetic differences in our dataset
are mostly unknown, but we grouped E. coli measurements by
strain labels to find reproducible half-saturation concentrations
for glucose within strains (e.g., ML 30, SI Appendix, Fig. S5A).

How can we explain this wide variation in half-saturation
concentrations? Intuitively, we expect evolution to reduce K
since mutations that reduce K increase growth rate (Eq. 1).
For example, Fig. 1 shows the growth rate dependence for a
hypothetical wild-type strain (green line) and a mutant (orange)
with lower half-saturation K . Since the mutant has a greater
relative growth rate advantage at low resource concentrations,
there could be stronger selection pressure to reduceK at those low
concentrations. This is hinted by some patterns in the data: for
example, E. coli often grows in mammalian large intestines where
there are few simple sugars such as glucose, while S. cerevisiae
and Streptococcus often grow in high-sugar environments (fruit
and the oral microbiome, respectively) (47, 48), which could
explain their large difference in half-saturation concentrations
for glucose.

Variation in Specific A�inity Has Trends Similar to Those of the
Half-Saturation Concentration. Since K alone does not define
the growth rate at low resource concentrations, it is essential
to consider the maximum growth rate gmax or specific affinity
gmax/K as well. We show the variation in maximum growth rate
gmax across resources in Fig. 3A (reported for 97.6% of all entries
for half-saturation concentrationsK ; Dataset S1). Themost strik-
ing feature of these data is that while maximum growth rates gmax

vary less between resources than do half-saturation concentrations
K (compare Figs. 3A and 2A), there is a clear bimodality between
fast-growing heterotrophs (circles) and slow-growing autotrophs
(squares). Indeed, a closer look at the covariation between gmax

and K in autotrophs (squares in Fig. 3B) reveals that resources
have comparable distributions of gmax but stratify in terms of
half-saturation concentrationsK , with the lowest values for phos-
phate. In particular, the distributions for phosphate and nitrate
are indistinguishable in terms of maximum growth rate (Mann–
Whitney U test, P = 0.080) but clearly different in terms of half-

saturation concentration (Mann–Whitney U test, P = 1.28 ⇥
10�12). Also, the species differences in maximum growth rate on
glucose and phosphate are less pronounced (SI Appendix, Fig. S6),
andmore of the variation can be explained by experiment temper-
ature (SI Appendix, Figs. S7 and S8) compared to variation in K .

We can also compute the specific affinity gmax/K for each data
point. SI Appendix, Fig. S9 shows that the variation in specific
affinity is similar to variation in K : The variation spans orders
of magnitude, even for single species, and there are systematic
differences between taxa (e.g., E. coli compared to S. cerevisiae
and Streptococcus; Mann–Whitney U test, P ⇡ 1.20 ⇥ 10�6;
SI Appendix, Fig. S9B). The similarity in patterns of variation
between the half-saturation concentration and specific affinity
is because variation in gmax/K is dominated by variation in K
(SI Appendix, Fig. S7B); on a logarithmic scale, gmax/K depends
on additive contributions from gmax and K , and variation in K is
much larger than variation in gmax (compare Figs. 2A and 3A).

There Is No Evidence for a Tradeo� Between Half-Saturation
Concentration and Maximum Growth Rate.Many previous
studies have considered the possibility of tradeoffs between gmax

and K (positive correlation), such that genotypes growing faster
with abundant resources will grow slower when resources are
scarce (13, 25–28). If this were true, evolution at high resource
concentrations may select for increasing maximum growth rate
gmax at the expense of the half-saturation concentration K ,
leading to high values of K . If we consider all organisms
and resources in our data set, we do find a significant positive
correlation between gmax and K (Spearman ⇢ ⇡ 0.39, P ⇡
5.7 ⇥ 10�10; Fig. 3B). However, this correlation is an artifact
of the biased sampling of organism–resource pairs, which are
dominated by fast-growing heterotrophs on glucose (which tend
to have higher concentrations K ) and slow-growing autotrophs
on other resources (which tend to have lower concentrations
K compared to glucose); the correlation disappears when we
separate heterotrophs (SI Appendix, Fig. S10 A and B) from
autotrophs (SI Appendix, Fig. S10 C and D). If we further
separate individual resources, we see no significant correlations
for phosphate, nitrate, ammonium, or glucose across organisms
(Fig. 3 C and D and SI Appendix, Fig. S10 E–H), while there is
actually a negative correlation (opposite of a tradeoff) for silicate
gmax and K (Spearman ⇢ ⇡ �0.56, P ⇡ 0.0025; Fig. 3E).
In Fig. 3F , we test the covariation of gmax with K for two
individual species (E. coli and S. cerevisiae) for a single resource
(glucose). The E. coli data show a positive correlation indicative
of a tradeoff, but it has modest magnitude and low statistical
significance (Spearman ⇢ ⇡ 0.26, P ⇡ 0.26). Saccharomyces
cerevisiae, on the other hand, shows a negative correlation between
the two traits (Spearman ⇢ ⇡ �0.75, P ⇡ 0.008). The lack
of tradeoff appears irrespective of experimental method (i.e.,
batch or chemostat; SI Appendix, Fig. S3B) and also holds when
comparing the maximum growth rate gmax to the specific affinity
gmax/K (SI Appendix, Fig. S11).

Much of the previous literature arguing for tradeoffs in
these traits based their evidence on measurements for resource
uptake kinetics (27, 28, 30, 49) rather than on population
growth as we consider here. However, we find little to no
correspondence between traits of uptake kinetics with traits of
population growth in data points where we have measurements
for both (SI Appendix, Fig. S12) (44), consistent with previous
analyses (37, 39). It is therefore not surprising that the observed
tradeoffs in uptake do not translate to tradeoffs in growth. For
example, Litchman et al. (30) reported a tradeoff between uptake
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Fig. 3. Survey of maximum growth rates and trait correlations. (A) Empirical maximum growth rates gmax for the microbial isolates in our survey. There
are slightly fewer data points for maximum growth rate compared to half-saturation concentrations in Fig. 2A since some publications reported only the
half-saturation concentration. Markers indicate whether the organisms can grow as an autotroph (square) or only as a heterotroph (circle); colors indicate
whether the isolate is prokaryotic (green) or eukaryotic (orange). Dashed lines mark reference doubling times. (B) Covariation of maximum growth rate gmax

and half-saturation concentration K across the entire set of isolates from panel A. Here colors indicate the limiting resource, with the number of measurements
n given in parentheses. Marker shapes (squares are autotrophs; circles are heterotrophs) are the same as in panel A. We compute the Spearman rank
correlation ⇢ and P-value across the pooled set of isolates. (C) Subset of measurements from panel B for phosphate (only autotroph isolates shown). (D) Subset
of measurements from panel B for nitrate. (E) Subset of measurements from panel B for silicate. (F ) Covariation between maximum growth rate gmax and
half-saturation concentration K on glucose for measurements of E. coli (green) and S. cerevisiae (orange), with Spearman rank correlations ⇢ and P-values by
species.

traits for nitrate, but we see no correlation in growth traits for
nitrate (Spearman ⇢ ⇡ 0.03,P ⇡ 0.84; Fig. 3D and SI Appendix,
Fig. S11C). Altogether, the absence of evidence for a systematic
correlation between K and gmax suggests that selection for gmax

does not explain the evolved variation in K .

Models of Population Dynamics with Mutations to Half-Satu-
ration Concentration. To test how the environmental resource
concentration shapes the evolution of the half-saturation con-
centration K , we turn to a model of population dynamics with
mutations altering traits of the Monod growth rate response
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(Methods, SI Appendix, sections S3–S5, and Table S2). We
consider a microbial population consisting of a wild-type and a
mutant, with biomasses Nwt(t) and Nmut(t) that vary over time
t. They grow at rates depending on the resource concentration
R according to the Monod model (Eq. 1), but with potentially
different values of the traits gmax and K depending on the effect
of the mutation (25, 28). The rate at which the mutant increases
or decreases in frequency compared to the wild-type is given by
the selection coefficient s (SI Appendix, section S6) (50, 51). We
show that s decomposes into two additive terms:

s ⇡ shigh + slow, [2]

where shigh measures selection on growth at high resource
concentrations and is therefore proportional to variation in
the maximum growth rate gmax, while slow measures selection
on growth at low resource concentrations and is therefore
proportional to variation in the half-saturation concentration
K (SI Appendix, Figs. S13–S16 and sections S7–S9).

We consider selection in three prototypical regimes of pop-
ulation dynamics. In the first case, the population grows as a
batch culture with serial transfers (SI Appendix, section S3). That
is, there is an initial concentration R0 of the resource, and the
population grows until the resource is exhausted. Fig. 4A shows
these dynamics for the hypothetical wild-type and mutant strains
of Fig. 1. Although the mutant has the same maximum growth
rate gmax as thewild-type, its lower value ofK allows it to continue
growing fast at lower concentrations of the resource, decelerating
more abruptly at the end of growth (see Inset of Fig. 4A for
more dramatic examples). Then, a fixed amount of biomassN0—
sampled from the whole culture, so that the relative frequencies of
themutant andwild-type are preserved on average—is transferred
to a new environment with the same initial concentration R0 of
the resource as before, and the cycle repeats (Fig. 4 B, Top). This
dilution step represents a form of mortality for the population.
We refer to this regime as fixed-bottleneck batch dynamics since
the bottleneck of biomass between transfers is held fixed. Boom-
bust dynamics such as these are believed to be common in

some natural environments (52, 53), with a fixed bottleneck
size being plausible for populations that serially colonize new
environments (54) or are reset to a fixed density by culling (4)
between cycles of growth.

The second regime is the same as the first, except instead
of transferring a fixed amount of biomass to the next cycle,
we transfer a fixed fraction 1/D, where D is the dilution
factor (Fig. 4 B, Bottom); we therefore refer to this regime as
fixed-dilution batch dynamics. Note that the dilution factor D
and the bottleneck biomass N0 are related according to D =
R0Y /N0 + 1, where Y is the yield (biomass produced per unit
resource; SI Appendix, section S3). These dynamics are plausible
for populations that experience a constant death rate between
growth cycles or are regularly purged by the environment, as
believed to occur in the human gut microbiome (55). This
case is also the most common protocol in laboratory evolution
experiments owing to its simplicity (56). While the differences
between these two regimes of batch dynamics may appear to be
subtle (comparing the two panels of Fig. 4B), we will show later
that these two dilution protocols have different dependences on
the resource concentration, which lead to different evolutionary
outcomes.

Finally, we also consider the regime of chemostat dynamics,
where the population grows as a continuous culture with a
constant supply of the resource and a constant dilution rate
d (SI Appendix, section S5). Chemostats are used as devices for
experimental evolution (12, 22), and the same dynamics are often
applied to describe natural populations in the ocean (13, 57).

Selection Quantifies Variation in Growth Traits Between Iso-
lates at Di�erent Resource Concentrations.We previously
observed wide variation in half-saturation concentrations K
(Fig. 2A) and maximum growth rates gmax (Fig. 3A) across
isolates, but the significance of this variation is difficult to assess by
itself. For example, glucose K for E. coli varied across four orders
of magnitude, but how significant is this variation for evolution?
Our model of selection under different population dynamics
gives us precisely the metric to quantify this variation. We

A B C

Fig. 4. Selection on variation in half-saturation concentrations over batch population dynamics. (A) Simulated growth of wild-type (green) andmutant (orange)
strains competing under batch dynamics, with the transient resource concentration (gray) on the right vertical axis (SI Appendix, section S3). The strain pair is
the same as in Fig. 1; the initial resource concentration is R0 = 25, with strains at equal initial frequencies and equal yields. (B) The same strain competition
from panel A continued over multiple growth cycles under fixed-bottleneck batch dynamics (Top, N0 = 0.1) and fixed-dilution batch dynamics (Bottom, D = 100).
(C) Each point represents the predicted selection coe�icients |shigh| and |slow| (Eq. 2 and SI Appendix, section S8) for pairs of E. coli isolates with measured
growth traits on glucose (from Fig. 2D). The three colors represent di�erent glucose concentrations. We assume the isolates in each pair start competing at
equal initial frequencies, set the initial cell density to N0 = 4.6 ⇥ 105 cells/mL, and use a biomass yield of Y = 3.3 ⇥ 108 cells/µmol glucose measured by a
previous study (23).
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demonstrate this in Fig. 4C by calculating the two components
of selection (Eq. 2) for hypothetical competitions between all
pairs of E. coli isolates measured on glucose. We do this for batch
dynamics starting at different initial concentrationsR0 of glucose.
While selection on variation in gmax (shigh) always increases
with higher R0, selection on variation in K (slow) depends
nonmonotonically on the concentration R0, such that selection
is maximized at some intermediate concentration (SI Appendix,
Fig. S17 and section S10). Intuitively, this optimal concentration
approximately equals the half-saturation concentration K itself
(SI Appendix, Fig. S17C). On the other hand, if the resource
concentration R0 also increases the initial population size N0
(i.e., transfer from a pregrowth cycle with fixed dilution factor),
selection on variation in K depends monotonically on R0 and is
maximized at the lowest concentration (SI Appendix, Fig. S18).

We calculate selection between E. coli isolates at 10 µM
glucose, which is in the middle of the range of observed
half-saturation concentrations K , as well as at two higher
concentrations corresponding to the conditions of the E. coli
LTEE (139 µM) (58) and a common laboratory concentration
(11,000 µM⇡ 0.2%w/v). Fig. 4C indeed shows that variation in
the value ofK is highly significant for evolution at concentrations
around the half-saturation concentration, whereas at the highest
concentration, selection on the variation in K is small compared
to the selection in gmax.

The Half-Saturation Concentration Evolves Downward Over
SuccessiveMutations.With our model of population dynamics,
we can predict how the traits of the Monod growth rate response
(Eq. 1) will evolve over long times. For simplicity, we focus
on the “strong-selection weak-mutation” (SSWM) regime of
evolutionary dynamics, where each new mutation either fixes
or goes extinct before the next mutation arises (SI Appendix,
Fig. S19 and section S11) (59).

We first simulate a population growing under fixed-bottleneck
batch dynamics, with an initial half-saturation concentration
K that is higher than the external resource concentration R0;
the population therefore decelerates gradually into starvation
over each growth cycle (Fig. 5 A, Left Inset). Mutations then
regularly arise and alter the value of K with a random effect

size (SI Appendix, Fig. S19 and section S11). Each mutation
stochastically fixes or goes extinct according to a fixation prob-
ability, which depends on the mutation’s selection coefficient.
Over time, these beneficial mutations accumulate, and the half-
saturation concentration K systematically decreases. By the end
of the simulation, the half-saturation concentration K is 1,000
times smaller than the resource concentration R0, leading to
growth curves that grow much faster and abruptly decelerate
into starvation (Fig. 5 A, Right Inset).

Such an abrupt arrest is, for example, realized by E. coli
in glucose-limited batch culture through a dynamic surge in
gene expression late in the growth cycle (60), often involving
the use of separate transporters with lower Michaelis–Menten
constants (61). The presence of these transporter systems has
been raised as evidence for evolutionary adaptation of the species
at micromolar glucose concentrations (8, 61, 62). But our
model shows that a feast-and-famine environment dominated
by concentrations orders of magnitude higher would still allow
E. coli to evolve the low half-saturation concentrations K
observed in existing strains.

Adaptation in the Half-Saturation Concentration Stalls When
It Reaches Selection–Drift Balance. The value of K does not
evolve downward forever; in Fig. 5A, adaptation slows down,
and the half-saturation concentration levels off after a few tens
of thousands of mutations, even though there is no change in
the supply of beneficial mutations. This occurs because selection
on beneficial mutations is inhibited by random demographic
fluctuations in the population, known as genetic drift (63). The
strength of genetic drift is measured by 1/Ne, where Ne is the
effective population size (for the variance in mutant frequency
change per unit time) (64, 65); smaller populations experience
greater fluctuations. In the simplest cases, Ne is proportional to
the actual (“census”) population size but inmore complex systems
Ne may depend on other aspects of demography (such as spatial
dynamics (66) or age structure (67)) as well as additional sources
of noise in the population dynamics (68).

