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Resource availability dictates how fast and how much microbial populations grow.
Quantifying the relationship between microbial growth and resource concentrations
makes it possible to promote, inhibit, and predict microbial activity. Microbes require
many resources, including macronutrients (e.g., carbon and nitrogen), micronutrients
(e.g., metals), and complex nutrients like vitamins and amino acids. When multiple
resources are scatce, as frequently occurs in nature, microbes may experience resource
colimitation in which more than one resource simultaneously limits growth. Despite
growing evidence for colimitation, the data are difficult to interpret and compare
due to a lack of quantitative measures of colimitation and systematic tests of
resource conditions. We hypothesize that microbes experience a continuum of nutrient
limitation states and that nutrient colimitation is common in the laboratory and in
nature. To address this, we develop a quantitative theory of resource colimitation that
captures the range of possible limitation states and describes how they can change
dynamically with resource conditions. We apply this approach to clonal populations
of Escherichia coli to show that colimitation occurs in common laboratory conditions.
We also show that growth rate and growth yield are colimited differently, reflecting
the different underlying biology of these traits. Finally, we analyze environmental data
to provide intuition for the continuum of limitation and colimitation conditions in
nature. Altogether our results provide a quantitative framework for understanding and
quantifying colimitation of microbes in biogeochemical, biotechnology, and human
health contexts.

microbial growth | biogeochemistry | nutrient limitation | marine microbes | colimitation

Resource availability is a fundamental control on microbial growth, physiology, and
metabolic activity. Therefore, understanding which resources limit growth and by
how much is both a core concept of microbiology as well as useful for predicting
microbial contributions to biogeochemical cycles (1), inhibiting pathogens in the human
body (2), and cultivating microbes in biotechnology (3). While limiting resources can
be studied individually, there is evidence that microbes can be, and often are, limited
by multiple resources simultaneously (colimitation) (4). For one thing, the elemental
composition of the environment frequently reflects that of abundant microbes, suggesting
a biogeochemical balance between supply and biological demand in nature (5-9).
Furthermore, fundamental assumptions in ecology predict the possibility of colimitation;
for instance, the coexistence of multiple species within a resource supply range, with each
species depleting a specific resource, suggests a state of colimitation of the community as
a whole (10-13). Accordingly, in situ experiments frequently find that adding multiple
resources together enhances growth of microbial communities (1, 4, 14—19). Laboratory
experiments have also found that microbial populations can completely deplete multiple
resources simultaneously, suggesting the possibility of nutrient colimitation (3, 20).
Previous theoretical and empirical work on colimitation has largely considered
limitation as a binary property of a resource (limiting or not) because of a principle
known as the law of the minimum (3, 5, 21-24), which states that growth is solely
determine by the scarcest resource relative to biological demand. As a result, empirical
tests of colimitation, especially in natural samples, have primarily relied on factorial
supplementation experiments, in which one measures the growth response to supple-
menting the population with multiple resources separately and in combination (1, 19).
This approach has two major shortcomings. First, the outcomes of these experiments
are usually interpreted only qualitatively, mainly by classifying the outcome as single
limitation or colimitation (19, 23) (see SI Appendix, Fig. S1 A and B for a schematic
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example). This binary approach neglects the possibility that
populations occupy a continuum of limitation states rather than
discrete categories. Furthermore, there has not been a common
framework for quantifying these limitation outcomes, making
them difficult to compare across studies. A similar ambiguity
exists for laboratory experiments that attempt to designate a single
limiting resource by keeping all other resources in excess, but
without quantitatively determining what those concentrations
must be to constitute single limitation. In both cases, this binary
approach to limitation restricts our understanding and predic-
tions of microbial growth in nature, where microbes experience
a continuous range of resource concentrations and where many
resources are simultaneously scarce (5, 8, 14, 19, 23, 25).

A second shortcoming of prior experiments, particularly
supplementation experiments, is that these qualitative outcomes
are very sensitive to the background resource conditions and the
chosen concentrations of supplemented resources (SI Appendix,
Fig. S1). Besides the fact that these experiments therefore cannot
tell us about the general potential for colimitation in the system
beyond the starting background conditions (23), we do not
know a priori how to choose the supplemented concentrations;
different choices can lead to completely different outcomes, even
mistaking single limitation for colimitation (87 Appendix, Fig. S1
C and D).

Here, we address these issues by providing a quantitative
theory of resource colimitation that goes beyond the binary
law of the minimum perspective. In contrast to the chemical
definition of colimitation used in some previous laboratory
studies—whether multiple resources are simultaneously depleted
to zero (20, 26, 27)—we suggest a biological definition (how is
growth affected by the resources?) because 1) this allows precise
identification of resource colimitation for different growth,
activity, or physiological parameters of interest; 2) this strategy
can be used in either batch or chemostat cultures, meaning also
that growth rate and growth yield colimitation can be quantified
separately; and 3) this allows instantaneous definitions of resource
limitation and colimitation. We focus on independent resources,
such as carbon and nitrogen sources, in clonal populations
of microbes as a model case for untangling the fundamental
principles of colimitation, but our results are generalizable to
other types of resource combinations [substitutable or chemically
dependent (5, 23)], multispecies communities (13, 28), and
higher trophic levels (19, 23, 29, 30). We use this approach
to test the hypothesis that microbes can experience a continuum
of colimitation states and that these states are common enough to
be observed in laboratory experiments and natural environments.
We find that a wide range of laboratory conditions commonly
used to study Escherichia coli have a significant degree of
colimitation for glucose and ammonium and that growth rate
and growth yield are colimited differently. We also find that
data on microbes in their natural environments is consistent
with a continuum of colimitation states. This work develops a
theoretical foundation for more systematically testing whether
colimitation is common in nature, whether there are distinct
physiological states associated with colimitation, and how re-
source colimitation impacts ecological, clinical, biotechnological,
and biogeochemical outcomes.

Results

A Quantitative Approach to Colimitation of Microbial Pop-
ulations. In contrast with the qualitative types of limitation
(single limitation, serial limitation, additive colimitation, etc.)
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usually obtained in factorial supplementation experiments (5,
6, 8, 14, 19, 23, 31), we introduce a framework for precisely
quantifying limitation states of populations without choosing
arbitrary thresholds and categories. While in this article we
focus on single-species populations of microbes, the approach
can be similarly applied to study colimitation in multispecies
communities (13, 28) and other organisms such as plants (19)
and animals (23, 29, 30).

The per-capita growth rate g of a population typically depends
on a large number M of individual limiting processes, which
include uptake and utilization of different resources from the
environment as well as internal cellular processes such as
transcription and translation. Let 7; be the rate of each process i.
We define the limitation coefficient of growth rate for process 7
as the relative change in growth rate for a small relative change
in the rate of that process (3, 32):

gate _ Q%' [1]

The superscript “rate” indicates that this describes limitation of
the growth rate, as opposed to other growth traits as we will
discuss later. For example, L;ate = 1 means that a 1% increase
in 7; entails a 1% increase in growth rate, whereas L{* = 0.5
means that a 1% increase in 7; changes growth rate only by half
as much, 0.5% (SI Appendix, section S1). For essential processes
like uptake and utilization of carbon and nitrogen sources, we
generally expect L** to range from 0 (when 7; is high and the
growth rate no longer depends on it) to 1 (when 7; is low and
the growth rate is proportional to it). However, other values are
possible if growth rate depends superlinearly or negatively on 7;
(for example, if an antibiotic reduces the growth rate).

Eq. 1 is analogous with control coefficients in metabolic
control analysis (33), and as in that framework, we can prove
that the sum of limitation coefficients over all limiting processes
must equal 1 (57 Appendix, section S1):

M
o= 2]

i=1
This means that greater limitation for uptake of one resource or
other process necessarily entails less limitation for other processes.

Finally, we define the effective number of growth rate-limiting
processes as a metric for colimitation:

rate
rate __ Li
eff — rate
max;L;
; J
i 1 J [3]
N maxz-Lfm'

This quantity counts processes weighed by their limitation
relative to the most limiting process. For example, if we have
four processes with L; = 0.4, L, = 0.3, L3 = 0.2, and
Ls = 0.1, then each counts as effectively 1, 0.75, 0.5, and
0.25 limiting processes, respectively, so that the total effective

number of limiting processes is M ¢ = 2.5. For typical models

of the limitation coefficients, values of M erfafte will range from 1,
when only one process is limiting at all, to M (the total number
of processes) if all processes are equally limiting (S Appendix,
section S1 and Fig. S2).

How does the availability of resources in the environment limit
growth? The uptake rate 7 of a resource is typically assumed to
be proportional to the external concentration R according to the
law of mass action (24, 34):
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r = aR. [4]

The proportionality constant # is sometimes known as the affinity
for the resource (35). To model the dependence of growth rate
on this variable resource, we must account for the role of all other
resources and internal processes that growth depends on, such as
the rate of transcription and translation. If we are only varying
the one resource, then we can capture all these implicit limiting
factors by a single rate giax, which describes the maximum growth
rate when the uptake rate 7 for the variable resource is saturated;
at this point, growth is limited by something else, whether it be
availability of another resource or an internal cellular process such
as the rate of transcription or translation. We refer to these other
factors as implicit since we do not vary or measure them, and thus
they cannot be distinguished from each other. One way to model
the dependence of growth on both the variable resource and the
implicit factors is to invoke the law of the minimum, so that the
growth rate equals the rate of whichever process (uptake of the
variable resource or all implicit processes combined) is slower:

g(R) = min(aR, gmax). [5]

Eq. 5 is sometimes known as the Blackman model (36, 37).
As shown by the solid lines in Fig. 14, this model has binary
limitation states: for resource concentrations R < gmax/4
the limitation coefficient for the resource is 1, meaning that
the implicit factors have zero limitation. For concentrations
R > giax/a, the limitation flips and now the implicit factors are
solely limiting. As a result, there can be no colimitation between
the variable resource and the implicit factors. Conceptually, this

>

B

situation arises if the uptake and utilization of the resource occur
in parallel with the implicit factors (24, 28).