Beneficial mutations will therefore no longer fix with high
probability if their selection equals genetic drift, a condition
known as selection–drift balance (69–71):

A B C

Fig. 5. Evolution of the half-saturation concentration. (A) Half-saturation concentration K evolving under fixed-bottleneck batch dynamics. Each gray line
is one of 10 independent stochastic simulations using an e�ective population size Ne = 1,000 and mutation e�ects  drawn from a uniform distribution
(SI Appendix, section S11). The Insets show the growth curve in a single batch cycle before adaptation (Left Inset) and at the final state (Right Inset). The green
dashed line marks our prediction Kevo at selection–drift balance. (B) Evolved half-saturation concentration Kevo as a function of the e�ective population size
Ne. In the gray region, the e�ective population size is too small, and all evolution is neutral. If Ne is su�iciently large (white region), the evolved half-saturation
Kevo is at selection–drift balance along the green line. Parameters are |max| = 0.0001, gmax = 1, N0 = 0.01, and Y = 1 for both panels. (C) The evolved glucose
half-saturation Kevo as a function of initial glucose concentration R0 for two regimes of batch dynamics: fixed-bottleneck dynamics (blue line) and fixed-dilution
dynamics (orange line). We use parameters based on the LTEE: N0 = 4.6⇥ 105 cells/mL (for fixed-bottleneck case), D = 100 (for fixed-dilution case), Ne = VN0,
where V = 10 mL, gmax = 0.888/h, and Y = 3.3⇥ 108 cells/µmol (23). We also set max = �6⇥ 10�6 (SI Appendix, Fig. S27). On the right axis is a histogram of
glucose half-saturation K data for E. coli isolates (from Fig. 2B).
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s =
1
Ne

. [3]

Selection–drift balance occurs in our model under batch dynam-
ics because the growth deceleration phase becomes shorter as K
decreases over evolution (Insets of Figs. 4 A and 5 A), which
means that there is weaker selection to reduce it further. Once
the half-saturation concentration K becomes sufficiently small,
selection is no longer strong enough to overcome genetic drift
(SI Appendix, section S12 and Fig. S20).

By combining Eqs. 2 and 3, we can calculate the value of
the evolved half-saturation concentration at which selection–
drift balance occurs (SI Appendix, Fig. S21). For typical regimes
of the parameters, the evolved concentration is approximately
(SI Appendix, section S13).

Kevo ⇡ R0
Ne|max| log(Ne|max|R0Y /N0)

, [4]

where max is the maximum effect size of a beneficial mutation
reducing K . We calculate an example of Kevo in Fig. 5A (dashed
green line), which corresponds well with the simulations. This
result is robust to a wide range of effective population sizes
and frequency-dependent effects (SI Appendix, Fig. S22 and
section S11). We also observe an equivalent result for the
adaptation of the specific affinity gmax/K (SI Appendix, Fig. S23
and section S14) instead of the half-saturation concentration K
alone.

One salient feature of Eq. 4 is that the evolved half-saturation
concentration Kevo scales inversely with the effective population
size Ne, as shown in Fig. 5B. That is, larger populations or
those with lower genetic drift can evolve proportionally lower
half-saturation concentrations Kevo that are orders of magnitude
lower than the environmental resource concentration R0. This
potentially explainswhywe observe such low values ofK formany
organisms and resources (Fig. 2); this also explains why these half-
saturation concentrations are difficult tomeasure from time-series
data since low half-saturation concentrations produce extremely
abrupt deceleration at the end of growth (Insets of Figs. 4 A
and 5 A and SI Appendix, Fig. S24 and section S15). Hints
of the influence of Ne are found in ammonia-oxidizing archaea
and bacteria from marine environments, which tend to have
lower half-saturation concentrations than isolates from soil (18).
Our scaling relationship Eq. 4 suggests that this ordering can
arise from the smaller effective population size Ne for spatially
structured environments like soil.

The other important feature of Eq. 4 is the dependence of
the evolved half-saturation concentration Kevo on the resource
concentration R0. For a fixed effective population sizeNe, there is
an optimal value of R0 that minimizes the evolved concentration
Kevo (Left Insets of SI Appendix, Fig. S21 A and B), just as we
observed for selection on individual mutations (SI Appendix,
Fig. S17). We note that for sufficiently low values of the effective
population sizeNe, genetic drift is stronger than selection on any
mutation  (SI Appendix, Fig. S20A), and so the half-saturation
concentration K evolves neutrally (gray region in Fig. 5B).

In contrast to batch dynamics, selection under chemostat
dynamics does not depend on the half-saturation concentration
K itself (SI Appendix, section S9). Intuitively, this is because
reductions in K cause the environmental resource concentration
to decrease proportionally (SI Appendix, section S5) such that
the growth rate remains constant. Not only does this keep a
constant strength of selection on newmutations, but the effective
population size will actually increase as K evolves lower, making

beneficial mutations even easier to fix. Therefore, selection–drift
balance never occurs for K under chemostat dynamics; the half-
saturation concentration K will continue to evolve downward
until adaptation is limited by the supply of mutations or other
factors (Discussion). Note that selection–drift balance also does
not occur for mutations to the maximum growth rate gmax under
either batch or chemostat dynamics since selection does not
depend on the absolute magnitude of growth rate (SI Appendix,
sections S8 and S9).

Population Dynamics Can Decouple the Evolved Half-Satu-
ration Concentration from the Resource Concentration. In
general, the effective population size Ne that controls genetic
drift may be shaped by a variety of demographic factors besides
the census population size (65). However, in well-mixed batch
cultures, Ne is primarily determined by the number of cells at
the bottleneck of each transfer (69); we assume that other sources
of stochasticity (such as individual cell division events) are much
weaker than the sampling noise of these transfers. Therefore,
the effective population size Ne is proportional to the bottleneck
biomass N0 (assuming constant biomass per cell).

Under fixed-bottleneck batch dynamics, the effective popula-
tion size Ne is thus an independent parameter of the population,
so that the strength of genetic drift does not depend on the
resource concentration (SI Appendix, Fig. S25A). In this case,
the evolved trait Kevo is in approximately linear proportion to
the resource concentration R0 (Eq. 4, Fig. 5C , and SI Appendix,
Fig. S26A), making the evolved half-saturation concentration a
biomarker of the resource’s environmental concentration. This
is consistent with our original speculation about the systematic
differences in glucoseK between E. coli and S. cerevisiae, owing to
the different glucose availability in their different environments.

However, for fixed-dilution batch dynamics, the bottleneck
biomass N0, and therefore the effective population size Ne, are
coupled to the resource concentration R0 because the dilution
factor D is fixed: Ne / N0 = R0Y /(D � 1) (SI Appendix,
section S3). This coupling occurs because increasing the resource
concentration increases the biomass at the end of each growth
cycle, but then, the fixed dilution factor means that this must
also increase the biomass at the bottleneck. The scaling of Ne
with R0, though, cancels out the scaling of Kevo with R0 in Eq. 4,
leading to an evolved half-saturation concentration Kevo that is
approximately independent of the environmental concentration
R0 (Fig. 5C and SI Appendix, Fig. S26B). Conceptually, fixed-
dilution batch dynamics do not allow the strength of selection
to be tuned independently from genetic drift: The decrease in
selection magnitude on K with higher resource concentration R0
is compensated by weaker genetic drift, due to a higher effective
population size Ne (SI Appendix, Fig. S25B). Thus, the popula-
tion dynamics decouple the evolved half-saturation concentration
of the organism from the environmental concentration.

This has major consequences for interpreting empirical varia-
tion. We predict the evolved half-saturation concentration Kevo
for E. coli on glucose as a function of glucose concentration
R0 in Fig. 5C , using parameters estimated from the LTEE
(SI Appendix, Fig. S27). On the same plot, we show a histogram
of all measured glucose K values for E. coli (from Fig. 2B) on
the right vertical axis. We see that, under fixed-bottleneck batch
dynamics, we would expect E. coli to have evolved in glucose
concentrations above 100 µM to account for the observed half-
saturation concentrations. However, under fixed-dilution batch
dynamics, the evolved half-saturation concentration depends so
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weakly on the environmental concentration that almost any
concentration of glucose is possible to explain the data.

Discussion

Modeling Insights to Interpret Half-Saturation Data. Since it is
often difficult tomeasure resource concentrations and population
dynamics in natural environments, can we use the evolved half-
saturation concentration K as a biomarker to infer them? This
logic is often implicit in environmental studies, which attempt
to draw conclusions about the environmental conditions of
an isolate based on its abilities to grow at different resource
concentrations (16–19). However, our model shows that it is not
as simple as assuming the half-saturation concentration K for a
resource is proportional to its concentration in the environment
since that proportionality is altered by the population dynamics,
at least through the effective population size Ne (Eq. 4). In
particular, this proportionality is confounded in the case of fixed-
dilution batch dynamics, where the evolved half-saturation con-
centration K is largely independent of the resource concentration
R0 (Fig. 5C ).

Under fixed-bottleneck batch dynamics, though, the linear
scaling of K with R0 does approximately hold. In this case,
one can compare two populations with unknown but identical
effective population sizesNe and mutation effects  ; for example,
two isogenic populations located at different points along a
resource gradient. In this case, one can calculate the ratio
of evolved half-saturation concentrations Kevo for the two
populations to estimate the ratio of resource concentrations.
But in many scenarios, one might not even know the type
of bottlenecks the population is experiencing. To classify the
population dynamics as fixed-bottleneck or fixed-dilution, one
could correlate a set of evolved concentrations Kevo with their
different resource concentrations R0; a strong linear correlation
would support fixed-bottleneck batch dynamics, while little to
no correlation would indicate chemostat or fixed-dilution batch
dynamics.

Role of theMutation Supply in Shaping EvolvedHalf-Saturation
Concentrations.We have focused on the role of selection–drift
balance as a null model for the evolved variation in half-saturation
concentrations since the competition between selection and
genetic drift is a universal feature of all evolving populations.
In doing so, we have assumed that the supply of mutations
on K is constant, but real populations will at some point run
out of beneficial mutations on the trait value K , potentially
reaching this mutation–selection balance before selection–drift
balance (70). Many mutations will also be pleiotropic, affecting
both the half-saturation concentration K and the maximum
growth rate gmax (as well as possibly other traits) simultaneously.
The correlation between pleiotropic effects on both traits is
important: If pleiotropy is synergistic, so that mutations that
decrease K also tend to increase gmax, the population might
evolve lower K than otherwise expected since its selection is
enhanced by additional selection on gmax. On the other hand,
if there is a tradeoff between K and gmax, the population might
evolve higher K if its selection is outweighed by selection for
higher gmax. Indeed, this is what appears to have happened in
the LTEE, where K for glucose actually increased over the first
2,000 generations but that was offset by a stronger improvement
in the maximum growth rate gmax (23).

Such a tradeoff between K and gmax is interesting both for its
consequences on the stochiometric composition of community
biomass (49, 72) as well as from an evolutionary point of view

since the population can then diversify into stably coexisting
lineages. While there is significant theoretical work on this
hypothesis (25–28), it has limited empirical evidence. Some
of these previous studies claiming tradeoffs found them only
in parameters for the Michaelis–Menten model of resource
uptake (27, 28, 30, 49, 73), which we and others have shown
are not equivalent to parameters of the Monod model of growth
(SI Appendix, Fig. S12) (37, 39). In the larger set of data we have
collected in this work (Fig. 3F ), we find no compelling evidence
of a correlation; E. coli shows a weak but insignificant tradeoff,
while S. cerevisiae shows a slight synergy (74).

Interpretation of this tradeoff (or lack thereof) is also compli-
cated by the sample of strains and environmental conditions being
considered. For the tradeoff to affect the evolved half-saturation
concentration as we have discussed, the tradeoff must exist across
the entire spectrum of spontaneous mutations available to an
organism (i.e., there is an underlying physiological constraint).
This has also been the underlying assumption of previous models
on this topic (25–28). Testing this would require distribution
of K and gmax values over a large mutant library in a single
environment, which has not been measured to our knowledge.
An experimental study in E. coli (31) reports a tradeoff between
half-saturation concentration K for maltotriose and maximum
growth rate gmax, but this screen was restricted to mutations
in the single gene lamB, which may not be representative of
genome-wide mutations. Detecting a genome-wide trade-off is
further complicated by the fact that even in the absence of an
underlying correlation in mutation effects, such a tradeoff could
still emerge across clones within a rapidly evolving population,
at least transiently (75, 76). Further systematic measurements of
these traits within and between populations will be necessary to
resolve the issue of a tradeoff in the future.

OtherFactors ShapingEvolvedHalf-SaturationConcentrations.
Besides mutation supply, there are other phenomena that
may lead to different evolved outcomes for the half-saturation
concentration K . One important assumption in our model is
that we consider only a single resource, whereas real populations
are dependent on several resources (77), including those from
biotic sources such as cross-feeding and predation. Some of these
resources may be rarely or never limiting, and therefore, their
half-saturation concentrations K will evolve only as byproducts
of selection on mutations for other traits. In this sense, many
observed half-saturation values may actually be spandrels, an
evolutionary term (defined in analogy with the architectural
structure) for traits that evolve for reasons other than direct
selection (78). Selection for other traits may occur simply because
competition in natural environments is likely more complex and
could include lag phases (51) and other strategies for low-resource
survival (5, 79–81). On the other hand, multiple resources
could also be simultaneously colimiting (32, 33). While we have
shown how colimitation under measurement conditions affects
estimates of gmax and K (SI Appendix, section S1), the effect of
colimitation, as well as more complex sources of nutrients such
as cross-feeding and predation, on the evolution of these traits
remains an important problem for future work.

We can predict the consequences of relaxing other assumptions
in our model as well. For example, simultaneous competition of
multiple mutations (clonal interference) generally reduces the
efficacy of selection (82, 83), which would make it more likely
to evolve higher half-saturation concentrations than what we
predict fromSSWMdynamics. Another assumption in ourmodel
is that the population under batch dynamics always grows until
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complete exhaustion of the resources during each cycle, but earlier
transfers could reduce the amount of growth occurring during
deceleration, which would reduce selection on the half-saturation
K . However, the populationmay adapt its maximum growth rate
to simply saturate earlier and restore selection on its deceleration
phase. Finally, populations may also have higher than expectedK
values if they simply have not had enough time to reach selection–
drift balance, which takes a timescale of order Ne generations
(SI Appendix, Fig. S22) (84).

Population Dynamics Are Essential for Understanding Micro-
bial Ecology. Broadly speaking, our results provide a valuable
example of how ecological traits are influenced by factors other
than abiotic environmental features. In particular, we have shown
how population dynamics can confound our naive expectations
for the evolutionary fate of such traits. While here we have
focused on the role of genetic drift, other potentially important
factors include mutation supply, pleiotropy, recombination, and
spatial structure. Altogether, our results mean that the half-
saturation concentration K may not be a reliable biomarker
of environmental resource concentrations. This does not mean
that K evolves independently of the environment, however.
Rather, it is linked to additional environmental processes like the
bottleneck between growth cycles. To understand the systematic
differences between species, we need to know not only the
resource concentrations they have evolved in but also which type
of population dynamics best reflects the time scales of growth,
death, and resource supply in their environment of origin.

Materials and Methods
Literature Survey of Measured Growth Rate Dependence on Resources.
We collected 247 measurements of Monod model parameters (K and gmax;
Eq. 1) through a targeted literature search that included prior surveys and
reviews (41, 43), the phytoplankton trait database (130 data points) by
Edwards et al. (44), as well as original research papers. In all but two
cases, we traced data from surveys and reviews back to their original papers,

which we report in Dataset S1, Sheet 1. We included only experiments that
directly measured population growth rates, rather than nutrient uptake rates
or respiration. We excluded measurements where the actual limiting resource
was unclear, such asmeasurements in richmediumwith added glucose. Where
possible, we checked the raw data of growth rate over resource concentrations
to determine whether the focal resource concentration was measured up to
saturation and had sufficient sampling of concentrations around K. For a subset
of measurements of E. coli on glucose, we also checked for the concentration of
a nitrogen source to determine the relative impact of colimitation (Dataset S1,
Sheet 2 and SI Appendix, section S1). If the original K value was reported
as weight per volume, we converted these into units of micromolar (µM)
using the calculated molecular weight of the compound’s chemical formula.
We preserved significant digits from the original studies. See Dataset S1 for
more details.

Models of Population Dynamics. We mathematically model population
dynamics using systems of ordinary differential equations for the wild-type
and mutant biomasses as well as the extracellular resource concentration
(SI Appendix, sections S3 and S5). We numerically integrate these equations
using standard algorithms in Scipy (85) (SI Appendix, section S4).

Data, Materials, and Software Availability. Data from the literature survey
ofMonodgrowth traits (DatasetS1)hasbeendeposited inDryad,https://doi.org/
10.5061/dryad.866t1g1tr. All methods and mathematical results to reproduce
the analysis are included in the SI Appendix.
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S1. EFFECT OF COLIMITATION ON
ESTIMATES OF MONOD GROWTH TRAITS

The Monod model (Eq. (1)) assumes there is only a sin-
gle limiting resource whose concentration a↵ects growth
rate. However, microbes rely on multiple resources to
grow, and therefore their growth rate may depend on the
concentrations of all these resources simultaneously. Here
we address how these other resources would a↵ect the
estimation of Monod growth traits for a focal resource.
For simplicity, we consider the case of two essential, inde-
pendent resources, where resource 1 is the focal resource
(e.g., glucose) that we vary over a range of concentrations
to measure its Monod parameters gmax

1 and K1, and re-
source 2 is another resource (e.g., ammonium) that is
fixed in the background medium. While there is no con-
sensus on the best model for this behavior, we consider
three of the most widely-used models:

Liebig model [1–3]:

g(R1, R2) = min

✓
gmax
1 R1

R1 + K1
,

gmax
2 R2

R2 + K2

◆
, (S1)

Additive model [1, 4]:

g(R1, R2) = gmax R1R2

K2R1 + R1R2 + K1R2
, (S2)

⇤ To whom correspondence should be addressed. Email: jus-
tus.fink@env.ethz.ch

† To whom correspondence should be addressed. Email: mman-
hart@rutgers.edu

Multiplicative model [2, 4]:

g(R1, R2) = gmax

✓
R1

R1 + K1

◆✓
R2

R2 + K2

◆
. (S3)

Assuming one of these models is the true description
of how growth rate depends on resource concentrations,
we imagine fitting an apparent Monod model gapp(R1)
for resource 1 to data generated by the true model, with
fixed R2:

gapp(R1) = gmax
1,app(R2)

R1

R1 + K1,app(R2)
, (S4)

where gmax
1,app is the apparent maximum growth rate for

resource 1 and K1,app is its apparent half-saturation con-
centration, both of which may depend on the concentra-
tion R2 of resource 2. All of the true models correspond
exactly to the apparent Monod model — with appar-
ent parameters equaling the true ones, gmax

1,app = gmax
1

and K1,app = K1 — if the concentration R2 is much
larger than its half-saturation concentration K2, since
the growth rate no longer depends on resource 2 once
its concentration is saturating. Therefore R2 � K2 is
the general condition on the background resource which
determines whether we are in the desired regime of limi-
tation only for resource 1.

If the concentration R2 is smaller or not much larger
than its half-saturation concentration K2, we can then
use the models to determine how colimitation with re-
source 2 a↵ects estimates of Monod parameters for re-
source 1. For all of the true models, the apparent maxi-
mum growth rate gmax

1,app is an underestimate of the true
maximum growth rate gmax

1 . Specifically,
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2

Liebig model:

gmax
1,app(R2) ⇡ min

✓
gmax
1 ,

gmax
2 R2

R2 + K2

◆
, (S5)

Additive model: gmax
1,app(R2) = gmax R2

R2 + K2
, (S6)

Multiplicative model:

gmax
1,app(R2) = gmax R2

R2 + K2
. (S7)

That is, the apparent maximum growth rate for resource
1 is a Monod-type function of resource 2, meaning it is
very close to the true gmax

1 for large R2 as expected, but
becomes a significant underestimate when R2 is below
its half-saturation concentration K2. Note that the ap-
parent parameters for the Liebig model are only approx-
imate because the Liebig model will not exactly fit the
Monod model for a single resource; this is because at
some concentration there is a sharp transition in limita-
tion between resources, owing to the minimum function.

The apparent half-saturation K1,app is also an underes-
timate of the true K1 for the Liebig and additive models,
but equals the true value for the multiplicative model:

Liebig model:

K1,app(R2) ⇡ K1

2 gmax
1

min
⇣

gmax
1 ,

gmax
2 R2

R2+K2

⌘ � 1
, (S8)

Additive model: K1,app(R2) = K1
R2

R2 + K2
, (S9)

Multiplicative model: K1,app(R2) = K1. (S10)

Note also that this means the apparent specific a�nity
gmax
1,app/K1,app is always correct for the additive model,

since the dependence on R2 cancels out between the ap-
parent maximum growth rate and half-saturation, while
it is biased for the Liebig and multiplicative models.

To what extent might these biases a↵ect our data?
We can test this condition in a subset of measurements
for E. coli on glucose where the nitrogen source is am-
monium and has a reported concentration. The mea-
sured K for ammonium in E. coli is 2.6 µM (Dataset S1,
sheet 1). In the experiments that measure K for glucose,
the ammonium concentrations are all orders of magni-
tude higher (0.16 mM to 18.7 mM; Dataset S1, sheet 2).
This indicates that ammonium was not colimiting with
glucose in these experiments. Indeed, for almost all the

resources included in our data, the K half-saturation con-
centrations are much lower than typical laboratory con-
centrations. This is not surprising in light of our evo-
lutionary model that predicts K will often evolve to be
much lower than the environmental concentration of the
resource (Eq. (4)), and presumably explains why colimi-
tation of essential independent resources has been rarely
observed empirically [3].

S2. ALTERNATIVE MODELS OF GROWTH
RATE DEPENDENCE ON RESOURCE

CONCENTRATIONS

Table S1 lists several common models for growth
rate dependence on resource concentration R. Some of
these models are mathematically equivalent; for example,
Holling [11] proposed a classification scheme for growth
models (commonly referred to as Type I, II, and III)
for the response of predator growth rate on prey den-
sity, which exactly corresponds to other models of growth
in Table S1. Some of these models are also equiva-
lent in certain limits. At high resource concentrations
R/K � 1, all of the models are approximately equiva-
lent to the constant growth model, since the assumption
is that resources are saturating and growth is limited by
other processes. On the other hand, at low concentra-
tions R/K ⌧ 1, the Monod, Blackman, and Bertalan↵y
models are approximately equivalent to the linear model.

There are also some important di↵erences between
models. The Blackman, Monod, Bertalan↵y, and Hill
models all saturate at high resource concentrations, but
the nature of that saturation qualitatively di↵ers. That
is, the Monod model converges most slowly due its power
law dependence on R. The Hill model also converges as
a power law, but assuming n > 1, it does so more quickly
than Monod. The Bertalan↵y model converges even more
rapidly due to its exponential dependence on R. Finally,
the Blackman model converges to a constant immediately
at the half-saturation concentration R = K.

The model most significantly di↵erent from the rest is
the Droop model, since it depends not on the external
resource concentration directly, but only on the resource
concentration internal to the cell. Therefore this requires
inclusion of a separate resource uptake process to be in-
cluded in our framework. Under steady-state (chemo-
stat) growth, this will also be equivalent to the Monod
model under a shift in the resource concentration param-
eter Q � Q0 ! R, but under non-steady state conditions
(e.g., batch dynamics), the Droop model can di↵er [16].

S3. MODEL OF BATCH POPULATION
DYNAMICS

For batch culture we describe the dynamics of the wild-
type and mutant biomasses Nwt(t) and Nmut(t) and the
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model definition references

constant g(R) = gmax⇥(R) [5–7]

linear g(R) = gL · R
K [8]

Blackman or Holling Type I g(R) = gmax ·
�
1 +

�
R
K � 1

�
⇥(K �R)

�
[9–11]

Monod or Holling Type II g(R) = gmax · R
R+K [11, 12]

Droop (depends on internal concentration Q) g(Q) = gmax · Q�Q0
Q [13–16]

Bertalan↵y g(R) = gmax
⇣
1� e�R/K

⌘
[4, 17]

Hill, Moser, or Holling Type III g(R) = gmax · Rn

Rn+Kn [11, 18, 19]

TABLE S1. Overview of models for microbial population growth rate. For each entry, the column “references” lists
works that establish or build on the model and have been cited elsewhere in this text. The symbol ⇥ denotes the Heaviside
step function which is 1 for a positive argument and zero otherwise.

definition definition

biomass concentrations Nwt(t), Nwt(t) e↵ective growth rate ḡ(R) = 1�x
Ywt/Ȳ

· gwt(R) + x
Ymut/Ȳ

· gmut(R)

initial mutant frequency x

extracellular resource conc. R(t) e↵ective yield Ȳ =
h
1�x
Ywt

+ x
Ymut

i�1

initial biomass concentration N0

initial resource concentration R0 e↵ective max. growth rate ḡmax = 1�x
Ywt/Ȳ

· gmax
wt + x

Ymut/Ȳ
· gmax

mut

population growth rates gwt(R), gmut(R)

biomass yields Ywt, Ymut critical concentration Z = KwtKmut

h
gmax
wt /ḡmax

Ywt/Ȳ
1�x
Kwt

+
gmax
mut /ḡ

max

Ymut/Ȳ
x

Kmut

i

max. growth rates gmax
wt , gmax

mut

half-saturation concentration Kwt,Kmut

specific a�nity a = gmax/K

TABLE S2. Key notation and definitions used in the model. The subscripts “wt” and “mut” correspond to wild-type
and mutant. Sometimes we drop the subscript “wt“ and use a plain letter (K or gmax or a) for the wild-type trait (for example,
in the main text).

extracellular resource concentration R(t) using the fol-
lowing di↵erential equations [20, 21]:

1

Nwt

dNwt

dt
= gwt(R), Nwt(0) = (1 � x)N0,

1

Nmut

dNmut

dt
= gmut(R), Nmut(0) = xN0,

dR

dt
= � 1

Ywt

dNwt

dt
� 1

Ymut

dNmut

dt
, R(0) = R0.

(S11)

See Table S2 for a summary of the main notation and
definitions used throughout this article. Growth begins
with an external resource concentration R0 and total
biomass N0, a fraction x of which is the mutant strain.
The strains then grow with per-capita rates gwt(R) and
gmut(R), which depend on the extracellular resource con-
centration R(t); here we neglect other growth dynam-
ics such as lag [5, 6] and death [22] for simplicity, but
they are straightforward to add within this framework.
The resource concentration R(t) declines in proportion to
growth of biomass, where the yields Ymut and Ywt for each

strain set the amount of new biomass per unit resource.
Here we neglect resource consumption due to mainte-
nance of existing biomass [23], since we expect consump-
tion for maintenance to be much less than consumption
for growth during rapid growth. Growth continues until
the resource is depleted or the growth rates reach zero.
While it is di�cult to analytically solve these dynamics
in general, it is straightforward to numerically solve the
model for a given set of parameters (Sec. S4).

We note that for the Monod model in the limit of low
resource concentration R, or any model of growth rate
that depends approximately linearly on R (Table S1),
the batch dynamics of Eq. (S11) are equivalent to a lo-
gistic growth model. We can integrate the equation for
resource consumption dR/dt in Eq. (S11) to express the
current resource concentration R(t) as a function of the
biomasses of wild-type Nwt and mutant strain Nmut:

R = R0 +
N0

Ȳ
� Nwt

Ywt
� Nmut

Ymut
, (S12)

where Ȳ is the e↵ective population yield (Table S2). Sub-
stituting R from Eq. (S12) into the equations for dNwt/dt
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and dNmut/dt from Eq. (S11) with linear growth rate de-
pendence (g(R) ⇡ gmaxR/K), we obtain

1

Nwt

dNwt

dt
=

gmax
wt

Kwt

✓
R0 +

N0

Ȳ
� Nwt

Ywt
� Nmut

Ymut

◆
,

(S13a)

1

Nmut

dNmut

dt
=

gmax
mut

Kmut

✓
R0 +

N0

Ȳ
� Nwt

Ywt
� Nmut

Ymut

◆
.

(S13b)

This is equivalent to logistic growth for both species or
competitive Lotka-Volterra dynamics.

Once the resource R is depleted during a single cycle
of batch growth, we transfer a fraction 1/D of the popu-
lation to an environment with a new supply of resources
at the original concentration R0, after which the popu-
lation resumes growth in the new environment according
to Eq. (S11). The factor D is known as the dilution fac-
tor and is the ratio of the total biomass at the end of
the previous growth cycle and the total biomass at the
beginning of the next growth cycle [7].

In principle the dilution factor D and the bottleneck
biomass concentration N0 can vary over each growth cy-
cle, depending on how we perform the transfers. Let
superscript n refer to the dynamics during the nth batch
growth cycle over a series of dilutions and transfers. The

biomass at the beginning of the (n + 1)th cycle, N (n+1)
0 ,

equals the biomass at the end of the previous cycle n
divided by the dilution factor D(n) for that cycle:

N (n+1)
0 =

1

D(n)

⇣
N (n)

wt (tsat) + N (n)
mut(tsat)

⌘
, (S14)

where tsat is the saturation time of the growth cycle. To
determine the relationship with the bottleneck size of the
previous growth cycle, we use the relationship between
resource and biomass concentrations (Eq. (S12)) to show
that at the end of the growth cycle, R(tsat) = 0, and so

R(n)(tsat) = 0

= R0 +
N (n)

0

Ȳ (n)
� N (n)

wt (tsat)

Ywt
� N (n)

mut(tsat)

Ymut
.

(S15)

Using this, we can insert the identity to obtain

N (n+1)
0 =

1

D(n)

⇣
N (n)

wt (tsat) + N (n)
mut(tsat)

⌘

=
1

D(n)

0

@ R0 + N(n)
0

Ȳ (n)

N(n)
wt (tsat)

Ywt
+ N(n)

mut(tsat)
Ymut

1

A

·
⇣
N (n)

wt (tsat) + N (n)
mut(tsat)

⌘

=
1

D(n)

 
R0 +

N (n)
0

Ȳ (n)

!✓
1 � x(n+1)

Ywt
+

x(n+1)

Ymut

◆�1

(S16)

where we have used the fact that the frequencies of each
strain at the end of the nth cycle equal their frequencies
at the beginning of the (n + 1)th cycle:

N (n)
mut(tsat)

N (n)
wt (tsat) + N (n)

mut(tsat)
= x(n+1). (S17)

Using the equation for the e↵ective yield (Table S2), we
obtain

N (n+1)
0 =

1

D(n)

 
R0 +

N (n)
0

Ȳ (n)

!
Ȳ (n+1). (S18)

This establishes the general relationship between the bot-
tleneck size and the dilution factor.

Under fixed-bottleneck batch dynamics (Fig. 4B, top

panel), N (n)
0 is a constant value N0, and so we can re-

arrange Eq. (S18) to determine how the dilution factor
varies at each cycle:

D(n) =
R0Ȳ (n+1)

N0
+

Ȳ (n+1)

Ȳ (n)
. (S19)

This shows that the dilution factor changes only if the
strains have di↵erent yields, such that the e↵ective yields
Ȳ (n) change over cycles as the strain frequencies change.
On the other hand, under fixed-dilution batch dynam-
ics (Fig. 4B, bottom panel), D(n) is a constant D, and
Eq. (S18) simplifies to

N (n+1)
0 =

1

D

 
R0 +

N (n)
0

Ȳ (n)

!
Ȳ (n+1). (S20)

Under both serial transfer regimes, the steady state oc-

curs when D(n+1) = D(n), N (n+1)
0 = N (n)

0 , and Ȳ (n+1) =
Ȳ (n), which implies

D =
R0Ȳ

N0
+ 1. (S21)

This steady state occurs if 1) all strains have the same
yields, such that the e↵ective yield is constant; 2) one
strain goes extinct; or 3) the two strains stably coexist.