However, empirical measurements of growth rate depen-
dence on resource concentration frequently support the Monod

model (38, 39):
aR

_ 6
aR + gmax (6]

g(R) = gmax
While the Monod and Blackman models have similar asymptotic
behavior, the Monod model entails a smooth transition between
limitation regimes, meaning that the variable resource and the
implicit factors are colimiting for a finite range of concentrations
around R = gmax/a (Fig. 14, dashed lines). Note that gnax/a
is often denoted as K, the half-saturation concentration (39).
In particular, the Monod dependence means that limitation and
colimitation take on a continuum of values, rather than being
discrete states of a population as often identified in previous
colimitation studies using factorial supplementation experiments.
For example, Fig. 14 shows that the number of limiting factors
can take intermediate values such as 1.5 if the two process have
unequal but nonzero degrees of limitation (L = 2/3 for one
process and L = 1/3 for another). Conceptually, colimitation of
growth rate arises when resource uptake and utilization occurs
sequentially with the implicit processes (whether that is use of
another resource or an internal cellular process), so that changes
in either step affect the total rate (24, 28). Note that smooth
models with colimitation such as the Monod model must always
have lower growth rates than do models without colimitation for
the same concentration conditions, assuming the models have
the same asymptotic properties.
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Fig. 1. Quantifying resource limitation and colimitation. (A) Schematics of how a growth trait (e.g., growth rate or growth yield) depends on a variable resource
concentration. The solid lines show the Blackman model (Eqg. 5), which does not have colimitation of the resource and the implicit factors, while the dashed
lines show the Monod model (Eq. 6), which does have colimitation. (B) Schematic of limitation regimes over two resource concentrations. “Imp” denotes implicit
limiting factors besides the two variable resources. (C) Simulation of batch culture dynamics and resource limitation for a population consuming two resources
(blue and orange). (D) Same as (C) but for chemostat dynamics. (E) Trajectory of resource depletion for the batch dynamics in (C). (F) Same as (E) but for the
chemostat dynamics in (D). Model parameters for (C)-(F) are gmax =1, a1 =1, a, = 0.5, 59 =100, s, = 200, d = 0.2 (S/ Appendix, sections S2 and S3).
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Since microbes rely on many resources to grow, it is important
to generalize this approach to multiple variable resources. There
are many models that generalize the Blackman (Eq. 5) or
Monod (Eq. 6) dependence on multiple resources (SI Appendix,
section S2), some of the most common being the Liebig
Monod model (5, 23, 24, 28, 29, 34), the multiplicative
Monod model (3, 5, 23, 28, 29, 40, 41), the Poisson arrival
time/synthesizing-unit model (24, 29, 34, 42), and the additive
model (29, 34). The limitation states predicted by these models
almost all follow the schematic for two variable resources in
Fig. 1B (SI Appendix, Fig. S3): there are regimes of single
limitation for each of the variable resources, as well as for the
implicit factors, separated by conditions of colimitation. This
picture assumes both resources are independently essential and
nonsubstitutable (e.g., a carbon source and a nitrogen source),
but it can be generalized to substitutable (3, 5, 43) and chemically
dependent resources (5) (SI Appendix, section S2 and Fig. $4).
Note that while it is common to speak of limitation for individual
elements like carbon and nitrogen, in general, we must specify
the precise molecular forms of these elements since those forms
can have distinct biological effects.

The quantitative nature of limitation means that it can
rapidly change with the environment. For example, consider
a population consuming two essential resources under batch
dynamics, such that the two resources are supplied in an initial
pulse (87 Appendix, section S3). Fig. 1C (Top panel) shows how
the biomass concentration increases exponentially while the two
resources are depleted. While the orange resource is more limiting
initially, the blue resource becomes more limiting later before
growth stops (Bottom panel of Fig. 1C). The degree of resource
colimitation, measured by the number of rate-limiting factors
M, peaks at an intermediate time when the two resources have
equal limitation. In Fig. 1D we show the limitation dynamics of
the same system but in a chemostat, where resources are supplied
to the population at constant rate (SI Appendix, section S3).

Limitation of Growth Yield Is Distinct from Limitation of
Growth Rate. Besides affecting how fast a population grows
(growth rate), resource concentrations also determine how much
biomass grows over a period of time, which we refer to as the
growth yield. If the stoichiometry of biomass to each resource is
constant (e.g., each gram of dry weight requires a fixed amount of
glucose) and growth stops only when one resource concentration
reaches zero, yield depends on resource concentrations according
to the law of the minimum (similar to Eq. 5 for growth rates),
since the total yield will be set by whichever resource produces the
least amount of biomass (S Appendix, section S3). Under these
conditions, a single resource will therefore always be limiting,
and there can be no colimitation for yield except when the
resources are supplied in the exact stoichiometry that matches
biological demand. For example, Fig. 1E shows the trajectory
of resource depletion for the batch dynamics in Fig. 1C. The
slope of the trajectory is the stoichiometry of resource use, so that
constant stoichiometry means straight lines, with the length of
the line being proportional to yield (S Appendix, section S3 and
Fig. S5A4). Thus the yield will change if the initial concentration
of resource 1 changes by a small amount (which shifts the line
horizontally and increases its length), while small changes in the
initial concentration of resource 2 will not change the yield (since
that shifts the trajectory vertically and does not change its length).

However, the yield can depend smoothly on both resource
concentrations, and hence display colimitation, if the biomass
stoichiometry of one resource changes with the concentration

https://doi.org/10.1073/pnas.2400304121

of another resource (S/ Appendix, section S3 and Fig. S5B), or
if the resource concentrations at which growth stops depend
on each other (SI Appendix, section S3 and Fig. S5C). The
first case, variable stoichiometry, is possible through a variety
of mechanisms, including resource consumption for biomass
maintenance (S Appendix, section S3 and Fig. S6 A and B) and
proteome allocation that varies with growth rate (S/ Appendix,
section S3 and Fig. S6 C and D). The second case holds
for chemostat dynamics if the zero net-growth isocline (43)
(ZNGI, where growth rate equals the dilution rate; dashed line
in Fig. 1F) is curved; even with fixed stoichiometry so that
depletion trajectories are straight lines, their length to the ZNGI
(which is proportional to the yield) will depend on the supplied
concentration of both resources (Fig. 1F; ST Appendix, section S3
and Fig. S6 E and F).

We quantify growth yield limitation analogously with growth

rate limitation, defining yield limitation coefficients Lilleld (Eq.1
but replacing growth rate with growth yield) and the number
of yield-limiting factors Mcyflfd(jl (Eq. 3 but with Li-’leld instead of
L3€). We can also use equivalent mathematical models for de-
scribing how growth yield depends on resource concentrations (57
Appendix, section S2), leading to similar possibilities for colimi-
tation as seen for growth rate (Fig. 1 4 and B). However, growth
rate and growth yield limitation are biologically distinct aspects
of populations. In particular, resources may limit rate and yield
differently—for example, in Fig. 1C the orange resource limits
growth rate initially but the blue resource limits growth yield since
itis depleted at the end. That being said, rate and yield limitation
are coupled under certain circumstances. In batch dynamics, the
yield-limiting resource (the one depleted when growth stops)
is also necessarily the most rate-limiting resource at the end of
batch growth. Under chemostat dynamics, growth rate limitation
determines growth yield limitation because the former sets the
shape of the ZNGI (13, 43). For example, if two resources obey a
model without growth rate colimitation, then the ZNGI forms a
right angle, in which case there is also no yield colimitation (28).

Growth Rate and Yield of E. coli Are Colimiting for Glucose
and Ammonium Under Laboratory Conditions. To demonstrate
our quantitative approach to colimitation, we measure the
dependence of E. coli growth rate and yield on glucose and
ammonium, two essential resources, under laboratory conditions.
We also use these empirical measurements to address the second
major shortcoming of traditional colimitation tests: instead of
using only a single background condition and supplemented
concentration for each resource, which cannot conclusively
determine the extent of colimitation in a system (23) (87
Appendix, Fig. S1), we systematically scan a wide range of glucose
and ammonium concentrations to determine the global potential
for colimitation (Materials and Methods; Datasets S1 and S2; ST
Appendix, Figs. S7-S11).

As expected, the data show a Monod-like dependence in
which the growth rate depends on glucose and ammonium
concentrations when they are low, but once they are sufficiently
high, growth rate saturates as implicit factors become limiting
(Fig. 2 A and B). To quantify colimitation in these data, we
first fit the data to a range of models both with and without
colimitation (S/ Appendix, Table S1 and Figs. S12-S14). We
find that while the fits favor a model with colimitation (Poisson
arrival time model; S7 Appendix, section S2) for two of the three
experimental replicates, this result is not conclusive as the models
without colimitation also fit the data fairly well (87 Appendix,
Fig. S14).
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Fig. 2. Measuring growth rate colimitation in laboratory conditions. (A) Three replicate measurements of growth rate (red points) over glucose and ammonium
concentrations for E. coli in minimal medium (Materials and Methods; Dataset S1; see S/ Appendix, Figs. S7-S9 for growth curves). The blue surface is a model
fit to all replicate measurements (Poisson arrival time model with gmax ~ 0.66 per hour, agy ~ 23 per hour per mM glucose, aamm = 90 per hour per mM
ammonium; Ry min ~ 0.023 MM, Ramm min ~ 0.0039 mM; Materials and Methods; Dataset S1). (B) Same growth rate data as in (4) but plotted as a function
of glucose concentration alone, with colors indicating ammonium concentrations. The lines are the same fitted model as in (A). (C) Growth rate limitation
coefficients for glucose and ammonium from supplementations inferred from data in (A); the three replicate experiments are shown as different colors. The
gray box marks the region of points with apparent colimitation of glucose and ammonium (Lgl’lﬁe, Lrate - 0). (D) Fractions of supplementations with growth

rate colimitation between glucose and ammonium. The observed fractions from the three replicate experiments are marked with dashed lines of different
colors. Compared to a null model without glucose-ammonium colimitation (purple, 104 simulations of the Liebig Monod model; S/ Appendix, section S2), the
probabilities of observing at least as much colimitation as in the data are P = 0.0004 for replicate 1, P = 0.0338 for replicate 2, and P = 0.0135 for replicate 3.
Simulated datasets from a model with glucose-ammonium colimitation (green, Poisson arrival time model; S/ Appendix, section S2) show levels of colimitation
more consistent with the data. The simulations use parameters from the fits of these models to the experimental data and random noise estimated from the

variation across experimental replicates (Materials and Methods).

However, these fits are based on an optimization that weighs
all data points equally. Therefore, this approach may not be
sufficiently sensitive to differences in the subset of concentrations
where there is approximate balance of limitation between re-
sources, such that colimitation can occur. An alternative approach
is to measure the occurrence of apparent colimitation in the data
directly and compare it to a null model without colimitation;
therefore even if the number of colimitation conditions is too few
to sway the overall outcome of a fit, it can still be distinguished
from the null model to statistically indicate the presence of
colimitation. To this end, we leverage the combinatorially
complete set of concentration conditions in our data to infer
the glucose and ammonium limitation coefficients of all possible
supplementations on all background conditions contained within
our data (Materials and Methods). This direct-from-data approach
is independent of the fits as the limitation coefficients are
estimated as finite differences in growth rates and resource
concentrations. Fig. 2C shows these limitation coefficients for
all supplementations across all three replicate datasets.

In principle, any points where Lgllff and LI are both greater

than zero indicate colimitation (Fig. 2C, gray box; S Appendix,
Fig. S154). However, measurement noise could cause such
observations to randomly appear even in the absence of true
colimitation (87 Appendix, Fig. S15B). To determine whether the
amount of observed glucose-ammonium colimitation is greater
than would be expected from noise, we simulate a large number
of datasets using models with and without colimitation but based
on parameters and measurement noise fit to the data (Materials
and Methods; SI Appendix, Figs. S16-S19). For each simulated
dataset, we calculate the fraction of supplementations with
glucose-ammonium colimitation. Compared to 10# simulations
of a null model without glucose-ammonium colimitation (purple
distribution in Fig. 2D; SI Appendix, Fig. S20), we find that the
probabilities of generating colimitation levels at least as high
as in each of our experimental replicates (P-values) are 0.0004,
0.0338, and 0.0135. In contrast, a null model that does have
glucose-ammonium colimitation is largely consistent with the

PNAS 2024 Vol. 121 No. 52 e2400304121

data (green distribution in Fig. 2D). These data therefore support
the existence of growth rate colimitation between glucose and
ammonium for E. coli under laboratory conditions. We perform
an analogous analysis on our growth yield data and obtain similar
results demonstrating the occurrence of yield colimitation for
glucose and ammonium (87 Appendix, Figs. S$21-S30).

Comparison of Growth Rate and Growth Yield Limitation in
E. coli. Given the evidence of colimitation in our data, we can
use the fitted colimitation models to quantitatively map different
limitation states across resource concentrations. This is important
for performing comparative measurements of cell physiology,
ecology, or evolution across resource conditions; instead of
simply postulating that a condition with low glucose and high
ammonium is carbon-limiting, for example, we can precisely
define how limiting that state really is. Fig. 34 shows limitation
coefficients of glucose and ammonium for growth rate (7op
panel) and growth yield (Botzrom panel) across concentrations.
We find that E. coli in typical M9 medium (0.2% ~ 11.1
mM glucose, 18.7 mM ammonium) has growth rate limitation

coefficients of L;Tff ~ 3 x 1073 and L =~ 10~%; this means

that there is approximately single limitation for the implicit
factors (Lirﬁfl; ~ 0.997, M€ ~ 1.003). On the other hand,

the limitation coefficients for growth yield in these conditions

ield ield .
e LQZ ~ 0.27 and Llmm ~ 0.04, which means there

is an appreciable amount of colimitation, especially between
glucose and the implicit yield-limiting factors (Lﬁ:lgd ~ 0.09,

My ~ 1.5).

Fig. 3B compares growth rate and growth yield colimitation
across a broad range of glucose and ammonium concentrations
(compare to Fig. 1B; SI Appendix, Fig. S31). The blue region
marks conditions of significant colimitation (where neither
glucose nor ammonium nor the implicit factors individually
has more than 95% of total limitation for growth rate), while

the red region marks the analogous conditions for growth yield.
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10~4,0.01, and 0.9 for growth rate (Top), and above 0.01, 0.9, and 0.999 for growth yield (Bottom). (B) Diagram of rate and yield colimitation regimes in . coli across
glucose and ammonium concentrations in M9 medium. The blue shaded region shows concentrations of glucose and ammonium with significant colimitation
(between glucose, ammonium, and implicit factors), where no one factor is limiting more than 95% of growth rate (Mg?ge > 1.05). The red shaded region is the
analogous concentration range for growth yield colimitation. Symbols mark reference concentrations of glucose and ammonium used in other studies: typical
M9 medium (0.2% ~ 11.1 mM glucose, 18.7 MM ammonium); putative single limitation condition for glucose (0.14 mM glucose, 18.7 mM ammonium) used by
Bren et al. (44), which is very similar to the concentrations used in the long-term evolution experiment (45) (but with ~15.2 mM ammonium in Davis-Mingioli
medium); putative single limitation condition for ammonium (11.1 mM glucose, 0.24 mM ammonium) used by Bren et al. (44); conditions at which Kim et al. (46)
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(0.4-24 mM glucose, 0.2-0.31 mM ammonium; Dataset S3). (C) Stoichiometry of glucose to ammonium in glucose-ammonium colimitation for growth rate and
growth yield. For growth rate colimitation, this is calculated as the ratio of ammonium to glucose affinities fitted by the models to the data; for growth yield, this
is calculated as the ratio of ammonium to glucose biomass stoichiometries fitted to the data (S/ Appendix, section S2). The black point shows the stoichiometry
from the fit to all three experimental replicates combined, while the colored bars represent the fits to each replicate individually. The gray boxes (first to third
quartiles, with the whiskers extending to 1.5 times the interquartile range above and below) show the distributions of fitted stoichiometry across 100 datasets
bootstrapped from the three replicates (Materials and Methods). (D) Same as (C) but for the concentrations of glucose (Top panel) and ammonium (Bottom panel)
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at which they are colimiting with the implicit limiting factors (such as another resource or an internal cellular process).

Together they demonstrate that a wide range of conditions—
from approximately 1 pM to 100 mM of either glucose or
ammonium—have some degree of colimitation for either growth
rate or growth yield. We also find that the conditions of glucose
and ammonium colimitation for growth rate overlap significantly
with those for growth yield, but growth rate and growth yield
have largely nonoverlapping conditions for colimitation between
the implicit limiting factors and either glucose or ammonium.
Besides typical M9 medium, we also compare our colimitation
map to several other reference media conditions, including the
long-term evolution experiment (45) (green triangle, with the
caveat that that experiment uses Davis—Mingioli rather than M9
medium and a different strain of E. co/i); conditions for putative
single limitation for glucose and for ammonium used in a study
by Bren et al. (44) (green triangle and pink cross); conditions at
which E. coli activates its ammonium transporter (46) (brown
star); and the estimated range of glucose and ammonium in
E. coli’s natural environment (gray box; Materials and Methods;
Dataset S3).

It is also valuable to quantitatively compare the colimitation
conditions between growth rate and growth yield. We find that
the glucose-ammonium stoichiometry needed for growth rate
colimitation between glucose and ammonium is approximately
4 (C:N = 24), while it is approximately 1.7 (C:N = 10.2) for
growth yield colimitation (Fig. 3C). Both values suggest that the
environment under these apparently balanced conditions must
have a C:N ratio much higher than the typically observed E. coli
biomass C:N ratio (47) (4.33 to 5.17 depending on the growth
conditions). This may be due to the requirement that some
carbon is respired for energy production. The conditions for
colimitation between implicit factors and glucose or ammonium
are also quite different between growth rate and growth yield,

https://doi.org/10.1073/pnas.2400304121

with the concentrations being approximately 100-fold higher
for growth yield colimitation than for growth rate colimitation
(Fig. 3D). This suggests that the implicit limiting factors
for growth rate and growth yield are different, which is not
surprising, but this may also be indicative of the different
selection pressures on rate versus yield limitation. For example,
stronger selection on rate limitation compared to yield limitation
may have driven rate limitation toward much lower resource
concentrations.

Quantifying Colimitation of Growth Rate and Growth Yield in
Natural Environments. While we have shown that colimitation
can occur in the laboratory, an important but more complex
problem is to test whether colimitation occurs for microbes
in their natural environments (4). We now demonstrate our
quantitative approach by estimating limitation and colimitation
in several natural ecosystems. To quantify colimitation of growth
rate, we collected measurements of half-saturation resource
concentrations K; [measured from the dependence of growth
rate on that resource concentration according to the Monod
model (39)] and environmental concentrations R; for those same
resources across many organisms (Fig. 44; Materials and Methods;
Dataset S3). Note that some strains with laboratory measure-
ments are different from those in the natural environments and
hence may have different trait values (39).

We use these data to estimate limitation for each resource,
assuming all other resources for these organisms are present at
very high concentrations (S7 Appendix, section S1). Since the true
dependence of growth rate on multiple resources is unknown for
these organisms and resources, we consider four common growth
rate models (Liebig Monod, multiplicative Monod, Poisson
arrival time, and additive; S/ Appendix, Table S1 and section S2)

pnas.org
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the natural environments; S/ Appendix, section S1) .

to calculate limitation coefficients in Fig. 4B. The analysis reveals
the necessity of our quantitative approach: the data show a
continuum of limitation coefficients, rather than a dichotomy
of high and low limitation (8] Appendix, Fig. $32). In particular,
we find significant intermediate limitation coefficients for many
of the marine species, but low limitation for the freshwater and
enteric species. This is evident from the R and K data itself; most
half-saturation concentrations K are less than their corresponding
environmental concentrations R, which means low limitation,
with the exceptions being several marine strains on phosphate,
nitrate, and ammonium (Fig. 44). The lack of large growth
rate limitation coefficients is not surprising given the strong
selection to reduce the half-saturation concentration relative to
the environment (39). We moreover see a continuum of growth
rate colimitation states between these resources according to
the number of rate-limiting resources Mg (Fig. 4C and S/
Appendix, Fig. $32). The degree of colimitation seems to be linked
to habitat; several of the marine species show high colimitation,
and some enteric species show intermediate colimitation as well.

To demonstrate quantification of colimitation for growth
yield, we apply our approach to elemental resources for marine
phytoplankton. Using the abundance of each element in the
ocean and its stoichiometry in phytoplankton biomass (6), we
calculate the maximum potential growth yield of each element
(Fig. 5A); this is the maximum amount of biomass that could
grow from that element’s concentration in the ocean, if all
other elements were unlimited. This shows roughly three tiers
of resources, separated by orders of magnitude: the trace metals
iron, cobalt, and manganese have the lowest potential yields,
followed by another set of similar potential yields for nitrogen,

PNAS 2024 Vol. 121 No. 52 e2400304121

phosphorus, and other metals. The remaining elements all have
much higher potential yields.