S4. NUMERICAL METHODS FOR BATCH
DYNAMICS

It is not possible to analytically solve the ordinary dif-
ferential equations for batch dynamics (Eq. (S11)). To
obtain explicit solutions to this model, we therefore nu-
merically integrate the equations using the Scipy pack-
age [24]. We use the default Runge-Kutta algorithm
“RK45” in the function solve ivp. This interpolates
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the di↵erential equation in fourth-order expansion over a
short step size �t. The step size is automatically adjusted
by solve ivp to keep the error of integration below a
threshold fixed by the user through the parameters atol
and rtol. Our choices of atol = 10�12 and rtol = 10�8

are more restrictive than the default setting and ensure
low errors on the state variables Nwt, Nmut, and R.

The population dynamics in Eq. (S11) reach the final
equilibrium when all resources have been converted into
biomass. This final equilibrium is the only attractor since
the resources are finite and biomass is strictly increasing
(no cell death within a batch growth cycle); in particular,
this system does not allow for limit cycles. However, the
time to reach this equilibrium is infinite for all growth
models in Table S1 (including the Monod model) except
for the constant growth rate model. This is because the
smooth decline of growth rate prevents full depletion of
resources and allows populations to grow indefinitely at
infinitesimal but strictly positive growth rates. (The con-
stant growth rate model allows for the same growth rate
at arbitrarily low resource concentrations, which means
the resources deplete to zero in finite time [5–7].)

For numerical calculations we must therefore set a fi-
nite saturation time tsat such that the population dy-
namics are su�ciently close to their equilibrium state.
We choose this time using the selection coe�cient, which
quantifies the relative change in the strain frequencies.
Define the cumulative selection coe�cient up to time t
for a batch growth cycle as

st = log

✓
Nmut(t)

Nwt(t)

◆
� log

✓
Nmut(0)

Nwt(0)

◆
. (S22)

(We further motivate this definition of selection in
Sec. S6.) The total selection coe�cient for the batch
cycle is the cumulative selection coe�cient in the limit
of infinite time:

s = lim
t!1

st. (S23)

We want to define the saturation time tsat as the time
where the di↵erence between the cumulative selection up
to that time and the total selection is less than some tol-
erance. We can do this by determining an upper bound
on the di↵erence between total selection s and the selec-
tion at finite time t. As the population continues to grow
after time t, the change in frequencies is bounded by the
remaining available resources R(t). The two possible ex-
tremes are if all remaining resources go to the wild-type,
in which case the biomass of the wild-type increases by
R(t)Ywt and the mutant biomass remains constant, or if
all remaining resources go to the mutant, in which case
the biomass of the mutant increases by R(t)Ymut and the
wild-type remains constant. Therefore the largest possi-
ble change in selection occurs in one of these two scenar-
ios, and so the deviation in selection at time t from its
equilibrium value is bounded by

|st � s|  max
n

log

✓
1 +

R(t)Ymut

Nmut(t)

◆
,

log

✓
1 +

R(t)Ywt

Nwt(t)

◆o
.

(S24)

We define the saturation time tsat as the shortest time
(infimum) such that the di↵erence between the cumu-
lative selection at that time and the total selection is
smaller than a given error tolerance ✏ > 0:

tsat = inf
�
t > 0 : |st � s| < ✏

 
. (S25)

We implement this algorithmically by evaluating the sim-
ulation up to an initial time t, then evaluating the max-
imum future error on the selection coe�cient from the
right hand side of Eq. (S24), and then extending the sim-
ulation to t + 10 if the error exceeds a defined tolerance
✏ = 10�8. We iterate this process until the error is less
than the threshold.

S5. MODEL OF CHEMOSTAT POPULATION
DYNAMICS

Similar to the batch model of Eq. (S11), the dynamics
of biomass and resource concentrations under continuous
culture (chemostat) are

1

Nwt

dNwt

dt
= gwt(R) � d, Nwt(0) = (1 � x)N0,

1

Nmut

dNmut

dt
= gmut(R) � d, Nmut(0) = xN0,

dR

dt
= �gwt(R)

Nwt(t)

Ywt
� gmut(R)

Nmut(t)

Ymut

+ d(Rsource � R(t)),

R(0) = R0,
(S26)

where Rsource is the concentration of the resource in the
source media fed into the culture. In a laboratory chemo-
stat, the dilution rate is d = !/V , where ! is the outflow
rate (volume per time) and V is the volume of the culture
vessel [25].

In the SSWM regime where mutations arise only rarely
(Sec. S11), we can assume that the mutant arises on
the background of the wild-type at steady-state growth.
Let N⇤

wt be the steady-state concentration of wild-type
biomass and R⇤ be the steady-state concentration of the
resource. Note that R⇤ here is the chemostat-specific re-
alization of the ecological concept of a minimum resource
concentration required for positive net growth, as used
in resource-ratio theory [26, 27]. Since dNwt/dt = 0 in
steady state, the resource concentration R⇤ must satisfy
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gwt(R
⇤) = d. (S27)

For the Monod model, we can solve this explicitly for R⇤

to obtain

R⇤ = Kwt
d

gmax
wt � d

. (S28)

Note that this concentration R⇤ is independent of the
source concentration Rsource. Using the steady-state con-
dition for the resource dR/dt = 0, we can then obtain the
steady-state biomass concentration

N⇤
wt = (Rsource � R⇤)Ywt. (S29)

This establishes a feasibility condition for steady state:
the dilution rate d must be less than the growth rate at
the source concentration gwt(Rsource), which is the max-
imum that the culture can realize for the given resource
supply. This criterion has been used by Jannasch [28, 29]
to define a minimum resource threshold required for pop-
ulation growth at a given dilution factor d. This mini-
mum resource threshold corresponds to the steady-state
concentration R⇤, which is related to the parameter K
but also depends on d.

S6. DEFINITION OF SELECTION
COEFFICIENT

The instantaneous selection coe�cient �(t) measures
the rate of change in the logarithm of relative mutant
frequency:

�(t) =
d

dt
log

✓
Nmut(t)

Nwt(t)

◆
. (S30)

This is a su�cient statistic for frequency change in the
sense that knowledge of the instantaneous selection co-
e�cient and the current mutant frequency is su�cient
to predict the future mutant frequency over a short time
horizon.

For population growth under batch dynamics, the re-
peated bottlenecks between growth cycles introduce ran-
domness in the frequency trajectory of a mutant. We
assume that this stochastic sampling at transfer domi-
nates over the random fluctuations in individual birth
rates within the growth cycle. Thus, the genetic drift
in our model of serial transfer evolution occurs at the
timescale of one growth cycle. To compare the strength
of drift and selection on the same timescale, we integrate
the instantaneous selection coe�cient (Eq. (S30)) over
time

s =
1

�t

Z �t

0
�(t) dt, (S31)

where �t is the length of the growth cycle. Note that
the selection coe�cient s is still defined as a rate per
unit time and in the limit �t ! 0 exactly matches the
instantaneous selection coe�cient (Eq. (S30)).

For batch dynamics the selection coe�cient s deter-
mines the change of frequency over multiple growth cy-
cles. At the beginning of the nth cycle, the initial mutant
frequency x(n) is given by

x(n) =
N (n)

mut(0)

N (n)
mut(0) + N (n)

wt (0)
, (S32)

where N (n)
wt and N (n)

mut refer to the biomass of wild-type
and mutant strains. The population grows to saturation
and possibly experiences some frequency change, which
sets the mutant frequency x(n+1) of the next cycle. This
change is summarized by the selection coe�cient

s(n) = log

✓
x(n+1)

1 � x(n+1)

◆
� log

✓
x(n)

1 � x(n)

◆
, (S33)

which we compute from the integral definition
(Eq. (S31)) using a timescale of �t = 1 (per growth
cycle). Knowledge of s(n) is su�cient to predict the
initial mutant frequency in the next cycle

x(n+1) =
x(n) exp(s(n))

1 + x(n)
⇥
exp(s(n)) � 1

⇤ , (S34)

neglecting the stochastic e↵ects of the dilution. Thus,
given the starting mutant frequency x(1) and the selec-
tion coe�cients for each growth cycle s(n), the recursion
in Eq. (S34) allows us to predict the mutant frequency
trajectory without simulating the population dynamics
within each growth cycle.

S7. DERIVATION OF THE SELECTION
COEFFICIENT FOR BATCH DYNAMICS

For populations growing in batch culture, the selection
coe�cient reduces to the cumulative di↵erence of growth
rates:

s =

Z 1

0
[gmut(R(t)) � gwt(R(t))] dt, (S35)

where we have inserted the equations for mutant and
wild-type growth from our model of populations dynam-
ics (Eq. (S11)) into the definition of s from Eq. (S31).
The integral extends to infinite time for the growth dy-
namics to reach equilibrium (Sec. S4) so we therefore do
not normalize by the time scale as in Eq. (S31); rather
we leave it as understood that the selection coe�cient is
defined per growth cycle. We can change variables of the
integral in Eq. (S35) from time t to resource concentra-
tion R:

s =

Z 0

R0

[gmut(R) � gwt(R)] · 1

dR/ dt
dR, (S36)
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where we have used the fact that R ranges from R0 at
the beginning of the growth cycle to 0 at the end of the
growth cycle, and that R depends monotonically on t so
that dt/dR = (dR/dt)�1.

To compute this integral, we need to express the tran-
sient resource consumption rate dR/dt as an explicit
function of current resource concentration R. As a first
step, we rewrite the di↵erential equation for resources
(Eq. (S11)) into the product form

d

dt
R(t) = �Nwt(t) + Nmut(t)

Ȳ
(S37)

·

1 � x(t)

Ywt/Ȳ
gwt(R) +

x(t)

Ymut/Ȳ
gmut(R)

�
,

where we use the shorthand Ȳ for the e↵ective biomass
yield (Table S2). This product separates into the joint
biomass Nwt(t) + Nmut(t) and a new parameter, that we
term the e↵ective growth rate:

ḡ(t, R) =
1 � x(t)

Ywt/Ȳ
gwt(R) +

x(t)

Ymut/Ȳ
gmut(R). (S38)

Equation (S37) suggests that this mean of wild-type
and mutant growth rates acts as the e↵ective growth rate
of the joint population Nwt(t) + Nmut(t). This e↵ective
growth rate is time-dependent due to the underlying fre-
quency change x(t). Using this equation for the joint
biomass (derived from Eq. (S12))

Nwt(t) + Nmut(t) =

✓
R0 � R(t) +

N0

Ȳ

◆
Ȳ (t), (S39)

we insert this and the equation for mean growth rate
(Eq. (S38)) into Eq. (S36) for the selection coe�cient:

s =

Z R0

0

✓
gmut(R) � gwt(R)

ḡ(t(R), R)

◆

·
✓

1

N0/Ȳ + R0 � R

◆
dR. (S40)

Equation (S40) is an exact expression but requires full
knowledge of the resource trajectory R(t) and its inverse
t(R) to calculate the mean growth rate ḡ(t(R), R) in the
denominator. For a constant growth rate model (Ta-
ble S1), this exact expression can be computed [5, 6].
However, for general growth models g(R) and the Monod
model in particular, the integral Eq. (S40) can only be
solved under an approximation. Previous work invoked
the assumption of small initial mutant frequency x ⌧ 1
to replace e↵ective growth rate and e↵ective biomass
yield by the wild-type traits [20, 21], but here we in-
troduce a novel approximation that holds for all initial
mutant frequencies.

We assume that the frequency change over the growth
cycle is small, such that the e↵ective growth rate only

depends on the resource concentration

ḡ(R) ⇡ 1 � x

Ywt/Ȳ
gwt(R) +

x

Ymut/Ȳ
gmut(R), (S41)

but not otherwise on time t. That is, we neglect the time
dependence of the mutant frequency x(t). Thus, we get
the explicit integral formula for the selection coe�cient:

s ⇡
Z R0

0

✓
gmut(R) � gwt(R)

ḡ(R)

◆

·
✓

1

N0/Ȳ + R0 � R

◆
dR. (S42)

This equation neglects the frequency change x(t) within
the growth cycle but still includes dependence on the
initial mutant frequency x. One can show that the ap-
proximate integral in Eq. (S42) corresponds to a first-
order expansion of the exact integral (Eq. (S40) in terms
of transient selection coe�cients inside the growth cycle,
meaning that it is equivalent to a weak-selection approx-
imation. We numerically evaluate the accuracy of this
approximation in the case of the Monod model in the
next section (Sec. S8).

The exact selection coe�cient in its integral form
(Eq. (S40)) reveals generic properties of batch-culture
competition. First, there is no direct selection for cell
yield. A mutant with higher e�ciency Ymut but equal
growth response is neutral. Thus, with an uncorrelated
mutation supply, we expect cell yield to evolve neu-
trally [7, 30]. Second, the selection on the growth rate
function g(R) is distributed unequally across concentra-
tions. In the integrand of Eq. (S40), the di↵erence in
growth rates at each resource concentration R is weighted
by the fold-change spectrum 1/(N0/Ȳ + R0 � R). This
weight peaks at the initial resource concentration R0

(see Fig. S13A) and is independent of the growth rate
model g(R). For growth cycles with large fold-change
(R0Y/N0 � 1), the selection coe�cient s roughly cor-
responds to the growth rate di↵erence at initial concen-
trations because most generations occur at near-constant
concentrations close to R0 (compare Fig. S13B).

A third important property holds only approximately
in Eq. (S42), where we see that selection only acts on
ratios of growth rates, since the growth rates appear in
both the numerator and denominator of the integrand.
The dependence on growth rate ratios means that alter-
native growth models can still lead to equivalent selection
on traits. For example, if we take any growth rate model
from Table S1 where the mutant and wild-type di↵er only
in their maximum growth rates gmax (but not other pa-
rameters such as K), then their selection coe�cients will
depend only on the ratio gmax

mut /gmax
wt and not other details

of the specific model.
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S8. CALCULATION OF THE SELECTION
COEFFICIENT FOR THE MONOD MODEL

In this section, we apply the integral formula Eq. (S42)
to calculate the selection coe�cient for a wild-type and
mutant strain competing under the Monod model. Let

�gmax = gmax
mut � gmax

wt , �K = Kmut � Kwt (S43)

denote the absolute trait di↵erences in maximum growth
rate and half-saturation concentration between the two
strains. First, we rewrite the relative growth rate di↵er-
ence

gmut(R) � gwt(R)

ḡ(R)
=

�gmax

ḡmax
(S44)

� �K

R + Z
· gmax

wt gmax
mut

ḡmaxḡmax
,

using the e↵ective maximum growth rate

ḡmax =
1 � x

Ywt/Ȳ
· gmax

wt +
x

Ymut/Ȳ
· gmax

mut (S45)

and the critical resource concentration

Z = KwtKmut ·
hgmax

wt /ḡmax

Ywt/Ȳ
· 1 � x

Kwt
(S46)

+
gmax
mut /ḡmax

Ymut/Ȳ
· x

Kmut

i

as e↵ective traits of the joint population to simplify the
notation (Table S2). Equation (S44) consists of two
terms, one proportional to the di↵erence in maximum
growth rates �gmax and the other proportional to the
di↵erence in half-saturation concentrations �K. There-
fore after substituting this expression into Eq. (S42) and
carrying out the integral over R, we obtain a selection
coe�cient consisting of two distinct components:

s ⇡shigh + slow (S47a)

where

shigh =
�gmax

ḡmax
log

✓
1 +

R0Ȳ

N0

◆
(S47b)

slow = � �K

R0 + N0/Ȳ + Z

✓
gmax
wt

ḡmax

gmax
mut

ḡmax

◆
(S47c)

· log

✓✓
1 +

R0Ȳ

N0

◆✓
1 +

R0

Z

◆◆
.

This is the basis for Eq. (2) in the main text under batch
dynamics.