From these potential yields, we can calculate yield limitation
coefficients for each elemental resource. Since we do not
know how phytoplankton growth yield depends on multiple
resources, we use a phenomenological model that generalizes
the additive model, with a variable parameter that captures
interactions between resources in determining the yield (S7
Appendix, section S2). For weak interactions between resources,
limitation is strongly concentrated in the resource most rare
relative to its biomass requirements, especially iron (Fig. 5B), and
hence there is little colimitation (Fig. 5 B, Inset). For stronger
resource interactions, we see greater colimitation for yield across
resources.

This analysis reflects known patterns of oceanic nutrient
limitation, such as the prevalence of iron limitation as well
as nitrogen and phosphorus limitation, and the possibility of
limitation by trace metals such as cobalt and manganese (1, 6).
While the data we used are coarse-grained and do not account for
temporal, spatial, and biological variability (including plasticity
in resource use), nor the full suite of nutrients that can potentially
limit phytoplankton, they do indicate that to determine the true
level of colimitation for these populations, we would need to
measure the dependence of phytoplankton biomass across many
resources simultaneously.

Discussion

What Are the Consequences of Colimitation? At the cellular
scale, colimitation has been known to alter traits such as cell

https://doi.org/10.1073/pnas.2400304121
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Fig. 5. Applying limitation concepts to empirical growth yield data for ma-
rine phytoplankton. (A) Maximum potential growth yield for phytoplankton
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Moore et al. (6) (Supplementary Table S1 therein). (B) Using potential yields

from (A), we calculate growth yield limitation coefficients L%"EI for each
elemental resource. Since we do not know the underlying model for how
multiple resources contribute to growth yield, we calculate limitation using
a generalized-additive model with variable strength of resource interaction
that tunes the degree of colimitation (S/ Appendix, section S2). Inset: Number

of yield-limiting resources MZ;,?'d as a function of the resource interaction
strength, using data from (A).

size (48), raising the possibility that our knowledge of physiology
is distorted by laboratory measurements with limitation for
only one resource. This problem has been discussed since the
1970s, notably in works by Droop (49) and by Valdkamp and
Jannasch (50), who pointed out that laboratory experiments
provide artificially high concentrations of resources besides a focal
limiting resource. We also observe that growth is less efficient
under models with colimitation (e.g., Monod) compared to
models without (e.g., Blackman; compare lines in 7op panel of
Fig. 14) (29), suggesting a fundamental physiological difference
between single limitation and colimitation.

At the scale of populations and communities, resource colim-
itation has been linked to evolutionary outcomes distinct from
those under single nutrient limitation (51). In microbial com-
munities, colimitation could increase susceptibility to invasion,
because there are multiple potential niches for an invader to
exploit. The competitive exclusion principle says that the number
of species cannot exceed the number of limiting resources, but
when “limiting” is no longer a binary state of a resource, the
concept must be reexamined. Consideration of colimitation
could therefore enhance the ability to predict and engineer
microbial communities in environmental and human health
contexts. For instance, knowing which nutrients are limiting and
by how much would be useful in the design of probiotics and
prebiotics. There is also the possibility that colimitation plays a
role at larger ecological and biogeochemical scales, based on the
notion that microbial life and the composition of its surroundings
coevolve with one another (52, 53).

This raises the question of whether the many models used to
describe growth under colimitation (87 Appendix, section S2)
have meaningful differences in their biological consequences.

https://doi.org/10.1073/pnas.2400304121

Experimental data, from both this work and from previous
studies (24, 29, 41), generally favors colimitation models (e.g.,
Poisson arrival time/synthesizing unit, additive) over law of the
minimum-—type models without colimitation (e.g., Blackman and
Liebig models), but distinctions among colimitation models are
difficult to resolve with these data. On one hand, the quantitative
behavior of these models is broadly similar; theoretical work has
argued that some models are just different approximations of
the same underlying process (24, 28). In this case the chosen
formalism may not matter for some outcomes such as stability of a
microbial community (54). On the other hand, the models differ
primarily at low resource concentrations, which is why they are
hard to differentiate in laboratory experiments but also suggests
that the consequences of these different models may be realized,
and thus detectable, in contexts where low concentrations matter.
This may include biogeochemical processes, evolution (where
small differences between models can lead to large differences
over time), or when resources are consumed for maintenance as
well as growth (S7 Appendix, section S3).

What Mechanisms Might Cause Colimitation? Intuitively, re-
source colimitation implies an interaction between resources
such that their limitation states align (4). The most direct
examples include biochemically dependent resource colimitation
and substitutable resource colimitation (57 Appendix, section S2
and Fig. $4); however, indirect mechanisms are also possible, in-
cluding metabolic bottlenecks and tradeoffs due to constraints on
molecular composition, resource uptake, and energy utilization
that are exacerbated when multiple resources are rare. Systems
biologists have predicted the possibility of resource colimitation
resulting from fine-scale molecular networks and especially
stoichiometric flexibility, which could be a direct result of growth
optimization in resource-colimited conditions (23, 40, 55). In
microbial communities, colimitation could also result from het-
erogeneity in resource preferences and biomass stoichiometries,
such that different organisms are limited for different resources,
causing community-level colimitation (13). This mechanism
could be an indirect result of community formation, or it could
involve direct metabolic dependencies among organisms (12).
Similar biological heterogeneity could occur even in clonal
populations if there is phenotypic heterogeneity (56), for in-
stance, if a subset of the population is primarily limited for one
resource while another subset is limited for another resource.
Environmental heterogeneity can also be a factor, as it has
been suggested that microscale environmental “patchiness” could
reduce the chance that cells encounter both necessary resources
quickly. Stochasticity may be a cause of either biological or
environmental heterogeneity even if this averages out at larger
scales, as our consistent observations of colimitation in laboratory
populations show. Our quantitative framework can be applied to
all of these scenarios since it is agnostic to the mechanism of the
colimitation.

Are Microbes Actually Colimited in Nature? Our evidence of
colimitation in E. coli for two essential resources at naturally
relevant concentrations (Fig. 3B), as well as our estimates of
colimitation from environmental data (Figs. 4 and 5), highlight
a need for closer attention to resource colimitation in nature.
Our example shows that it can be difficult to access growth
rate limitation in laboratory experiments due to the difficulty
of reducing background contamination as well as biological
adaptation to low resource concentrations. In our case, expression
of the ammonium transporter AmtB likely helped E. coli to
maintain high growth rates across a wide range of ammonium
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concentrations (46). Therefore it may be more effective to directly
test colimitation in nature using in situ incubation experiments
where the full environmental context can be considered, includ-
ing implicit factors that may not be represented in the laboratory
(SI Appendix, section S1). Many studies have attempted these
measurements and reported evidence of colimitation across a
range of systems (4); for example, factorial supplementation
experiments have suggested that colimitation frequently occurs in
the surface ocean (1, 5). However, so far it has been challenging to
assess the results of these datasets because of the shortcomings of
supplementation experiments (as described in the Introduction;
SI Appendix, Fig. S1), and because the data are biased toward
certain ecosystems (marine and freshwater) and metabolic types
(photosynthetic organisms) (4, 19, 57). Thus, it is not yet possible
to statistically test the hypothesis that resource colimitation is
common across organisms, environmental contexts, and outside
of specific biochemical dependencies.

One alternative to factorial supplementation experiments is
to develop molecular biomarkers of colimitation to measure in
situ. These are already being explored in marine biogeochemistry
and human microbiome contexts for single resource limita-
tion (1, 58, 59). If resource colimitation represents a distinct
physiological state of cells, it is possible that specific biomarkers
for resource colimitation can also be identified. The biomarker
approach has the benefit of avoiding experimental artifacts of
laboratory or in situ perturbations, and may be able to identify
how strain and even substrain level resource limitations vary in
the community (60). Our quantitative definitions of limitation
coefficients L will help to more rigorously calibrate limitation
conditions for biomarker identification.

Comparing Colimitation of Growth Rate Versus Growth Yield.
Our results demonstrate that different resources may be limiting
for growth rate versus growth yield [also known as kinetic versus
stoichiometric limitation in other work (3)], and that resources
become rate- or yield-limiting at different concentrations (with
growth rate limitation usually occurring at lower resource concen-
trations; Fig. 3B). For microbes, growth rate limitation is likely to
be more important to evolution, since growth rate is under direct
selection while growth yield is often not [depending on spatial
structure and privatization of resources (61)]. Yield limitation,
on the other hand, can be an important parameter in situations
where we care about environmental and ecological composition,
like elemental cycling in the ocean or total production in
biotechnology (62—64). Since the possibility of tradeoffs between
growth rate and growth yield has received significant attention
in the past [despite limited empirical evidence (65, 66)], we
note here that distinct resources limiting rate versus yield will
not cause these tradeoffs to evolve in the first place [since yields
evolve neutrally in the absence of spatial structure (61)], but an
existing tradeoff could maintain distinct resources limiting rate
and yield.

Growth Limitation Beyond Resources. In this work, we focus
on chemical resources such as carbon and nitrogen sources, but
the availability of physical resources such as light and space can
also limit population growth (67-69). In the ocean, predators
and viral lysis kill a substantial number of cells per day and
have quantitative effects on growth rates and standing stocks
of microbes (70, 71). In host-associated microbiomes, such as
the human gut, viral lysis also plays a role, as does the host
immune system (72, 73). In all of these contexts, there is also the
possibility of intermicrobial warfare such as toxin release, as well
as the opposite, promotion of growth through quorum-sensing
PNAS 2024 Vol. 121
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behaviors due to the presence of other bacteria (74, 75).
While the dependence of growth on these other factors is
likely more complex than it is on chemical resource availability
(e.g., nonmonotonic dependence), it is possible to extend the
limitation metrics we present here to these cases as well, such
that one can consider multiple factors at once (e.g., resource
availability and virus concentrations).

Goals for Future Work. One of the most pressing questions is
whether resource colimitation is a common or rare state; we
propose performing systematic scans of field samples across
gradients of multiple resource concentrations to estimate L and
M., and performing these experiments in a variety of natural
systems. We note that this approach is applicable not just to
microbes, but across biological systems. The time is also ripe to
identify underlying mechanisms of colimitation, which is possible
by performing precise physiological comparisons of limitation
conditions. For instance, such experiments could address at
which level to coarse-grain mechanisms (e.g., whole proteome
allocation versus specific biochemical reactions) and identify
biomarkers of colimitation that could be leveraged in natural
contexts, including potentially in higher trophic-level organisms.
At the same time, it will also be important to identify how these
molecular mechanisms within individual cells and populations
are layered to determine colimitation in microbial communities.
Last, we believe it is important to test the effect of colimitation in
experimental evolution, ecosystem, and biogeochemical models
to understand the extent to which this phenomenon impacts
broader outcomes for the prediction, management, and use of
microbial growth.

Materials and Methods

Numerical Methods. We performed all numerical calculations in Python
version 3.10.9, using tools from NumPy (76) version 1.24.1 and SciPy (77)
version 1.10.0. We used the Python random module with seed = O foranalyses
with random number generation (bootstrapping and noisy data simulation). We
prepared all figures using Matplotlib (78) version 3.9.1. Code for reproducing
all analyses and figures is available at: https://github.com/proteoceanLab/
Heldetal2024_Nutrient_Colimitation_Theory (81).

Measurement of Growth Rates from Luminescence Growth Curves. For
luminescence growth curves we used the E. coli strain K-12 MG1655 pCS-
A (79), which contains a plasmid under kanamycin selection with a luciferase
protein expressed under the constitutive lambda CS promoter, and a modified
M9 minimal medium base without nitrogen: 12.8 g/L Na,HPO, heptahydrate
(Sigma Aldrich BioXtra grade lot SLBV4967, CAS $9390-500G), 3 g/L KHoPO4
monobasic (Sigma Aldrich ACS grade lot SZBF350AV CAS P0062-500G), 0.5 g/L
NaCl (Sigma Aldrich BioXtra grade lot SYBG1530V CAS S7653-250G), 2 mM
MgS0y hexahydrate (Sigma Aldrich ACS grade lot BCBT5460), and 50 pg/mL
kanamycin (Sigma Aldrich CAS 70560-51-9 1ot 0000130025). We selected three
colonies of the strain from an agar plate to serve as biological replicates. We
grew separate overnight cultures of each replicate in the base medium along
with 10 mM D(+)glucose (Sigma Aldrich BioXtra grade lot SLBW5196 CAS
(7528-1Kg) and 20 mM ammonium chloride (Sigma Aldrich ACS Reagent
lot STBH3180 CAS 31107-500G). After 16 h of overnight growth, we collected
the cells by centrifugation and washed each replicate culture three times in
the base medium without glucose and ammonium, then adjusted the OD
at 600 nm of each culture to 0.01 by diluting into the base medium. We
prepared gradients of glucose (0 to 2 mM) and ammonium chloride (0 to 1
mM) in the base medium and aliquoted them into three white-walled, flat-
bottom 96-well plates (Corning). We then diluted each replicate culture at
a 1:100 ratio into the wells of its corresponding plate, resulting in a final
0D of 10~% in 200 pL at time zero for the growth curve experiments. We
grew the cells at 37 °C for 22 h in three separate Biotek Synergy H1 plate
readers (Agilent Technologies, Inc.), with measurements of luminescence every
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10 min (orbital shaking of 155 prior to each measurement, luminescence
integration time of 3's). We analyzed the growth curves by 1) performing a
background correction of the data using media blanks with no cells added,
2) selecting a time interval of approximate exponential growth, 3) performing
linear regression of the log-luminescence in that interval, and 4) quality control
based on RZ forthelinear regression and manual inspection of the fit(Dataset S1;
Sl Appendix, Figs. S7-S9).

Measurement of Growth Yields from Optical Density Growth Curves. For
0D growth curves we used the E. coli strain K-12 MG1655 (also containing a
chromosomal GFP not used in this experiment) and a modified M9 minimal
medium base without nitrogen: 6 g/L Na,HPO,4 (VWR Life Science, 0404, CAS:
7558-79-4), 3 g/LKH,PO4 (VWR Chemicals, BDH9268, CAS: 7778-77-0),0.5 g/L
NaCl (VWR Chemicals, BDH9286, CAS: 7647-14-5), 1 mM MgS0O, (J.T. Baker,
2506-01, CAS: 7487-88-9),and 0.1 mM CaCl (VWR Life Science, 1B1110, CAS:
10043-52-4). We selected three colonies of the strain from an agar plate to serve
as biological replicates. We grew separate overnight cultures of each replicate in
the base medium along with 40 mM glucose (VWR Chemicals, BDH9230, CAS:
50-99-7)and 40 mM ammonium chloride (VWR Life Science, 0621, CAS: 12125-
02-9). After 16 h of overnight growth, we collected the cells by centrifugation and
washed each replicate culture five times in the base medium without glucose
and ammonium, then adjusted the OD at 600 nm of each culture to 0.02 by
diluting into the base medium. We prepared gradients of glucose (0 to 40 mM)
and ammonium chloride (0 to 40 mM)in the base medium and aliquoted them
into three transparent, flat-bottom 96-well plates (Corning). We then diluted
each replicate culture at a 1:2 ratio into the wells of its corresponding plate,
resulting in a final OD of 0.07 in 200 pl at time zero for the growth curve
experiments. We grew the cells at 37 °C under shaking conditions (500 RPM) for
241 in the Biotek LogPhase 600 plate reader (Agilent Technologies, Inc.), with
measurements of OD at 600 nm every 10 min. We analyzed the growth curves
by 1) performing a background correction of the data using media blanks with
no cells added, 2) selecting a time interval of approximate stationary phase, 3)
taking an average of the OD in that interval, and 4) quality control based on the
coefficient of OD variation during the stationary interval and manual inspection
of the fit (Dataset S2; SI Appendix, Figs. S10 and S11).

Analysis of Resource Scan Data. We fit growth rate and growth yield scans
over resource concentrations to models (S/ Appendix, Table ST and section S2)
using scipy.optimize.curve_fit for least-squares minimization. We
supply initial guesses for each parameter: for the trait value at saturation, we
guessthetraitvalue measured atthe maximum concentrations of both resources;
for the affinities (growth rates) and stoichiometries (growth yields), we guess
the maximum trait value divided by half the measured concentration range.
We guess exponents of 1 for the Hill and generalized-additive models and zero
minimum resource concentrations for models with Rnj, parameters. We bound
all fitted parameters to be nonnegative. We calculated the Akaike information
criterion (corrected for small sample size) for each model fit using

n )2
A|c_2n+n|og<z”(f’ y’)>_2k<nftl1)’ 7]

n—k

where n is the number of data points, y; is the ith measured data point, f; is
the fitted value for that data point, and k is the number of parameters in the
model (80). We calculate the relative Akaike weight for a model « as
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wherethe sumisoverall fitted models. To generate the bootstrapped datasets, we
randomly sample one of the three replicate measurements at each concentration
condition and subject 100 datasets generated in this way to the same analysis.

Simulated Datasets. We simulate resource scan datasets by taking a model
with parameters fit to the experimental data (either growth rate or growth
yield) and generating trait values predicted by the model at the same resource
concentrations used in the experiments. We add Gaussian noise to each

https://doi.org/10.1073/pnas.2400304121

measurement with mean zero and SD that is a linear function of the trait value at
that point; this linear function is obtained by performing a linear regression of
the SD of growth rates or yields across replicates to the mean growth rate or yield
across replicates (see S/ Appendix, Figs. S16 and S26, for parameter values).

Inferring Supplementations from Resource Scans. Let {Rglu,i} and
{Ramm,j} be the sets of glucose and ammonium concentrations in our

resource scan data. We calculate limitation coefficients for supplementations
by iterating over each pair of background concentrations Rylu,ir Ramm,j and each

supplemented concentration Ry, x > Ry, ; and Ramm,¢ > Ramm,j- For each
combination we calculate limitation coefficients as finite differences (Eq. 1):
rate - _ R9|Uri
glu,ijk 9(Rgly,ir Ramm,j)
o 9(Rglu ks Ramm,j) — 9(Rgu,ir Ramm,)
Rglu,k - Rglu,i

[9]
rae = _ &
ammje 9(Rgty,ir Ramm,)
» g(Rqu,/’f Ramm,e) — g(Rglu,ff Ramm,j)

Ramm,/é - Ramm,j

We perform an analogous analysis for the growth yield data.

Collection and Analysis of Environmental Data. We collected 20 studies
in which the parameters of the Monod growth model (gmax and K) for two
resources were measured for the same species and strain. We extracted these
data from a broader literature review of Monod parameters that we conducted
earlier (39). Whenever possible, we estimated background environmental
nutrient concentrations (i.e., the concentrations the organism is expected to
experience in the environment from which it was isolated) from data provided
in the original manuscript. When this was not provided, we estimated a range
of environmental concentrations from the expected habitat of the organism.
For instance, for E. coli sp. K12, we selected representative environmental
concentrations of resources in the human gut (higher concentrations) and in
soils (lower concentrations). For marine diatoms, we selected representative
environmental concentrations of high-nutrient regions (coastal upwelling zones)
and low-nutrient regions (surface open ocean). In some cases, the expected
resource concentration range is large and spans at least an order of magnitude,
in which case we took the midpoint of that range for calculations. Using the
measured Monod parameters and estimated environmental concentrations,
we calculated limitation coefficients using four common models (S/ Appendix,
Table ST and section S2).