The formula for the selection coe�cient in Eq. (S42)
is based on an approximation of small frequency change.
In Fig. S14 we compare the approximate selection coe�-
cient against the exact selection coe�cient obtained from
numerically solving the di↵erential equations for batch

dynamics (Eq. (S11)). The simulations show that the
approximate selection coe�cient is accurate up to large
values of order s ⇡ 1. This means that, while we mainly
consider the scenario of weak selection (|s| < 1), the ap-
proximation is excellent even when selection is strong. In-
tuitively, the approximation should break down because
of wrongly estimating the mean resource consumption
rate, which we expect to occur when the yields and real-
ized growth rates di↵er strongly between the two strains.
In Fig. S15 we also show a phase diagram of this selection
coe�cient as a function of the mutant’s traits gmax and
K relative to their wild-type values.

The decomposition in Eq. (S47) is useful because the
terms correspond to components of selection on distinct
phases of growth. The first component, shigh, measures
selection on growth at high resource concentrations, and
is therefore proportional to the mutational change �gmax

in the trait gmax. This mutational e↵ect is weighed by the
logarithm of the total fold-change of growth, which equals
the dilution factor D = R0Y/N0 + 1 (Eq. (S21)). An im-
portant feature of selection shigh is that it depends on
the nominal maximum growth rate gmax, which is always
greater than the realized maximum growth rate g(R0)
that actually occurs at the beginning of growth. There-
fore the calculation of selection from actual growth data
requires an inference of these nominal rates, since the re-
alized rates measured at the beginning of growth curves
could produce misleading results if growth begins at low
resource concentrations [31].

The second component of selection, slow, corresponds
to growth at low resource concentrations, and is propor-
tional to the mutant’s change �K of the half-saturation
K. There is a negative sign in slow since selection
is positive for mutations that decrease K (�K < 0).
For the hypothetical mutant and wild-type in Figs. 1
and 4A,B, shigh = 0 since the mutant does not change
gmax, while slow ⇡ 0.516, since the mutant has a signifi-
cantly lower half-saturation concentration K. In Fig. S16
we show a more complex pair of strains with a gleaner-
opportunist tradeo↵ (one strain has higher gmax but
also higher K), where both components of selection are
nonzero [20, 21, 27, 32].

We also briefly discuss an interpretation for the pa-
rameter Z. The instantaneous selection coe�cient
(Eq. (S30)) within the batch culture growth cycle

�(t) = gmut(R(t)) � gwt(R(t)) (S48)

can be decomposed into two components

� = �max + �lin, (S49a)

where

�max =�gmax R

R + Kwt

R

R + Kmut
, (S49b)

�lin =�a · R
Kwt

R + Kwt

Kmut

R + Kmut
. (S49c)
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Here a = gmax/K is the specific a�nity, and �a is the dif-
ference in specific a�nities between the mutant and the
wild-type. The first component �max quantifies growth
rate di↵erence at excess conditions, where both strains
grow close to their maximum growth rates. The sec-
ond component �lin measures growth rate di↵erences in
the opposite regime, where both strains grow below their
half-saturation concentration. The relative size of the
two components varies shifts with resource concentration
and also depends on the mutation e↵ect on maximum
growth rate and specific a�nity.

The e↵ective parameter Z acts as an intrinsic scale
in the resource dependence. Normalizing for di↵erent
relative mutation e↵ects, both components contribute
equally to growth rate di↵erence exactly at external con-
centration R = Z such that

�max(Z)

�gmax/ḡmax
=

�lin(Z)

�a/ā
, (S50)

where the e↵ective specific a�nity ā is defined (in anal-
ogy with the e↵ective maximum growth rate defined in
Eq. (S45)) as

ā =
1 � x

Ywt/Ȳ
· gmax

wt

Kwt
+

x

Ymut/Ȳ
· gmax

mut

Kmut
. (S51)

This means, at concentration Z both components of the
growth rate di↵erence in Eq. (S49) receive equal selection
pressure.

The decomposition in Eq. (S49) more generally sug-
gests an alternative parametrization of the Monod model
and its selection coe�cient. We can replace the half-
saturation concentration K by the specific a�nity a =
gmax/K. This alternative trait corresponds to the growth
rate in the limit of low resource concentrations where the
Monod model behaves linearly (see Sec. S2). The selec-
tion coe�cient in Eq. (S47) can be rewritten as

s ⇡ smax + slin, (S52a)

where

smax =
�gmax

ḡmax
(S52b)

·
h R0 + N0/Ȳ

R0 + N0/Ȳ + Z
· log

✓
1 +

R0Ȳ

N0

◆

� Z

R0 + N0/Ȳ + Z
· log

✓
1 +

R0

Z

◆i
,

slin =
�a

ā
· Z

R0 + N0/Ȳ + Z
(S52c)

· log

✓✓
1 +

R0Ȳ

N0

◆✓
1 +

R0

Z

◆◆
.

The two parametrizations in terms of the half-
saturation concentration K (Eq. (S47)) or the specific

a�nity a (Eq. (S52)) give the exact same selection coef-
ficient s. To see this, we can insert the identity

�a

ā
� �gmax

ḡmax
=

gmax
wt gmax

mut

ḡmaxḡmax
· ��K

Z
, (S53)

into Eq. (S52) to recover Eq. (S47).
The selection coe�cient maps the life-history traits

to relative fitness, and the parametrization in a is well-
suited to study the structure of this map under envi-
ronmental variation, at least under fixed dilution factor.
Replacing D = 1 + R0Ȳ /N0 in Eq. (S52), we see that
in the limit of larger resource concentrations (R0 � Z),
the selection coe�cient then reduces to the component
of maximum growth:

s ⇡ smax as R0 ! 1. (S54)

In the opposite limit, the selection coe�cient only acts
on the growth rate at low concentrations. In this sense,
the selection coe�cient recovers the limiting behaviour
of the underlying growth response:

s ⇡ slin as R0 ! 0. (S55)

This means that gmax and a are the marginal traits that
exclusively control growth in the limiting environments.
The selection coe�cient (Eq. (S52)) reduces to one com-
ponent or the other. For the parametrization based on
K (Eq. (S47)), this is not true — both gmax and K con-
tribute to s at low resource concentrations under fixed
dilution factor (Fig. S18).

S9. DERIVATION OF THE SELECTION
COEFFICIENT FOR CHEMOSTAT DYNAMICS

For a population in chemostat conditions (Eq. (S26)),
the instantaneous selection coe�cient �(t) (Eq. (S30))
only depends on the di↵erence in growth rates. At a given
resource concentration R(t), this growth rate di↵erence
can be decomposed in to two trait components

� ⇡ �high + �low, (S56a)

where

�high =
�gmax

ḡmax
ḡ(R), (S56b)

�low = � �K

R + Z

gmax
wt

ḡmax

gmax
mut

ḡmax
ḡ(R). (S56c)

We can derive this by multiplying Eq. (S44) with the
e↵ective growth rate for the Monod model

ḡ(R) =ḡmax R

R + Kwt

R

R + Kmut

+ āR
Kwt

R + Kwt

Kmut

R + Kmut
.

(S57)
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The two components �high and �low are consistent with
our results for batch culture conditions (Eq. (S47). By
integrating the instantaneous component �high over the
growth cycle, we recover the component shigh for batch-
culture growth.

We assume a specific scenario for selection in chemo-
stat populations, where mutants arise at small frequency
x on top of a wild-type population. This is plausible if
mutations occur not too frequently, such that the chemo-
stat population is replaced by a mutant and reaches the
new steady state before the next mutation arises. The
wild-type population under steady-state chemostat con-
ditions has a resource concentration given by (Eq. (S28))

R⇤ = Kwt
d

gmax
wt � d

, (S58)

where growth rate matches the dilution factor gwt(R⇤) =
d (Eq. (S27)). After the mutant appears, the resource
concentration R(t) ⇡ R⇤ remains constant over a short
timespan while the mutant still has low frequency x ⌧ 1.
In this time window, the mean growth rate Eq. (S57) is
set by the wild-type only and thus equals the dilution
rate:

ḡ(R⇤) ⇡ d. (S59)

We insert Eq. (S58) and Eq. (S59) into Eq. (S56) to
calculate the selection coe�cient at invasion with small
mutant frequency x ⌧ 1:

�high =
�gmax

gmax
wt

d (S60a)

�low = � ��K

�d�K + Kmutgmax
wt

gmax
mut

gmax
wt

(S60b)

· (gmax
wt � d)d.

Note that if we express this selection coe�cient in terms
of the relative mutation e↵ect �K/Kwt, then the selec-
tion coe�cient is independent of the wild-type trait Kwt

(compare to Fig. S20 for batch culture, where the se-
lection coe�cient increases with Kwt for fixed relative
mutation e↵ect). This has been observed independently
in calculations by Dykhuizen et al. [33], who similarly
decompose the growth rate di↵erence in chemostats. As
in the case of batch dynamics, the chemostat selection
coe�cient in Eq. (S60) can also be rewritten in terms
of the specific a�nity a = gmax/K instead of the half-
saturation concentration K.

S10. DEPENDENCE OF SELECTION ON
RESOURCE CONCENTRATION

In this section, we use the explicit formula for s in
batch culture (Eq. (S47)) to describe how selection varies
with the initial resource concentration R0 of the growth

cycle. For fixed initial biomass N0, there is an opti-
mum concentration that maximizes selection on the half-
saturation concentration K. Figure S17A shows non-
monotonic behavior of slow with initial resource concen-
tration R0 for an example mutation with beneficial e↵ects
on both the maximum growth rate gmax and the half-
saturation K. In particular, this optimum does not rely
on a tradeo↵ between the two traits. Instead, Fig. S17B
demonstrates that slow is the product of two opposing
forces: the overall budget for selection in the growth cycle
(equivalent to number of generations) increases with R0,
but the relative selection pressure on the half-saturation
concentration decreases. We can identify these two fac-
tors from Eq. (S47c) for slow on the half-saturation con-
centration: the selection coe�cient is the product of a
trait term

slow / � �K

R0 + N0/Ȳ + Z

gmax
wt

ḡmax

gmax
mut

ḡmax
, (S61)

which decreases (in magnitude) with R0, and a logarith-
mic term

slow / log

✓✓
1 +

R0Ȳ

N0

◆✓
1 +

R0

Z

◆◆
, (S62)

which increases with R0 via the number of generations
in the growth cycle. The optimum concentration, in gen-
eral, is determined by the wild-type half-saturation con-
centration (compare Fig. S17C). Figure S17D shows how
this causes the distribution of fitness e↵ects to vary in
width non-monotonically with the resource concentration
as well; the width of this distribution is generally propor-
tional to the speed of adaptation [34], which thus also
displays a local maximum and minimum over resource
concentrations.

These e↵ects are not observed in batch dynamics
with fixed-dilution factor, where selection slow decreases
strictly monotonically with resource concentration. The
same example mutation in Fig. S18 reaches peak selec-
tion at the lowest nutrient concentration R0. Intuitively,
the fixed dilution factor D means the total budget for
selection (number of generations) is independent of the
initial concentration R0 and low concentrations mean a
larger fraction of time spent in deceleration, but not fewer
generations.

S11. MODEL OF EVOLUTIONARY DYNAMICS
UNDER STRONG-SELECTION

WEAK-MUTATION

We can map the dynamics of the mutant frequency
over batch growth cycles to the Wright-Fisher model of
population genetics, where each batch growth cycle cor-
responds to a discrete time step [5, 35]. First, we assume
the mutation arises only at the beginning of the growth
cycle at frequency 1/Ne, where Ne is the bottleneck pop-
ulation size measured in number of cells. Let s(x) be the
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selection coe�cient for the mutant over a whole batch
growth cycle, with explicit dependence on the frequency
x of the mutant at the beginning of the cycle. In the
limit of large population size (Ne � 1) and weak selec-
tion (|s(x)| ⌧ 1), the fixation probability for the mutant
is [36]

p(s) =

R 1/Ne

0 exp
�
�2Ne

R x
0 s(y) dy

�
dx

R 1
0 exp

�
�2Ne

R x
0 s(y) dy

�
dx

. (S63)

However, if the selection coe�cient s(x) is approximately
constant over mutant frequencies x, we can simplify this
to

p(s) =
1 � e�2s

1 � e�2Nes
. (S64)

We briefly describe the scheme for simulating trait
evolution. In general, a mutation can change both growth
traits

gmax
mut = (1 + �) · gmax, (S65)

Kmut = (1 + ) · K, (S66)

where � is the mutation e↵ect on the wild-type maximum
growth rate gmax and  is the relative e↵ect on the half-
saturation concentration K. Given the absence of corre-
lation between gmax and K for autotrophs on phosphate,
nitrate and ammonium (Figs. 3C–D, S10E) and for het-
erotrophs on glucose (Figs. 3F, S10G), we assume that
mutations a↵ect K independently of maximum growth
rate (� = 0). We simulate evolutionary trajectories of
the half-saturation concentration K by first randomly
sampling a mutation e↵ect  from a uniform distribu-
tion on the interval (�0.1, 0.1). We then calculate the
selection coe�cient of this mutation using Eq. (S47) and
the fixation probability according to Eq. (S64). We ran-
domly accept or reject the mutation according to this
probability, and then the cycle repeats with a new muta-
tion (Fig. S19). We also test the e↵ect of frequency-
dependence selection using the fixation probability of
Eq. (S63), but Fig. S22D-F shows that it does not no-
ticeably a↵ect evolution of the half-saturation concentra-
tion.

S12. DERIVATION OF SELECTION-DRIFT
BALANCE CONDITION

In the limit of weak selection (s ⌧ 1), we can expand
Eq. (S64) to leading order in s:

p(s) ⇡ 1

Ne
+

✓
1 � 1

Ne

◆
s, (S67)

where the first term captures the probability of fixation
due purely to demographic fluctuations (genetic drift),

while the second term captures the correction due to se-
lection. The balance between selection and drift therefore
occurs when these two contributions are approximately
equal, which gives us s ⇡ 1/Ne (Eq. (3) from the main
text) under the additional assumption that Ne is large.

Now we consider the e↵ect of a mutation arising at
some intermediate time t during a growth cycle. Since at
this time there are Nwt(t) wild-type cells, the initial fre-
quency of the mutant is 1/Nwt(t), and the amount of re-
maining resources is R(t) = R0 � (Nwt(t)�Nwt(0))/Ywt.
Therefore the frequency of the mutant at the end of this
cycle is

x(t) =
es(t)

es(t) + Nwt(t) � 1
, (S68)

where s(t) is the selection coe�cient for this mutant aris-
ing at time t, assuming a growth cycle that starts when
the mutation arises (so we use R(t) as the initial amount
of resources and Nwt(t) as the initial population size).

Let p(t) be the probability that this mutant ultimately
fixes. This is the probability that n mutant cells survive
the transfer, multiplied by the probability those mutants
fix, averaged over all possible n:

p(t) =
NeX

n=0

✓
Ne

n

◆
(x(t))n (1 � x(t))Ne�n

✓
1 � e�2ns(0)

1 � e�2Nes(0)

◆

⇡
NeX

n=0

✓
Ne

n

◆
(x(t))n (1 � x(t))Ne�n

·
✓

n

Ne
+ n

✓
1 � n

Ne

◆
s(0)

◆

=x(t) [1 + (Ne � 1)s(0)(1 � x(t))]

⇡ 1

Nwt(t)
+

✓
Ne � 1

Nwt(t)

◆✓
Nwt(t) � 1

Nwt(t)

◆
s(0)

+

 
Nwt(t) � 1

[Nwt(t)]
2

!
s(t),

(S69)

where we have invoked the weak-selection approxima-
tion to the fixation probability (Eq. (S67)) on the sec-
ond line, evaluated moments of the binomial distribution
on the third line, and then expanded the frequency x(t)
(Eq. (S68)) to leading order in s(t) on the last line. By
neglecting terms that are higher-order in 1/Nwt(t) and
s(t), we obtain

p(t) ⇡ 1

Nwt(t)
+

✓
Ne � 1

Nwt(t)

◆
s(0). (S70)

Note that this only depends on the selection coe�cient
of the mutant starting at the beginning of the cycle; to
leading order there is no dependence on the selection co-
e�cient during that first cycle s(t). If we calculate the
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condition for selection-drift balance as before, we obtain
s(0) ⇡ 1/Ne as before. That is, the dependence on the
wild-type population size at which the mutant first arises
Nwt(t) is irrelevant to the selection-drift balance. There-
fore mutations arising during growth cycles have no e↵ect
on the selection-drift balance condition to leading order.

S13. THE EVOLVED HALF-SATURATION
CONCENTRATION AT SELECTION-DRIFT

BALANCE

In this section, we calculate the evolved half-saturation
concentration Kevo as a function of environmental con-
centration R0 and e↵ective population size Ne. We as-
sume mutations have a maximum relative e↵ect |max| =
|�K/Kwt| on the half-saturation concentration, but no
e↵ect on maximum growth rate or biomass yield. To
keep the notation more readable, we are going to drop
the subscript ’wt’ in the following. The maximum possi-
ble selection coe�cient for any mutant on the background
of a wild-type trait K is thus

slow =|max|
 

K
R0

(1 + max)
K
R0

+ 1 + N0
R0Y

!
(S71)

· log

"✓
1 +

R0Y

N0

◆ 
1 +

1

(1 + max)
K
R0

!#
,

where we have rewritten the selection coe�cient
(Eq. (S47)) in terms of the ratio K/R0 between the
wild-type half-saturation concentration and the initial re-
source concentration. Note that we write Y for the wild-
type biomass yield, which remains unchanged throughout
evolution.

To simplify Eq. (S71), we assume that the maximum
mutation e↵ect is small (|max| ⌧ 1), the value of the
half-saturation concentration K relative to the initial re-
source concentration is small (K/R0 ⌧ 1), and the fold-
change over the growth cycle is large (R0Y/N0 � 1).
This is true for growth cycles in typical laboratory evo-
lution experiments, with typical dilution factors between
D = 100 [37] and D = 1500 [38]. We therefore approx-
imate the selection coe�cient in Eq. (S71) by keeping
only leading-order terms in these parameters:

slow ⇡ |max|
K

R0
log

✓
R0Y/N0

K/R0

◆
. (S72)

The evolved half-saturation concentration Kevo is de-
fined as the value of the half-saturation K such that the
selection coe�cient for a mutation on this half-saturation
equals the fixation probability of a neutral mutation. We
must therefore also assume that the maximum strength
of selection, which occurs for large K, is greater than
the neutral fixation probability (Fig. S20A). In the limit
of small |max| and large R0Y/N0, the maximum selec-
tion coe�cient is |max| log(R0Y/N0), and so this must

be greater than 1/Ne. To solve for Kevo, we then set the
selection coe�cient in Eq. (S72) equal to 1/Ne (using
Eq. (3)) and solve to obtain

Kevo ⇡ � R0

Ne|max|W�1

⇣
� 1

Ne|max|R0Y/N0

⌘ , (S73)

where W�1(z) is the �1 branch of the Lambert W func-
tion, defined as the solution of the equation yey = z for
�e�1  z < 0 [39]. The latter condition is met since the
argument of the W function, �1/(Ne|max|R0Y/N0) is
certainly less than zero, but also

� 1

Ne|max|R0Y/N0
� � 1

Ne|max|e log (R0Y/N0)

> � 1

e
,

(S74)

where on the first line we have used the fact that
e log(R0Y/N0)  R0Y/N0 and on the second line we have
used Ne|max| log(R0Y/N0) > 1 from our previous as-
sumption that the maximum strength of selection is big-
ger than genetic drift. We can further simplify Eq. (S73)
using the approximation W�1(z) ⇡ log(�z) for |z| ⌧ 1,
which gives us Eq. (4) in the main text.

We note that this calculation does not work for the
chemostat selection coe�cient (Eq. (S60)) since it does
not depend on the wild-type trait Kwt outside of the
relative mutation e↵ect �K/Kwt. Therefore the selec-
tion coe�cient does not decrease as K evolves lower, and
there is no selection-drift balance.

S14. EVOLUTION TO SELECTION-DRIFT
BALANCE FOR THE SPECIFIC AFFINITY

In this section we repeat our evolutionary analysis us-
ing the specific a�nity a = gmax/K, instead of the half-
saturation concentration K, as the focal trait for muta-
tion and selection. First we simulate evolution in the
SSWM regime, then we predict the evolved trait from a
selection-drift balance condition and derive a scaling re-
lationship with resource concentration R0 and e↵ective
population size Ne. In combination with the maximum
growth rate gmax, the specific a�nity a gives an alter-
native parametrization of the Monod model of growth.
Equation (S52) decomposes the total selection coe�cient
s in batch culture, where the component slin captures the
trait di↵erences in the specific a�nity a = gmax/K.

We assume mutations have a relative e↵ect ↵ on the
specific a�nity

amut = (1 + ↵) · a, (S75)

but leave the maximum growth rate gmax and biomass
yield Y unchanged. The e↵ect size ↵ is sampled at
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random from a uniform distribution on the interval
(�↵max, ↵max) for some value ↵max > 0. This means a
single mutation can increase the specific a�nity at most
by a fixed fraction ↵max. This set of assumptions mir-
rors the evolutionary simulations carried out for the half-
saturation K. We simulate the trait evolution over long
times, where each new mutation either fixes or goes ex-
tinct before the next mutation arises.

Figure S23 shows that evolution of the specific a�n-
ity a = gmax/K leads to behavior that is analogous to
when mutations target the half-saturation concentration
K: the specific a�nity a evolves upwards over succes-
sive mutations, improving the growth rate at low con-
centration, but eventually the trait a stalls in adaptation
around an upper limit. The limiting value depends on
the e↵ective population size Ne between transfers (com-
pare panels in Fig. S23). Following the same reasoning as
in Sec. S13, we define the evolved trait aevo as the trait
value where selection-drift balance is achieved:

slin =
1

Ne
. (S76)

Figure S23 shows that the simulated trajectories are pre-
dicted well by Eq. (S76), which we solve numerically for
specific a�nity aevo at selection-drift balance.

We follow the same steps as in Sec. S13 to derive a
similar scaling relationship for aevo as a function of the
resource concentration R0 and the e↵ective population
size Ne. The maximum possible selection coe�cient for
any mutation on the background of a wild-type trait a is

slin =↵max

0

@
gmax

aR0

(1 + ↵max)
⇣
1 + N0

R0Y

⌘
+ gmax

aR0

1

A (S77)

· log

✓
1 +

R0Y

N0

◆✓
1 +

aR0

gmax
(1 + ↵max)

◆�
,

where we have rewritten the selection component
(Eq. (S52c)) in terms of the ratio gmax/(aR0) = K/R0

between the wild-type traits and the initial resource con-
centration. To simplify Eq. (S77), we assume that the
maximum mutation e↵ect is small (↵max ⌧ 1), the fold-
change over the growth cycle is large (R0Y/N0 � 1), and
the evolved value of the specific a�nity a is large relative
to the initial resource concentration (gmax/(aR0) ⌧ 1).
This last assumption is equivalent to assuming a highly-
adapted half-saturation concentration (K/R0 ⌧ 1), just
as we did in Sec. S13. We thus approximate the selection
coe�cient in Eq. (S77) by keeping only the leading-order
terms in these parameters:

slin ⇡ ↵max
gmax

aR0
log

✓
R0Y/N0

gmax/(aR0)

◆
. (S78)

The evolved specific a�nity aevo is defined as the value
of the specific a�nity such that the selection coe�cient
for a mutation on this trait value equals the fixation prob-
ability of a neutral mutation. Again, we must assume

that the maximum strength of selection, which occurs for
small a, is greater than the neutral fixation probability
(Fig. S20B). In the limit of small ↵max and large R0Y/N0,
the maximum selection coe�cient is ↵max log(R0Y/N0)
so this must be greater than 1/Ne. To calculate aevo,
we then set the selection coe�cient in Eq. (S78) equal to
1/Ne and solve to obtain

aevo ⇡ �gmax Ne↵max

R0

· W�1

✓
� 1

Ne↵maxR0Y/N0

◆
, (S79)

where W�1(z) is the �1 branch of the Lambert W func-
tion, introduced above in Eq. (S73). Just as before, we
confirm that the evolved trait aevo is confined to this
solution branch and use the approximation W�1(z) ⇡
log(�z) to arrive at the final scaling relationship

aevo ⇡ gmax Ne↵max

R0
log

✓
Ne↵max

R0Y

N0

◆
, (S80)

which is the analogous result to Eq. (4) in the main text.
How does the evolved specific a�nity aevo (Eq. (S79))

compare to the evolved half-saturation concentration
Kevo (Eq. (S73))? They are mathematically equivalent
if the mutation e↵ects sizes ↵max and |max| are equal.
That is, if we express the relation amut = a(1+↵max) for
the mutation e↵ect on a as gmax

mut /Kmut = (gmax/K)(1 +
↵max), and then use the fact that gmax is unchanged by
the mutation (gmax

mut = gmax), we then get

Kmut =
K

1 + ↵max

⇡ (1 � ↵max) · K,
(S81)

which, compared with the definition of  = (Kmut �
K)/K, shows that ↵max = |max| when both are small.

Altogether this shows that focusing on specific a�n-
ity a leads to equivalent evolutionary outcomes as fo-
cusing on the half-saturation concentration K, including
the dependence on the resource concentration R0 and
the mode of population dynamics (fixed-bottleneck or
fixed-dilution batch dynamics, or chemostat dynamics).
This makes sense since mutations that a↵ect a but leave
gmax constant must therefore only a↵ect K, and thus the
only di↵erence between these approaches is the choice of
mathematical parameterization. We can also speculate
what would happen if mutations a↵ect both the maxi-
mum growth rate gmax and the specific a�nity a simul-
taneously (but assuming no correlation in e↵ects). We
expect that the maximum growth rate will evolve to the
highest physiologically-feasible value, which will serve as
the e↵ective maximum growth rate to convert between
a and K. Intuitively, this would still lead to identical
selection-drift balance for the half-saturation concentra-
tion K and the specific a�nity a.
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S15. EFFECT OF EVOLVED
HALF-SATURATION CONCENTRATION

VALUES ON MEASUREMENT APPROACHES

In the main text we present a survey of empirical values
for the half-saturation concentration K, as well as an evo-
lutionary model suggesting that K should generally be
much smaller than the concentration of the correspond-
ing resource in the evolutionary environment. Here we
explore what these values of K mean for three approaches
to measuring K under laboratory conditions.

A. Inferring half-saturation concentrations under
chemostat growth

Arguably the most direct approach to measuring K is
to use a chemostat (Sec. S5). This setup takes an inverse
approach to the Monod model relation in Eq. (1): instead
of varying the resource concentration R and measuring
the growth rate g, as suggested by the functional form
of the model, we vary the growth rate (by controlling
the dilution rate d, which must equal the growth rate g
in steady state) and measure the corresponding resource
concentration R. We first identify the maximum growth
rate gmax by gradually increasing the dilution rate d until
the population collapses; the maximum dilution rate that
the population can sustain equals the maximum growth
rate gmax. Then we set the dilution rate to half the maxi-
mum growth rate (d = gmax/2) and measure the resource
concentration at this state, which by definition of the
Monod model (Eq. (1)) must equal the half-saturation
concentration K.

In light of what we know about typical values of the
half-saturation concentration K, what challenges does
this pose for such measurements? We must either di-
rectly measure resource concentrations in the medium
around the value K (which may be di�cult depending
on the sensitivity of such a measurement), or infer the
resource concentration from the biomass concentration
N⇤ = (Rsource � K)Y (Eq. (S29)) In the latter case, we
would also need to know the source concentration Rsource

we are supplying to the culture as well as the yield Y .
However, we are not limited by low biomass concentra-
tions in the chemostat, as we can arbitrarily increase the
biomass concentration by increasing the source concen-
tration Rsource. For example, for E. coli on glucose, the
half-saturation concentration is K ⇠ 10 µM (Fig. 2B),
the yield is Y = 3.3 ⇥ 108 cells/µmol [30], and a typical
laboratory concentration of glucose to provide could be
Rsource = 11000 µM (0.2% w/v). In this case the concen-
tration of E. coli would be 3.6 ⇥ 109 cells/mL, which is
high enough to easily measure through di↵erent standard
techniques. For example, this cell density corresponds to
an optical density (OD) of approximately 3.6 (using 1 OD
= 109 cells/mL, for wavelengths of 600 nm and a path
length of 1 cm), which is easily measured in a standard
spectrophotometer.

B. Inferring half-saturation concentrations under
batch growth using the initial growth rate

A second approach uses cultures under batch growth.
This takes a direct approach to the Monod model com-
pared to the chemostat: we vary the initial concentration
of the resource over some range around the concentration
K and measure the initial growth rate of the biomass as
a function of these concentrations. We then fit this data
to the Monod model (Eq. (1)) and infer the concentra-
tion K. Note that this assumes that the population can
rapidly adjust its growth rate to the external resource
concentration, so that the measurement is not biased by
the previous state of the culture (e.g., under starvation).

To fit the Monod response, we need to perform this
experiment with initial resource concentrations R0 that
are around the value of K. The total biomass concen-
tration at the end of such a batch growth cycle would be
KY + N0, where N0 is the initial biomass concentration.
Using the previous example of E. coli on glucose, the
biomass concentration KY is approximately 3.3 ⇥ 106

cells/mL, which corresponds to an OD of 3.3 ⇥ 10�3.
However, to measure growth, we must start at a concen-
tration at least 10–100 times lower than this to have a suf-
ficiently large dynamic range of the biomass to accurately
measure the growth rate. This range of concentrations
is too low to be detected on typical spectrophotometers,
which usually have a lower limit of 10�3 to 10�2 OD, so
only methods with greater sensitivity to low concentra-
tions (e.g., colony counting on plates or luminescence)
would be suitable. In this case, note that the di�culty
with measuring K this way is not due to its magnitude
relative to a typical glucose concentration R, but that the
biomass produced by this resource concentration (KY )
is low compared to the lower limit of typical detection
methods.

C. Inferring half-saturation concentrations under
batch dynamics using the deceleration into

starvation

The third approach also uses batch cultures, but in-
stead of considering how the initial growth rate varies
with initial resource concentration, we use a fixed initial
resource concentration R0 and infer K from how growth
rate spontaneously decelerates into starvation at the end
of the growth cycle. Equation (S11) defines the ODEs for
batch growth with a wild-type and mutant strain. If we
simplify this to a single strain, insert the Monod model
for growth rate (Eq. (1)), and integrate the resource con-
sumption equation (to express resource R(t) in terms of
biomass N(t), as in Eq. (S12)), we obtain a single non-
linear ODE for the biomass concentration:

d

dt
N(t) = gmax R0 � N(t)/Y

R0 � N(t)/Y + K
N(t). (S82)
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In principle we can fit this ODE to time-series data for
the biomass concentration N(t) (the growth curve) and
infer the half-saturation concentration K.

Intuitively, though, this only works if the growth curve
has enough data during the deceleration phase of growth
where the half-saturation K is relevant; see Fig. S24 for
a schematic example. Previous work has studied this
as a problem of statistical estimation, calculating pa-
rameter sensitivities to identify the optimum measure-
ment concentration and discussing variable transforma-
tions to simplify the regression (see Robinson [40] for an
overview). The basic conclusion is that the initial re-
source concentration R0 must be near the value of the
half-saturation concentration K itself for the fit to work
robustly.

We can justify the intuition for this conclusion as fol-
lows. If the initial resource concentration R0 is instead
much greater than the half-saturation concentration K,
then the fold-change during deceleration will be too small
to provide su�cient dynamic range for a fit. That is, de-
celeration approximately begins at the time tdecel when
R(tdecel) = K, so that the biomass concentration is
N(tdecel) = N0 + (R0 � K)Y . Since the final biomass
concentration at saturation is N(tsat) = N0 + R0Y , the
fold-change during deceleration is therefore

N(tsat)

N(tdecel)
=

N0 + R0Y

N0 + (R0 � K)Y

= 1 +
K
R0

1 � K
R0

+ N0
R0Y

.