Data, Materials, and Software Availability. Code to reproduce the anal-
yses have been deposited in GitHub (https://github.com/proteoceanLab/
Heldetal2024_Nutrient_Colimitation_Theory) (81). All other data are included
in the manuscript and/or supporting information.
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S1. Mathematical properties of limitation coefficients and the effective number of limiting factors

A. Quantitative interpretation of the limitation coefficient. Here we provide a quantitative interpretation of the limitation
coefficient; we explain this in terms of the growth rate limitation coefficient L™' (main text Eq. 1), but these points apply
similarly to the growth yield limitation coefficient LY. Consider a small change Ar in a limiting process rate r (e.g., a
resource uptake rate proportional to its external concentration as in main text Eq. 4). The growth rate changes according to

Ar r 0
=g(r) (1 + rg(r)(?i) [S1]

=g(r) (1 + Aerte) .

r

Hence we can think of L'* as the approximate factor by which a small relative change in the rate r changes the relative
magnitude of growth rate. For example, if L***® = 1, then any relative change in r entails the same relative change in g: a
1% change in r means approximately a 1% change in g. If L***® = 0.5, then any relative change in r entails only half that
relative change in g: a 1% change in r means approximately a 0.5% change in g. Equivalently, we can think of L™ as being
the exponent of the power-law scaling of g with r, at a particular value of r:

Lrate

g(r) ~r [S2]
B. Range of limitation coefficient values. For the growth rate limitation coefficient Li**®, we expect L}**® = 0 at high values of
r;, when process i is saturating and no longer limiting. At low values of r;, L:**® = 1 usually, meaning that g is proportional to
r;. This range holds for most common models of growth rate dependence on resource concentrations (section S2), such as
the Blackman (main text Eq. 5) and Monod (main text Eq. 6) models. However, negative values are possible if growth rate
decreases with increasing r, as would occur if process i is uptake of an antibiotic; uptake of some resources may also be toxic at
extremely high concentrations. Values greater than 1 are possible if the growth rate scales super-linearly with r;, as occurs for
the Hill model of growth rate (1) (also known as the Moser model (2) or Holling Type III model (3)). This may occur if the
process in question involves cooperativity or sensing of a threshold before activation. These bounds generally hold for growth
yield limitation coefficients Lfield as well, at least for the phenomenological models considered in this work (section S2).

C. Proof of normalization for limitation coefficients. Let the total growth rate g of biomass be a function of M individual
processes with rates r;:

g=g(ri,re,...,Tn). [S3]

Since both g and the individual rates r; must have units of per time, then g must depend on the rates according to the
functional form

g(’l“l,’f’z, e ,7’1\4) = ijj (Tl, 727 ey b, 7374»17' “ey W) . [84]
ry Ty rj T T

We can argue this by dimensional analysis: we must be able to write g as the product of one rate r; (to give g the same units)

and a dimensionless function f; of all other rates which must depend only on the M — 1 dimensionless ratios of the rates. By

symmetry this form holds for any rate r; but with a different function f;. In the case of the Monod model for a single resource,

let 71 = aR be the rate of resource uptake and 72 = gmax the rate of downstream metabolism. We can thus write the growth

rate (main text Eq. 6) as

riT2
1+ 72

=r1fi (%) [S5]
e 2)

where fi(re/r1) = 1/(r1/r2 + 1) and fa(ri/r2) = 1/(r2/m1 + 1).
We can now calculate the sum of limitation coefficients according to this functional form. First, for ¢ # j,

g(ri,re) =

Lr_ate_ Qag
i =
g Or;
paf® (mLore o TicioTivy v [S6]
_ J L] T35 T35 T
- )
f (T T2 Ti=1 Tit+1 M
T]fj('rj’rj7"'7 r; 0T 7~~~7Tj>
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where the superscript (i) means that we take the derivative of f; with respect to the argument in which r; appears (the ith
argument for ¢ < j, and the (i — 1)th argument for ¢ > j). When ¢ = j, the limitation coefficient is

L(ate_ﬁag
J garj
T [T T2 Ti—1 Tjt+1 M _ Ti () [T1 T2 Ti—1 Tjt+1 M
7? f] ;777"'7 e o D - ﬁf] ;777"'7 e Lo L
A J J J it A J J J [Sﬂ
(@) (1 T2 Ti=1l Tit1 M
rif; T T T

:1_2

— p.f. [T T2 Ti=1 Tit+1 M
z#] T]fj (Tj’T‘j7...7 rj 9 T ’.“’Tj

Thus L =1-3". . L{*, and hence Z]\f L}** =1 (main text Eq. 2).
i#£] i=1
Note that this normalization condition holds even if some limitation coefficients have values outside the range 0 to 1; this
means that if one process has limitation coefficient greater than 1 (as occurs, for example, in the Hill model of growth rates (1)),
there must be at least one process with negative limitation coefficient. We can apply a similar argument to show normalization
of yield limitation coefficients if we assume biomass depends on all limiting factors via contributions that also have units of
biomass; for example, biomass depends on a resource R times a stoichiometric factor with units of biomass per unit resource.

D. Colimitation among a subset of limiting factors. While the definition of the effective number of limiting factors Mg in the
main text (main text Eq. 3) is over all possible factors (e.g., the maximum in the denominator is over all limitation coefficients),
sometimes we want to consider the effective number of limiting factors among just a subset of factors. We can do this by
renormalizing each limitation coefficient by the sum of limitation coefficients in that subset. That is, among a subset of factors

S we define the relative limitation coefficients as I
i

Zjes L
and calculate the effective number of limiting factors within just that subset:
1

maxies Li,s
1

L, [S9]
maxiecs | —=—+—
© <Zjes Lj)
Zies Li

maxies L;

Lis = (S8]

Meff,S =

For example, in our experiments with varying glucose and ammonium, we may wish to calculate colimitation between just
glucose and ammonium, besides calculating the total amount of colimitation among glucose, ammonium, and implicit factors.

E. Range of the effective number of limiting factors. If all limitation coefficients are between 0 and 1, then the effective number
of limiting factors Mg (main text Eq. 3) always ranges from a minimum of 1 (when all limitation is for a single factor) to
M, the total number of limiting factors under consideration. Note that when we coarse-grain multiple limiting factors (e.g.,
invariant resources or internal processes such as transcription and translation) into a single implicit factor, they count only as
one limiting factor toward Mes.

However, this range of Meg can be different if some limitation coefficients are less than 0 or greater than 1. For example,
assume we have three factors with limitation coefficients Ly = 1, Ly = 0.5, and Ls = —0.5 (L1 + L2 + Ls = 1). The effective
number of limiting factors, among all three factors, is Meg = 1: there is one maximally limiting factor, another factor that is
half as limiting, and a third factor that is negatively limiting at half the magnitude of the most limiting factor, which cancels
the second half-limiting factor, leaving effectively just one limiting factor. We can also look at colimitation between subsets of
these factors (section S1D). The effective number of limiting factors among the first two factors is Mg (1,27 = 1.5. However,
the effective number of limiting factors among the first and third factor is Meg (1,33 = 0.5, and the effective number of limiting
factors among the second and third factor is Mg (2,33 = 0.

F. Geometric interpretation of the effective number of limiting factors. When all limitation coefficients range between 0 and
1 (as is the case for most common models of growth rate and yield), the normalization condition Eq. 2 (main text) means
that the limitation coefficients form an (M — 1)-simplex for M total limiting factors (Fig. S2). (Despite the normalization
condition, they will not form a simplex in scenarios where limitation coefficients can be negative or greater than 1, as occur in
the Hill model or in the presence of antibiotics.) In this case, we can think of the effective number of limiting factors Meg
(main text Eq. 3) as a measure of distance (not Euclidean) to the center of the simplex, where there is maximum colimitation
(all limitation coefficients have the same value 1/M; Fig. S2). Geometrically, Mg is equivalent to taking whichever limitation
coefficient is maximum (corresponding to the vertex closest to the point in the simplex where the population is), measuring the
value along that axis (max; L;), and finally taking the reciprocal of that value, so that higher Mg means smaller distance to
the simplex center (greater colimitation).
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G. Quantifying the additivity of colimitation. Besides the effective number of limiting factors, another quantitative aspect of
colimitation is its additivity (not to be confused with the additive model of growth rate or yield dependence on resources;
section S2). This has been a major focus of previous studies that use supplementation experiments (Fig. S1) to test for
colimitation (4, 5). For the following we focus on growth rate g with two variable resources (R: and Rs2), but this can be
generalized to growth yield N and additional resources as well. Let AR; be the supplemented concentration of resource 1 on
the background concentration R;, and let AR be the supplement for resource 2 on the background R2. Define the additive
effect of these two supplementations as (4, 5)

AE = |g(R1 + AR1,R2 + AR») — g(R17R2):| - l:g(Rl + AR:1,Ry) — g(Rth):l - |:g(R1,R2 + AR2) — g(R1, R2)|. [S10]

That is, AE is the change in growth rate from supplementing both resources simultaneously, minus the effects of supplementing
each resource individually. This is analogous to the concept of epistasis in genetics, which quantifies the additive effect of
combining two mutations (6). Using this quantity we can classify the response as sub-additive (AE < 0), additive (AE = 0), or
super-additive (AE > 0) (Fig. S1). In general AE depends on the specific supplemented concentrations AR; and ARy as well
as the background concentrations R; and Rz. To obtain a simpler property of a given growth rate model, we can calculate this
property for infinitesimal supplementations on each background condition:

lim &
AR1,AR>—0 AR1AR>
— lim [9(R1 + ARy, R2 + ARs) — g(R1, R2 + AR2)| — [g(R1 + ARy, Ra) — g(Ra, R2)]
o AR1,AR2—0 AR1AR2
_ 9?g(R1, R»)
OR10Ry

Oz(Rl, Rg) =

[S11]

Thus the first derivatives of growth rate with respect to resource concentration indicate whether there is colimitation at all
(through the limitation coefficients and the effective number of limiting factors), while the second derivatives indicate the
additivity of that colimitation.

H. Effect of implicit resources on empirical estimates of limitation and colimitation in natural environments. In Fig. 4B,C
we estimate growth rate limitation coefficients and the effective number of limiting resources for several species in natural
environments. One caveat of these estimates is that they are based on measurements of growth rate response and environmental
concentration of only a few resources for each species. It is therefore important to address the possible effects of implicit,
unmeasured resources on this analysis.

Let resource 1 be the focal, variable resource (one of those reported in Dataset S3 and plotted in Fig. 4), and let resource
2 be an implicit resource that was not measured or varied. The implicit resource 2 enters at two points in our analysis.
First, it enters in the measurement condition for the growth rate response, where it could affect the measured half-saturation
concentration Kj. In previous work we showed how the concentration of an implicit resource in that condition affects the
apparent half-saturation concentration of a variable resource (7). Ideally, R is sufficiently high in those measurement conditions
so that K; does not depend on it; each model we consider for this analysis (Liebig Monod, PAT, additive, and multiplicative
Monod) has the property that the model for M resources reduces to the same model for M — 1 resources if one of the resource
concentrations is taken to infinity (section S2). However, if Rs is low enough (e.g., R2 ~ K3) in the measurement condition for
growth rate response, it may bias measurements of K. For example, the measured value of K; will underestimate its true
value under the Liebig Monod, PAT, and additive models, although for the multiplicative Monod model the measured K; does
not depend on R» even at low concentrations (7).

The second point in our analysis at which implicit resources could affect the outcome is in the natural environment condition
where we aim to estimate the limitation coefficients. In our analysis, we assume the growth rate response of the organism in
the natural environment is the same as in the measurement conditions for K (e.g., in a laboratory experiment). However, this
assumption could break down if the implicit resources have much lower concentrations in the natural environment compared to
the measurement condition. We can use the plots of the growth rate models in Fig. S3 to deduce how an implicit resource
would quantitatively affect our estimates of limitation for the variable resource. For example, the contours in the second row of
Fig. S3 tell us how the limitation coefficient L}**® of a measured resource 1 is affected by the concentration Rz of an implicit
resource 2. If the implicit resource is at high concentration Rz relative to its half-saturation concentration Ko, then it has little
effect on the limitation coefficient of the variable resource (i.e., blue contours of L}**® depend only weakly on R for high R»)
under the PAT and additive models, and for the Liebig Monod and multiplicative Monod models it has no effect at all since
the blue contours are vertical. This is the ideal case where the natural condition matches the measurement condition (implicit
resource is saturated in both cases). However, if the implicit resource is low relative to its half-saturation concentration, then
the limitation coefficient estimated without the implicit resource will always be an overestimate of the true value (i.e., the
variable resource is not as limiting as one would think because the implicit resource is also significantly limiting). For the Liebig
Monod model, the true limitation coefficient for the variable resource may even be zero if the implicit resource is sufficiently
scarce. For the multiplicative Monod model, the limitation coefficient for the variable resource remains independent of all other
resource concentrations. Therefore, the limitation coefficients we calculate in Fig. 4B are at worst upper bounds on the true
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limitation coefficients in the natural environments, all other aspects of the environments being equal. This bound holds for
most other phenomenological growth rate models as well (section S2), with a few exceptions (e.g., the Mankad-Bungay model).

An alternative way to understand the effects of implicit resources is through the parameter gmax, which is the maximum
possible growth rate when limited only by implicit factors (the variable resources are saturated and not limiting at all). This
parameter therefore depends on the concentrations of the implicit resources. An equivalent framing of the foregoing argument
is whether gmax in the measurement condition for the growth rate response is the same as gmax in the natural environment;
if it is, then the limitation coefficient estimates for the variable resources in the natural environment already include any
contributions from implicit resources. However, if gmax is significantly different in the natural environment (e.g., much lower
because implicit resources are at much lower concentrations), then those limitation estimates may be overestimates because
they do not include sufficient limitation from the implicit factors.

Finally, we address the effect of implicit resources on colimitation, as quantified by the effective number of rate-limiting
resources M 5" (Fig. 4C). Here we calculate colimitation only between the two variable resources (Eq. S9), rather than
colimitation between them and implicit resources (which would require knowing gmax in the natural environment). For the
Liebig Monod, additive, and multiplicative Monod models we use in the analysis, implicit resources in the natural environment
condition do not affect colimitation between the variable resources. The effect of implicit resources on colimitation is trivial
in the Liebig Monod model, since M3 = 1 always by construction. In the multiplicative Monod model, the limitation
coefficients for the variable resources do not depend on the implicit resources in the natural environment, so their colimitation
is also unaffected. In the additive model, implicit resources can reduce the limitation coefficients for the variable resources
(as aforementioned), but they do so through the denominator in Eq. S42, which is the same for each variable resource. Since
the effective number of limiting resources between the two variable resources depends only on the ratio of their limitation
coefficients (MIg* = (L5 4+ L5*®)/ max(L}*"®, L)), the effect of the implicit resources cancels. For the PAT model, though,
implicit resources do not rescale the limitation coefficients for the variable resources equally (i.e., see Eq. S38), and thus they
could affect estimates of colimitation under that model. If the implicit resources in the natural environment are lower than in
the growth rate response measurement condition, then the estimated degree of colimitation between the variable resources will
be an overestimate.

S2. Phenomenological models of growth rate and growth yield colimitation

Many different mathematical models of how growth rate depends on resource concentrations have been studied in the literature.
For the most part these models have been introduced and used phenomenologically, although recent work has proposed that
some models may represent different approximations of the same underlying process (8-10). Here we summarize a variety of
the most common models, discussing their mechanistic interpretations (if any) but with a particular focus on their limitation
properties. These models have almost all been devised for growth rate, but we apply them phenomenologically to growth yield
as well. Table S1 lists all models for a generic growth trait z (which represents either growth rate g or growth yield N) in
the special case of two variable resources, which we use for fitting our scans of E. coli growth across glucose and ammonium
concentrations (Figs. S14 and S24).

Each model has the form of either growth rate g or growth yield N as a function of R = (R1, Rz, ..., Ram), the vector of the
M variable resource concentrations. All growth rate models include the parameters gmax, which is the maximum growth rate g
when the variable resources R; are unlimited and captures limitation by implicit factors (other resources that are not varied as
well as internal processes such as a transcription and translation), and the specific affinity a; for each resource ¢, which is the
growth rate per unit resource ¢ when resource ¢ is rare. The mathematical equivalents of these parameters for growth yield N
are the maximum yield Nmax and the stoichiometry s;, which is the amount of biomass produced per unit resource ¢ when
resource 17 is rare. For each model we express its mathematical form as well as calculate its limitation coefficients L; (main
text Eq. 1) for each variable resource i and the effective number of limiting factors Mg (main text Eq. 3). The limitation
coefficient for the implicit factors is determined by the normalization condition Lf,?fg =1- Zresoumei L** or equivalently by
taking derivatives with respect to gmax, since that is the rate of the implicit processes:

praie _ gmax 09 [S12]
g Ogmax

with an analogous expression in the case of growth yield limitation for Lf’,ii])d. An important property of each model is how
resources coarse-grain into these implicit factors (9). For example, if we consider a model with explicit sources of carbon,
nitrogen, and phosphorus, how does it coarse-grain into a model with only explicit sources of carbon and nitrogen (with
phosphorus fixed)?

The growth rate models discussed in this section are alternatively parameterized using the half-saturation concentrations
K; = gmax/a; instead of the specific affinities a; (7). However, we favor parameterizing in terms of the specific affinities for two
reasons. First, this parameterization better aligns with the mechanistic interpretations of these models (where a; is the uptake
rate of resource ¢ per unit resource; main text Eq. 4). Second, this parameterization explicitly isolates the dependence on the
implicit factors into the maximum growth rate gmax, which is otherwise conflated with the affinities in the parameterization
using K;. In particular, that makes it more complicated to correctly calculate limitation by the implicit factors (Eq. S12) and
verify the normalization condition (main text Eq. 2).
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Model name Parameters Formula for trait = (growth rate g or growth yield N) Colimitation Colimitation
between with implicit
resources? factors?

R R
Liebig Blackman | zmasx,c1,c2 Zmax Min (Cl 2 f2fi 1) No No
Zmax Zmax
R R
Liebig Monod Zmax,C1,C2 Zmax Min ( am c27%2 ) No Yes
c1R1 + Zmax  c2R2 + Zmax
. . (01R1)"1 (caR2)™?
Liebig Hill ,C2,C2, s No Yes
? P20 | et (@ o R
Liebig Bertalanffy | zmax,c1,c2 Zmax IMin (1 — 2= B/ Zmax 2*°2R2/z*m) No Yes
R R
Multiplicative Zmax,C1,C2 Zmax Min (Cl 2 R 1) - min (Cz 2 s 1) Yes (super- | No
Blackman Zmax Fmax additive)
R R
Multiplicative Zmax,C1,C2 Zmax ( ah ) ( c2lt2 ) Yes (super- | Yes
Monod c1R1 + Zmax c2R2 + zZmax additive)
Ry)™ Ro)"™2

Multiplicative Hill Zmax,C2,C2, Zmax ( (e1ft) = ) ( (c2Ft2) = ) Yes (super- | Yes

ni,n2 (c1R1)™ + zmax / \(c2R2)™ + zmax additive)

Multiplicative Zmax,C1,C2 Zmax (1 — 27 Rl/z"'w) (1 - 2*C?R2/zmax) Yes (super- | Yes

Bertalanffy additive)

RicaR R R

Poisson arrival Zmax,C1,C2 Zmax c1liea Ra(e B + c; 2) 5 Yes (super- | Yes

time (PAT) / syn- c1RicaRa(c1R1 + c2R2) + Zmax((c1R1)? + c1 Ric2 Rz + (c2R2)?] additive)

thesizing unit

1

Additive Zmax,C1,C2 — Yes (super- | Yes

(c1R1)=1 + (caR2)~1 + zmax additive)

RicaR 1 1
Mankad-Bungay | Zmax.C1.C2 Zmax ( e ) ( + ) Yes (super- | Yes
c1R1 + coRa c1R1 + zZmax  C2R2 + Zmax and sub-
additive)
1

Generalized addi- | zmax,C1,C2, ¢ 7a Yes (super- | Yes

tive ((1R1) ™7 + (c2R2) ™7 + 2md) additive
qg > -1
sub-additive
q<-1)

R R.
Saito substitutable Zmax,C1,C2 Zmax RCI ! —;Cz 2 Yes (sub- | Yes
c1R1 + c2R2 + zZmax additive)
1 C1 R1 1 02R2 .
Mean Monod ZmaxC1,C Zmax | = - Yes (additive Yes
max ez e (2 c1R1 + Zmax 2 c2Ra + Zmax) ( )
Ric2R

Chemically- Zmax,C1,C2 Zmax TR c1ticz 2R Yes (super- | Yes

dependent c1R1ca2R2 + Zmax(c2R2 + Zmax) and sub-
additive)

Table S1. Summary of all trait models for fitting resource scans. Each model has a corresponding version (labeled with the suffix “Rmin”) in which the
resource concentrations R, and R» are shifted by additional free parameters R1 min and R2 min. When the trait z is growth rate g, the maximum trait
parameter is zmax = gmax and the coefficients are c¢; = a;, the specific affinities. When the trait z is the growth yield IV, the maximum trait parameter is
zmax = Nmax and the coefficients are ¢; = s;, the biomass to resource stoichiometries. See Figs. S14 and S24 for fits of all these models to the growth
rate and growth yield data.
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A. Liebig models. This is arguably the most widely-used class of models of multiple-resource dependence (8, 10-13), likely due
to its mathematical simplicity. It is inspired by the Law of the Minimum attributed to Justus von Liebig (14): that only a
single resource determines growth rate under any given set of conditions. Heuristically, we can interpret this model for growth
rate as meaning that total biomass growth consists of multiple processes in parallel (uptake of each variable resource along
with all implicit limiting processes), such that the total rate of all processes is set by whichever process is the slowest (8, 10).
Mathematically, this is expressed as a minimum over a set of functions for each resource. As a result, none of these models
entail colimitation among variable resources, although some include colimitation between variable resources and implicit factors
(Table S1). The asymmetric treatment of the variable resources and implicit factors means that many of these models are not
robust under coarse-graining of the number of resources.