(S83)

However, if R0 is much larger than K, then this fold-
change is approximately 1 + K/R0, meaning that it is
very close to 1 (corresponding to no growth during decel-
eration). Visually, this appears as a growth curve with an
abrupt transition from the maximum growth rate gmax to
zero growth (inset of Fig. 4). Since typical concentrations
of many resources (such as glucose) used in the labora-
tory are indeed much larger than the K half-saturation
concentrations, this is why these growth curves usually
do not contain useful data on the half-saturations K.

On the other hand, if R0 is much less than K, then the
growth dynamics are approximately logistic:

d

dt
N(t) ⇡ gmax R0

K
N(t)

✓
1 � N(t)

R0Y

◆
, (S84)

which we obtain similarly with Eq. (S82) but in the limit
R0 ⌧ K. In this case, one can only infer the combined
parameter gmaxR0/K from the growth curve and not the
half-saturation concentration K by itself. Therefore the
half-saturation K can only be inferred from the growth
curve if the initial concentration R0 is around the value
of K itself. However, this is the same parameter regime
as needed for the previous method of inferring K from
the initial growth rates, and thus it poses the same prac-
tical challenges, such as sensitivity to very low biomass
concentrations.
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FIG. S1. Historical trends of half-saturation concentration measurements. The number of measured half-saturation
concentrations K published in peer-reviewed journals aggregated by year, based on our literature survey (Dataset S1). Colors
indicate the number of measurements for individual resources.

(A) (B)
E. coli on glucosecomplete dataset

FIG. S2. Comparison of technical covariates for the half-saturation concentration. (A) Linear regressions of
technical covariates against half-saturations log10 K from the complete dataset (Fig. 2A), with degrees of freedom (df), number
of data points (n), and p-values indicated. Each bar represents a separate regression fit, where R2 measures the variation
explained by a single variable as predictor for the half-saturation concentration. (C) Linear regressions of technical covariates
against glucose half-saturations log10 K for all E. coli measurements (shown in Fig. 2B).
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FIG. S3. Comparison of half-saturation measurements with and without acclimation. (A) Empirical half-
saturation concentrations for glucose, grouped by taxon (only those with at least two measurements). The data shown here are
identical to Fig. 2B, but colors indicate which measurements included a phase of acclimation (red). We infer acclimation from
the type of experiments used to measure the half-saturation concentration: For batch solid culture, growth rate is inferred from
the area increase of single cell colonies on agar plates. For batch experiments, the growth rate is observed from exponential phase
of a liquid culture with varying initial resource concentration. For chemostat experiments, the residual resource concentration
is observed in steady state with varying growth rate by tuning the rate of liquid outflow. For serial transfer experiments,
the growth is only measured in exponential phase after multiple transfers. We consider measurements to be acclimated if
they derive from chemostat or serial transfer experiments. (B) Covariation between maximum growth rate gmax and glucose
half-saturation K for isolates of E. coli. The data shown here are identical to E. coli data points in Fig. 3F. We calculate
the Spearman rank correlation ⇢ and p-value across all isolates with acclimation (red dots). (C) Pairwise comparison of half-
saturation measurements before and after acclimation. We identify a subset of publications in our database (see legend) which
have explicitly tested the e↵ect of acclimation. Each publication has two measurements for the organism’s half-saturation
concentration K which we report together with full citations in our database (Dataset S1). A black diagonal line indicates
exact match between measurements with and without acclimation, with diagonal lines in dashes (y = 10x) and dots (y = 0.1x)
as visual guides for the eye.
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subset of taxonomic groups on nitrate subset of taxonomic groups on ammonium
(A) (B)

subset of taxonomic groups on nitrate subset of taxonomic groups on ammonium(C) (D)

FIG. S4. Survey of half-saturation concentrations and specific a�nities for nitrate and ammonium in our
survey. (A) Subset of K measurements from Fig. 2A for nitrate, grouped by taxon (only those with at least two measurements).
Symbols are the same as in Fig. 2A: Color indicates whether the organism is a prokaryote (green) or eukaryote (orange), and
shape indicates whether the organism can grow as an autotroph (square) or only as a heterotroph (circle). We use the taxonomic
identity given in the original publications, where an ending in sp. means the isolate is a representative of the genus but was
not identified at the species level. (B) Subset of K measurements from Fig. 2A for ammonium, grouped by taxon (with at
least two measurements). (C) Subset of gmax/K measurements from Fig. S9A for nitrate, grouped by taxon (with at least
two measurements). (D) Subset of gmax/K measurements from Fig. S9A for ammonium, grouped by taxon (with at least two
measurements).
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E. coli on glucose by substrain
(A) (B) (C)

FIG. S5. Variation in glucose half-saturation concentrations by experiment type and substrain label. Subset
of data from Fig. 2B for E. coli on glucose, with di↵erent strains separated. The strains ML 30 and ML 308 were derived
from a natural isolate in human feces by Jacques Monod in 1946 and di↵er in their genes for lactose utilization [41]: the lacI
repressor is non-functional in ML 308. We only show substrains with two or more measurements from the data. The three
panels show the same data but are colored according to (A) publication, (B) temperature, and (C) experimental method (batch
or chemostat).
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(A)
subset of taxonomic groups on glucose subset of taxonomic groups on phosphate subset of taxonomic groups on silicate

(C)

(D)
subset of taxonomic groups on nitrate subset of taxonomic groups on ammonium

(E)

(B)

FIG. S6. Survey of maximum growth rates in our survey grouped by resource and taxon. (A) Subset of
gmax measurements from Fig. 3A for glucose, grouped by taxon (only those with at least two measurements). Symbols are the
same as in Fig. 3A: Color indicates whether the organism is a prokaryote (green) or eukaryote (orange), and shape indicates
whether the organism can grow as an autotroph (square) or only as a heterotroph (circle). We use the taxonomic identity given
in the original publications, where an ending in sp. means the isolate is a representative of the genus but was not identified
at the species level. (B) Subset of gmax measurements from Fig. 3A for phosphate, grouped by taxon (with at least three
measurements). Note that we use a logarithmic scale on the y-axis, since this comparison includes both heterotroph isolates
(circles) and autotroph isolates (squares) which di↵er by an order of magnitude in their growth rate. (C) Subset of gmax

measurements from Fig. 3A for silicate, grouped by taxon (with at least two measurements). (D) Subset of gmax measurements
from Fig. 3A for nitrate, grouped by taxon (with at least two measurements). (E) Subset of gmax measurements from Fig. 3A
for ammonium, grouped by taxon (with at least two measurements).
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FIG. S7. Comparison of technical covariates for maximum growth rate and specific a�nity. (A) Linear
regression of technical covariates against maximum growth rate on glucose gmax for all E. coli measurements, with degrees of
freedom (df), number of data points (n), and p-values indicated. We follow the same analysis as in Fig. S2B, but using gmax as
the target variable for regression (no log transform). (B) Linear regression of technical covariates against the specific a�nity
log10(g

max/K) on glucose for all E. coli. The set of underlying isolates is identical to panel A. Here we use the log-transformed
maximum growth rate log10 g

max as a predictor, to compare the contributions of variation in log10 g
max and variation in log10 K

to the total variation in log10(g
max/K). The fraction of variation R2 explained by log10 g

max is too small to be visible.
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FIG. S8. Covariation of Monod growth traits with experiment temperature. (A) Covariation of the half-saturation
concentration K with the experiment temperature reported in the original publication. Some publications in our survey did
not report temperature, so this plot has fewer data points than the full dataset (compare Fig. 2A). We compute the Spearman
rank correlation ⇢ and p-value across all resources. Colors indicate the limiting resource, with the number of measurements n in
parentheses. Marker shape separates isolates with an autotroph lifestyle (squares) from heterotrophs (circles). (B) Covariation
of the half-saturation concentration K with experiment temperature for all autotrophs (subset of points from panel A). (C)
Covariation of the half-saturation concentration K with experiment temperature for all heterotrophs (subset of points from
panel A). (D) Covariation of the maximum growth rate gmax with experiment temperature. The data shown is less than in
panel A, since some publications did not report maximum growth rate. (E) Covariation of the maximum growth rate gmax

with experiment temperature for all autotrophs (subset of points from panel D). (F) Covariation of the maximum growth rate
gmax with experiment temperature for all heterotrophs (subset of points from panel D). (F) Covariation of the specific a�nity
gmax/K with experiment temperature. We compute the specific a�nity for all isolates with maximum growth rate in panel D.
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FIG. S9. Survey of specific a�nities. (A) Variation in specific a�nity a = gmax/K for the microbial isolates in our survey.
For each isolate, we compute the trait value from the maximum growth rate gmax (Fig. 3A) and half-saturation concentration
K (Fig. 2A). Each point represents a di↵erent measurement; color indicates whether the organism is a prokaryote (green) or
eukaryote (orange), and shape indicates whether the organism can grow as an autotroph (square) or only as a heterotroph
(circle). The set of isolates shown here is fewer than in the total dataset, since some publications only reported the half-
saturation concentration K and not the maximum growth rate gmax. (B) Subset of K measurements from panel A for glucose,
grouped by taxon (only those with at least two measurements). We use the taxonomic identity given in the original publications,
where an ending in sp. means the isolate is a representative of the genus but was not identified at the species level. Symbols
are the same as in panel A. (C) Subset of K measurements from panel A for phosphate, grouped by taxon (with at least three
measurements). (D) Subset for silicate, grouped by taxon (with at least two measurements). Compare also additional plots
with gmax/K measurements for nitrate (Fig. S4C) and ammonium (Fig. S4D).
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FIG. S10. Covariation of Monod growth traits for autotroph and heterotroph isolates. (A) Covariation
of half-saturation concentration K with maximum growth rate gmax for all heterotrophs (subset of points from Fig. 3B).
We compute the Spearman rank correlation ⇢ and p-value across all resources. Colors indicate the limiting resource, with
the number of measurements n in parentheses. (B) Covariation of specific a�nity gmax/K with gmax for all heterotrophs
(subset from Fig. S11A). (C) Covariation of half-saturation concentration with maximum growth rate for all autotrophs (subset
from Fig. 3B). (D) Covariation of specific a�nity with maximum growth rate for all autotrophs (subset from Fig. S11A).
(E) Covariation of half-saturation concentration with maximum growth rate for ammonium only (subset from panel C). See
Fig. 3C–E for phosphate, nitrate, and silicate. (F) Covariation of specific a�nity with maximum growth rate for ammonium only
(subset from panel D). See Fig. S11B–D for phosphate, nitrate, and silicate. (G) Covariation of half-saturation concentration
with maximum growth rate for glucose only (subset from panel A). See Fig. 3F for covariation within species. (H) Covariation
of specific a�nity with maximum growth rate for glucose only (subset from panel B). See Fig. S11D for covariation within
species.
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FIG. S11. Covariation between maximum growth rate and specific a�nity by resource. (A) Covariation of maxi-
mum growth rate gmax and specific a�nity gmax/K across all resources and isolates (from Fig. S9A). Marker shapes distinguish
autotrophs (squares) from heterotrophs (circles); colors indicates the limiting resource, with the number of measurements n
given in parentheses. We compute the Spearman rank correlation ⇢ and p-value across the pooled set of isolates. (B) Subset
of measurements from panel A for phosphate (only autotroph isolates shown). (C) Subset of measurements from panel A for
nitrate. (D) Subset of measurements from panel A for silicate. (E) Covariation between maximum growth rate gmax and glucose
specific a�nity gmax/K for measurements of E. coli (green) and S. cerevisiae (orange), with Spearman rank correlations ⇢ and
p-values by species.
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FIG. S12. Covariation between uptake and growth rate parameters for phosphate based on the phytoplankton
trait database by Edwards et al. [42]. (A) Covariation between the half-saturation concentration k for uptake rate and the
half-saturation concentration K for growth rate (Eq. (1)). The dashed diagonal line indicates perfect agreement (x = y), and
we calculate the Spearman rank correlation ⇢ with p-value. We show all data points from Edwards et al. [42] which included
half-saturation concentrations for uptake and growth rate. These data points are for phosphate as the limiting resource.
(B) Covariation between maximum uptake rate vmax in the Michaelis-Menten model and the maximum growth rate gmax in
the Monod model, with Spearman rank correlation ⇢ and p-value. The data shown here corresponds to the same measurements
as in panel A but with one fewer data point, since one isolate lacked the measurement for maximum growth rate. Color and
marker shape are equivalent to Fig. 2A and indicate that the subset of data shown here includes only eukaryotic organisms
(orange fill) capable of autotrophy (square shape).
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FIG. S13. Selection within a batch growth cycle. (A) The fold-change spectrum (thick lines) throughout the growth cycle
for high and low initial concentration R0 (dotted lines). Curves are computed from the weight term in Eq. (S42) with e↵ective
biomass yield Ȳ = 1 and N0 = 0.01. (B) The transient resource concentration, starting from di↵erent initial concentrations,
versus generations of biomass growth (gray lines). The lowest line (R0 = 1) corresponds to the resource trajectory for the
selection scenario used for the phase diagram in Fig. S15. The transient resources are converted into generations using the
equations for resource consumption, assuming an identical biomass yield Y = 1 for both strains and initial biomass N0 = 0.01.
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FIG. S14. Test of the selection coe�cient approximation. The predicted selection coe�cient across a sample of wild-type
and mutant strains, compared to the selection coe�cient (Supplementary Information Sec. S6) from simulation of the di↵erential
equations (Supplementary Information Secs. S3 and S4). The black diagonal line indicates perfect agreement between simulation
and prediction. We draw the wild-type traits over four orders of magnitude and sample relative mutant e↵ects on maximum
growth rate, half-saturation concentration, and biomass yield from a cubic region in trait space: [�0.5, 0.5]3. Each strain pair
is systematically evaluated at di↵erent initial frequencies x = 0.01, 0.5, 0.99 using the general Eq. (S47) and contributes three
data points. Without loss of generality, we fix the initial biomass to N0 = 0.01 and initial resource concentration to R0 = 1.
The trait values for the half-saturation concentration K span two orders of magnitude around this concentration such that we
cover both limiting scenarios with dominant selection on maximum growth rate (R0 � K) and half-saturation concentration
(R0 ⌧ K).

deleterious mutation

beneficial mutation

FIG. S15. Diagram of selection across mutation e↵ects under batch growth. The space of mutation e↵ects on
maximum growth rate � = (gmax

mut �gmax
wt )/gmax

wt and half-saturation concentration  = (Kmut�Kwt)/Kwt relative to a wild-type
strain (central dot), with green marking the space of mutations that are overall beneficial (s > 0) and red marking mutations
that are overall deleterious (s < 0) according to Eq. (S47).
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FIG. S16. The gleaner and opportunist strategies in the Monod growth model. (A) The growth rate g(R) as a
function of the external resource concentration R for two strains with a tradeo↵. The opportunist strain (green) has a higher
maximum growth rate gmax = 1.5 compared to the gleaner strain (orange) with gmax = 1. But the gleaner has the growth
rate advantage at low concentrations due to a smaller half-saturation concentration K = 0.5 (orange dotted line) relative to
the opportunist with K = 10 (green dotted line). (B) A single growth cycle for the gleaner and opportunist strain pair from
panel A in competition. We simulate the population dynamics according to Eq. (S11), starting from an initial mutant frequency
x = 0.5 and total initial biomass N0 = 0.01. On a separate axis, the transient resource concentration R (gray line, initial value
R0 = 24) and in the panel title, the components of selection as computed from Eq. (S47).
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FIG. S17. Selection dependence on resource concentration under fixed-bottleneck batch dynamics. (A) Depen-
dence on external resource concentration R0 of the total selection coe�cient (purple) and its two components at high (shigh, red)
and low (slow, blue) resource concentrations under a fixed bottleneck (Eq. (S47)). (B) Selection slow on growth at low resource
concentrations (top panel) decomposed into two constituent factors (bottom panel) at fixed bottleneck biomass (N0 = 10�3).
The top panel is the same as panel A for the approximate selection coe�cient slow; in the bottom panel, the two factors that
constitute slow are the trait factor from Eq. (S61) in green and the log term from Eq. (S62) in gray. The log term is related
but not identical to the number of generations in the growth cycle. Panels A and B are based on an example mutation with
relative e↵ects � = 0.01 on maximum growth rate and  = �0.04 on half-saturation concentration over the wild-type traits
gwt = 1 and Kwt = 1. (C) Selection on the half-saturation concentration K as a function of resource concentration R0 for
three di↵erent values of K (di↵erent shades of blue). The inset shows a numerical calculation (orange points) of the optimal
resource concentration Ropt that maximizes selection on K as a function of the wild-type half-saturation Kwt; the gray line is
the identity. Parameters are the same as in panels A and B, but we include two alternative wild-type half-saturation concen-
trations Kwt = 10 (lightest blue) and Kwt = 0.1 (darkest blue). (D) The distribution of beneficial selection coe�cients (purple)
as a function of initial resource concentration R0, with the variance (which is proportional to the speed of adaptation) shown
as the dashed gray line and plotted against the right axis. The inset shows the underlying sample of mutations according to
their relative e↵ects on maximum growth rate � and half-saturation concentration . We sample the e↵ects of mutations from
independent Gaussian distributions for � (mean µ = 0, s.d. � = 0.01) and  (mean µ = 0, s.d. � = 0.02). All panels assume
initial population biomass N0 = 0.001, initial mutant frequency x = 0.01, and equal yields for mutant and wild-type.
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FIG. S18. Selection dependence on resource concentration under fixed-dilution batch dynamics. Same as
Fig. S17A, but for fixed-dilution batch dynamics with D = 1000.

biomass

st
ra

in
 

co
m

po
si

tio
n

time

K1

<latexit sha1_base64="gDJVseqYhimZbKJSwBPCAO+Po4Y=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL4qXiOYByRJmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNNDppY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0fXUbz5xbUSkHnEccz+kAyX6glG00sNd1+sWS27ZzUCWiTcnpeotZKh1i1+dXsSSkCtkkhrT9twY/ZRqFEzySaGTGB5TNqID3rZU0ZAbP81OnZATq/RIP9K2FJJM/T2R0tCYcRjYzpDi0Cx6U/E/r51g/9JPhYoT5IrNFvUTSTAi079JT2jOUI4toUwLeythQ6opQ5tOwYbgLb68TBqVsndWrtyfl6pXszQgD0dwDKfgwQVU4QZqUAcGA3iGV3hzpPPivDsfs9acM585hD9wPn8AgmOOAA==</latexit> K2

<latexit sha1_base64="nTDfsuRNRvAL1Rk8U/SLNjJG/8s=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL4qXiOYBSQizk9lkyOzsMtMrhCWf4MWDIl79Im/+jZNNDppY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90fXUbz5xbUSkHnEc825IB0oEglG00sNdr9Irltyym4EsE29OStVbyFDrFb86/YglIVfIJDWm7bkxdlOqUTDJJ4VOYnhM2YgOeNtSRUNuuml26oScWKVPgkjbUkgy9fdESkNjxqFvO0OKQ7PoTcX/vHaCwWU3FSpOkCs2WxQkkmBEpn+TvtCcoRxbQpkW9lbChlRThjadgg3BW3x5mTQqZe+sXLk/L1WvZmlAHo7gGE7Bgwuowg3UoA4MBvAMr/DmSOfFeXc+Zq05Zz5zCH/gfP4Ag+eOAQ==</latexit>

K3

<latexit sha1_base64="hUtJwMUyMHKwEjh+4wNjEnnWV+Y=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4SQcugjWIT0ZhAcoS9zV6yZG/v2J0TQshPsLFQxNZfZOe/cXNJoYkPBh7vzTAzL0ikMOi6305uZXVtfSO/Wdja3tndK+4fPJo41Yw3WCxj3Qqo4VIo3kCBkrcSzWkUSN4MhldTv/nEtRGxesBRwv2I9pUIBaNopfvbbrVbLLllNwNZJt6clGo3kKHeLX51ejFLI66QSWpM23MT9MdUo2CSTwqd1PCEsiHt87alikbc+OPs1Ak5sUqPhLG2pZBk6u+JMY2MGUWB7YwoDsyiNxX/89ophhf+WKgkRa7YbFGYSoIxmf5NekJzhnJkCWVa2FsJG1BNGdp0CjYEb/HlZfJYKXvVcuXurFS7nKUBeTiCYzgFD86hBtdQhwYw6MMzvMKbI50X5935mLXmnPnMIfyB8/kDhWuOAg==</latexit>

K5

<latexit sha1_base64="NYKeXR3aJHPfGNyOo6SRF/vmshE=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd2o6DHoRfES0TwgWcLsZDYZMju7zPQKYcknePGgiFe/yJt/4+Rx0MSChqKqm+6uIJHCoOt+O0vLK6tr67mN/ObW9s5uYW+/buJUM15jsYx1M6CGS6F4DQVK3kw0p1EgeSMYXI/9xhPXRsTqEYcJ9yPaUyIUjKKVHu46551C0S25E5BF4s1IsXILE1Q7ha92N2ZpxBUySY1peW6CfkY1Cib5KN9ODU8oG9Aeb1mqaMSNn01OHZFjq3RJGGtbCslE/T2R0ciYYRTYzohi38x7Y/E/r5VieOlnQiUpcsWmi8JUEozJ+G/SFZozlENLKNPC3kpYn2rK0KaTtyF48y8vknq55J2WyvdnxcrVNA3IwSEcwQl4cAEVuIEq1IBBD57hFd4c6bw4787HtHXJmc0cwB84nz+Ic44E</latexit>

K4

<latexit sha1_base64="JL6WaPxBvMa9NmX8+FI/e0rM8wY=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0Y0GPQi+IlonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/42STgyYWNBRV3XR3BYng2rjut7Oyura+sZnbym/v7O7tFw4OGzpOFcM6i0WsWgHVKLjEuuFGYCtRSKNAYDMYXk/95hMqzWP5aEYJ+hHtSx5yRo2VHu66lW6h6JbcDGSZeHNSrN5Chlq38NXpxSyNUBomqNZtz02MP6bKcCZwku+kGhPKhrSPbUsljVD74+zUCTm1So+EsbIlDcnU3xNjGmk9igLbGVEz0IveVPzPa6cmvPTHXCapQclmi8JUEBOT6d+kxxUyI0aWUKa4vZWwAVWUGZtO3obgLb68TBrlkndeKt9XitWrWRqQg2M4gTPw4AKqcAM1qAODPjzDK7w5wnlx3p2PWeuKM585gj9wPn8Ahu+OAw==</latexit>

FIG. S19. Schematic of evolutionary dynamics in the strong-selection weak-mutation (SSWM) regime. The
top panel shows a schematic of the population biomass undergoing cycles of batch dynamics with serial transfers. The middle
panel shows the genetic composition of the population. The population begins with a half-saturation concentration K1. Then
a mutation arises with a di↵erent half-saturation K2 (blue), which increases in frequency until it fixes. Then another mutation
with a half-saturation value K3 arises (magenta), and the process continues. The bottom panel shows a simplified algorithm for
this process that we use in our simulations (Supplementary Information Sec. S11), where mutations are determined to fix or go
extinct one at a time based on their selection coe�cients, without explicitly simulating their intermediate frequency dynamics.
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FIG. S20. Selection-drift balance under batch dynamics. (A) Selection slow on the half-saturation concentration K
as a function of the current wild-type trait value in the population (blue line, Eq. (S47)), with mutation e↵ect max = �0.01.
The horizontal black line marks the strength of genetic drift; its intersection with the selection coe�cient defines the value of
Kevo at which selection-drift balance occurs (vertical dotted line; Eq. (3)). Above this point, selection is stronger than genetic
drift, and so the half-saturation concentration will adapt downward until it reaches that point. (B) Selection on the specific
a�nity a = gmax/K as a function of the current wild-type trait value in the population (orange line, Eq. (S52c)) assuming a
relative mutation e↵ect ↵ = 0.01 that acts directly on the specific a�nity instead of on the half-saturation concentration. For
the specific a�nity, adaptation means the trait value increases. Similar to panel A, the intersection of the selection coe�cient
with the black line (strength of genetic drift) defines the evolved trait value aevo at selection-drift balance. Parameters are
identical in both panels with R0 = 1, N0 = 0.01, Ne = 103, and x = 0.001. We set mutant and wild-type to equal maximum
growth rates and equal yields. This plot is based on fixed bottleneck biomass N0, but we observe similar dependences for
fixed dilution factor D. In that case, we rewrite Eq. S47 (resp. Eq. (S52c)) in terms of D (replacing N0 using Eq. (S21)) and
see that the selection coe�cient depends on the wild-type trait K with the same functional form.
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FIG. S21. The evolved half-saturation concentration as a function of experimental parameters with independent
genetic drift. (A) We numerically solve for the evolved half-saturation concentration Kevo under selection-drift balance (using
Eqs. (2) and (3)) as a function of the fixed-bottleneck biomass N0 and initial resource concentration R0, where the e↵ective
population size Ne = 105 is an independent parameter. Where the selection-drift balance condition is infeasible (gray area),
the half-saturation concentration evolves neutrally without steady state. The insets show cross-sections along initial resource
concentration R0 (solid line) and bottleneck biomass N0 (dashed line). (B) Same as panel A, but for a larger e↵ective population
size Ne = 107. (C) Same as panel A but for fixed-dilution batch dynamics, with varying D instead of N0. (D) Same as panel C,
but for a larger e↵ective population size Ne = 107. All panels use identical growth rates gmax = 1 and biomass yields Y = 1
for wild-type and mutant strain with a fixed mutation e↵ect max = �0.01 on the half-saturation concentration. The initial
mutant frequency x = 1/Ne is adjusted to the e↵ective population size Ne.
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FIG. S22. Simulated evolutionary trajectories of the half-saturation concentration under batch dynamics. We
simulate the time-course of evolution in the half-saturation concentration under the SSWM regime (Supplementary Information
Sec. S11) for di↵erent strengths of genetic drift (1/Ne). Each line corresponds to a separate run of the stochastic evolution
process. Here mutations are sampled with random e↵ect  = (Kmut �Kwt)/Kwt from a uniform distribution in [�0.1, 0.1] and
accepted or rejected according to their probability of fixation (Supplementary Information Sec. S11). (A)–(C) In the top row,
we use the approximate fixation probability Eq. (S64) which depends only on the selection coe�cient at the initial mutant
frequency x = 1/Ne. (D)–(F) In the bottom row, we use the integrated form of the fixation probability from Eq. (S63) that
takes into account the frequency-dependence of the mutant selection coe�cient (Eq. (S47)). For each panel, we numerically
calculate the half-saturation concentration Kevo at selection-drift balance (dashed line) using Eqs. (2) and (3). To guide the
eye, we also mark the half-saturation concentration K = R0 that matches the environmental concentration (gray line). All
panels are based on identical maximum growth rates gmax = 1 and biomass yields Y = 1 for the mutant and wild-type strain
such that only the half-saturation concentration evolves. The length of the growth cycle is constant with ⇡ 6.6 generations at
initial resource concentration R0 = 1 and fixed-bottleneck biomass N0 = 0.01.
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FIG. S23. Simulated evolutionary trajectories for the specific a�nity under batch dynamics. We simulate the
time-course of evolution in the SSWM regime (Supplementary Information Sec. S11) similar to Fig. S22, but assuming that
mutations directly a↵ect the specific a�nity a = gmax/K instead of the half-saturation K alone. Here mutations are sampled
with random e↵ect ↵ = (amut � awt)/awt from a uniform distribution in [�0.1, 0.1] and accepted or rejected according to their
probability of fixation (compare also Sec. S14). We use the approximate fixation probability Eq. (S64) which depends on the
selection coe�cient at the initial mutant frequency x = 1/Ne. The panels (A)–(C) only di↵er in the e↵ective population size
Ne used for the simulation. For each panel, we numerically calculate the specific a�nity aevo at selection-drift balance (dashed
line) using Eqs. (S52c) and (3). All panels are based on identical maximum growth rates gmax = 1 and biomass yields Y = 1
for the mutant and wild-type strain such that only the specific a�nity evolves. The length of the growth cycle is constant with
⇡ 6.6 generations at initial resource concentration R0 = 1 and fixed-bottleneck biomass N0 = 0.01.
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FIG. S24. Detecting the half-saturation concentration K from time-series data. We use an initial resource
concentration R0 = 10 close to the half-saturation concentration of the wild-type strain (Kwt = 5; see Fig. 1) to simulate a
monoculture growth curve from Eq. (S11) (Supplementary Information Sec. S3). The population leaves steady exponential
growth phase (gray area) to enter the deceleration phase (white area). To fit the half-saturation concentration K, the time-series
must include multiple data points in the deceleration phase (orange dots; Supplementary Information Sec. S15). On the right
axis, a bracket marks the approximate fold-change from the onset of deceleration at biomass to the saturation.
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FIG. S25. Environmental dependence of selection and genetic drift under batch dynamics. (A) The strength
of selection slow on the half-saturation concentration K (blue solid line, left axis) and the strength of genetic drift 1/Ne

(dashed black line, right axis) as functions of the resource concentration R0 under fixed-bottleneck batch dynamics. In this
case, the e↵ective population size is independent of the resource concentration. We use parameters based on the LTEE
(same as in Fig. 5C): N0 = 4.6 ⇥ 105 cells/mL and Ne = V N0 using culture volume V = 10 mL, gmax = 0.888/h, and
Y = 3.3 ⇥ 108 cells/µmol [30]. (B) Same as panel A, but for fixed-dilution batch dynamics, with D = 100; in this case the
e↵ective population size is proportional to the resource concentration, and thus the strength of genetic drift decreases with R0.

(A) fixed bottleneck transfer (B) fixed dilution transfer

infeasible

infeasible

FIG. S26. The evolved half-saturation concentration as a function of experimental parameters under coupled
genetic drift. (A) Same as Fig. S21A, but where the e↵ective population size Ne is proportional to the biomass bottleneck
N0 as in well-mixed laboratory experiments with fixed-bottleneck batch dynamics. We set Ne = N0V , where V = 105 is the
culture volume such that a bottleneck biomass of N0 = 0.01 corresponds to an e↵ective population size of Ne = 103 cells.
(B) Same as panel A but for fixed-dilution batch dynamics, where the e↵ective population size is Ne = N0V = V R0Y/(D� 1)
(Eq. (S21)).



37

mutation effect (fi
t)

LTEE 
condition

max
= �0.0

000
06

<latexit sha1_base64="PnwzFwUNiYeX5GFC3Vy684GjiU0=">AAACA3icbZDJSgNBEIZrXGPcot700hgEL4aZKOpFCHrRWwSzQBKGmk5P0qRnobtHDEPAi6/ixYMiXn0Jb76NneWgiT80fPxVRXX9Xiy40rb9bc3NLywuLWdWsqtr6xubua3tqooSSVmFRiKSdQ8VEzxkFc21YPVYMgw8wWpe72pYr90zqXgU3ul+zFoBdkLuc4raWG5ut9nDOEY3bQb4MCAX5IjYBXuoUzeXn6BNZsGZQL50AyOV3dxXsx3RJGChpgKVajh2rFspSs2pYINsM1EsRtrDDmsYDDFgqpWObhiQA+O0iR9J80JNRu7viRQDpfqBZzoD1F01XRua/9UaifbPWykP40SzkI4X+YkgOiLDQEibS0a16BtAKrn5K6FdlEi1iS1rQnCmT56FarHgHBeKtyf50uU4DcjAHuzDIThwBiW4hjJUgMIjPMMrvFlP1ov1bn2MW+esycwO/JH1+QMbfZXs</latexit>

FIG. S27. Inferred mutation e↵ect for the Long-Term Evolution Experiment. Evolved half-saturation concentration
Kevo for glucose as a function of the dilution factor D under fixed-dilution batch dynamics. If we assume the glucose half-
saturation for E. coli in the LTEE is under selection-drift balance, then we can use this dependence to infer the value of
the mutation e↵ect max that would be consistent with the other known parameters of the system. We numerically solve for
selection-drift balance using Eqs. (2) and (3) with dilution factor D = 100, initial glucose concentration R0 = 139 µM, and
evolved half-saturation concentration K = 0.489 µM (red dot). We obtain an estimate of max = �6⇥ 10�6.