A.1. Liebig Blackman. The Blackman model for growth rate (main text Eq. 5) with one variable resource is a minimum function
of the uptake rate for that resource and the rate of all implicit processes (15), so the Liebig Blackman model extends this to a
minimum over all variable resources as well as the implicit factors:

resource ¢

g(R) = min [min (a; R;, gmax):|
[S13]

yeeey
Gmax YGmax Gmax

_ . ( a1R1 az2Ro aMRM)
= gmax min | 1, , .
Here we parameterize this model (rescaling each a; R; by gmax) differently than the Blackman model in the main text (Eq. 5) so
that the minimum function is dimensionless and can thus be rescaled by gmax overall to get the total rate. This is convenient
because it better matches the form of the other models (Table S1). Coarse-graining out a resource k depends on whether
ar Rk < gmax (i.€., resource k is more limiting than the implicit factors). If so, then we transform gmax — ax Ry to coarse-grain
the model into a new model for the remaining M — 1 resources, with resource k as the new dominant implicit factor. If
ak Rk > gmax, then we simply drop ay Ry from the minimum function (since it is never the minimum) and the model with the
same parameters holds for the remaining M — 1 resources.

The limitation coefficient for each variable resource is

R; ag
Lr_ate R G
i (R) y OR
i B (1, @B g2Be amBar) [S14]
— Zmax gmax gmax gmax

0 otherwise.

Therefore exactly one limitation coefficient (either for a resource L;** or for the implicit factors Lirf;f}f) is 1 while all others are
0, meaning there is no colimitation among variable resources or the implicit factors. Thus the number of limiting factors is
always M5 = 1.

For yield colimitation, the Liebig Blackman model is arguably the simplest model since it holds if we assume fixed
stoichiometry for all resources and that growth stops only once at least one resource is completely exhausted. For example, if we

assume that each unit of biomass requires exactly s; units of resource 7, then the total biomass yield must be (see section S3A)
N(R) = min (NmaX7S1R1,82R2,..,,S]WRN[). [815}

A.2. Liebig Monod. This is the most common form of Liebig model for growth rate (8, 10-13) although its empirical support is
weak, generally favoring other models when compared head-to-head (10, 16, 17). Here the minimum taken over individual
Monod models for each resource (Fig. S3, first row and first column):

. a;R;
g(R) = Gmax resrgllrriei (alRl -+ gmax> ’ [816}
One shortcoming of the Liebig Monod model is that it does not robustly transform under resource coarse-graining. If we are
coarse-graining a resource k at infinite concentration, then we can simply drop it from the minimum function to obtain the
model for the remaining M — 1 resources with no other changes. For example, the Liebig Monod model reduces to a regular
Monod model for a single resource if all other resources are unlimited. However, if Ry is finite, then the Liebig Monod model
does not coarse-grain into another Liebig Monod model, but a hybrid of the Liebig Monod and Blackman models, since the
Monod function for resource k will remain in the minimum function as a constant.
The limitation coefficient for each variable resource in the Liebig model is

R; 89
Lr_ate R _
i (R) 7 Ok,
Gmax o . a; R
———  ifi=argmin (| ———— |, S17
— aiRi + Gmax res%urcej (aj Rj + gmax> [ }
0 otherwise.
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Unlike the Liebig Blackman model, where all limitation is completely concentrated in either one variable resource or the implicit
factors, the Liebig Monod model always has nonzero limitation coefficient for one of the variable resources (with all other
variable resources having zero limitation), but that limitation coefficient is less than 1. This means that the Liebig Monod
model has colimitation between a variable resource and the implicit factors, but no colimitation between variable resources.
(Mathematically it is possible to have colimitation between the resources when there is an exact balance of the two resources
a;R; = a;R;, but we discount this possibility biologically since that fine-tuning is extremely unlikely.)

Figure S3 shows the limitation coefficients L}**, L}* (second row, first column) and effective number of limiting factors
M8 (third row, first column) for this model in the case of two variable resources. The lack of overlap between the contours of
L% (blue) and L5 (orange) represents the lack of colimitation between the resources, while the plot of M§* shows that the
only smooth regions of colimitation (M > 1) occur where either R1 & gmax/a1 or Ra & gmax/az2 (colimitation between one
resource and the implicit factors, Mg ~ 2). Conceptually, this asymmetric treatment of the variable resources and implicit
factors is why resources do not consistently coarse-grain into the implicit factors in this model.

A.3. Liebig Hill. The Liebig Hill model is similar to the Liebig Monod model but uses Hill models (1) (also known as the Moser
model (2) or Holling Type III model (3)) for each resource in the minimizing function, rather than Monod models:

0(R) = g min (it 18
resource % (aiRi)nl + g:;lax ’
where n; is a cooperativity coefficient for each resource. Hill dependence is uncommon in ecological and microbiology models,
but one study observed it for yeast auxotrophs growing on lysine (1). When n; = 1, the dependence is equivalent to Monod, but
n; > 1 creates cooperativity such that growth rate increases super-linearly with resource concentration at low concentrations.
In particularly, this allows for switch-like dependence such that growth rate depends only weakly on a resource when it is low,
but then rapidly jumps to a maximum concentration above a threshold concentration of that resource (1). The Liebig Hill
model has coarse-graining properties similar to those of the Liebig Monod model — one can only coarse-grain resources at
infinite concentrations to obtain reduced versions of the same model.
The limitation coefficient for each variable resource is

R; ag
Lgatc R _
i (R) 7 O,
Lﬂxn if § = arg min % , [S19]
_ (aiRi)n” + gmax resource j (aj R]) 7+ ngax
0 otherwise.

Like the Liebig Monod model, there is no colimitation between variable resources, but there is colimitation between the
most limiting variable resource and the implicit factors. Unlike the Liebig Monod and Liebig Blackman models, though,
the super-linear dependence in the Hill model means that limitation coefficients can be greater than 1 for some resources
(section S1B), which in turn means that other limitation coefficients must be negative so that the sum of limitation coefficients
remains normalized (main text Eq. 2). For example, when R; is extremely low, L}**® ~ n;, which will be greater than 1 if there
is cooperativity, while the limitation coefficient for the implicit factors must then be L3’ & 1 — n;, which will be negative if
n; > 1. This suggests that under a Hill model, increasing the implicit factors actually decreases growth rate when another
resource is strongly limiting. This also means that the effective number of limiting factors M3* can be less than 1 when
counting these negatively-limiting factors (section S1E).

A.4. Liebig Bertalanffy. This model is similar to the Liebig Monod and Liebig Hill models but uses the Bertalanffy model (16) for
each resource, which saturates more rapidly at high resource concentrations (exponentially) compared to the Monod and Hill
models (power laws):

g(R) = gmax min (1 - 2_aiR'i/gma") . [S20]

resource
The applicability of the Bertalanffy model is unknown since it is rarely used in ecological and microbiology contexts, with one
recent exception that found it did fit data better than other models (16). The Liebig Bertalanffy model has coarse-graining
properties similar to those of the Liebig Monod model — one can only coarse-grain resources at infinite concentrations to
obtain reduced versions of the same model.
The limitation coefficient for each variable resource is
R; 89
g aRi
Q; Ri log 2

Jmax 20iRi/gmax — 1

Liate(R) —

if i = argmin (1 — 27 % "/9mex) [521]

resource j

0 otherwise.

Its limitation coefficients and colimitation are qualitatively similar to those of the Liebig Monod model: just one variable
resource has limitation coefficient between 0 and 1, with all other variable resources having zero limitation. There is colimitation
between the one limiting variable resource and the implicit factors, but no colimitation between variable resources.
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B. Multiplicative models. Multiplicative models are also a common form of growth rate dependence on multiple resources (12,
13, 16). Heuristically, these models for growth rate are based on the law of mass action, in which a reaction rate is a product of
rates for input reactions. Muscarella and O’'Dwyer (8) showed that a multiplicative dependence of growth rate emerges when
implicit processes are slow compared to uptake of the variable resources, which is the opposite limit of the Liebig dependence
(when uptake is slow compared to downstream implicit factors).

In contrast to the Liebig models (no colimitation between resources, but sometimes colimitation with implicit factors), all
multiplicative models entail colimitation between variable resources, which is always super-additive (section S1G; Table S1).
The models vary, though in terms of whether there is colimitation with implicit factors. One salient feature of all multiplicative
models is that the limitation coefficient for each resource is independent of all other resource concentrations. As a result these
models robustly transform under coarse-graining of resources. Another consequence of this property is that when multiple
resources are colimiting (large limitation coefficients that sum to greater than 1), limitation of the implicit factors must be
negative to maintain normalization of total limitation. This means that increasing the implicit factors (e.g., gmax) would
actually decrease growth rate in that regime. It is unclear whether this is a biologically meaningful property, though, or an
indication that coarse-graining in these models is invalid (9).

B.1. Multiplicative Blackman. This model is analogous to the Liebig Blackman model, but multiplying individual Blackman models

for each resource:
d(R) = gmax H min (aiRi , 1) . [S22]

max

resource %

To coarse-grain a resource k less limiting than the implicit factors (axRr > gmax), we drop the factor for k from the product

to obtain the coarse-grained model for the remaining M — 1 resources (with no other changes to parameters). If resource k

is more limiting than the implicit factors (axRr < gmax), then we must transform gmax — arRi (this resource becomes the

dominant implicit factor) as well as transform the affinities a; — a;axRi/gmax (i.e., the effective affinities decrease by the

factor ax Ry /gmax to account for the new most limiting implicit factor). For all multiplicative Models, the half-saturation

concentration K; = gmax/a; is arguably more convenient because these parameters remain invariant under coarse-graining.
The limitation coefficient for each variable resource is

R; 8g
Lr_ate R) = =2
i (R) 7 Ok
1 ifZ”—Ri<1, [S23]

0 otherwise.

Therefore there is perfect colimitation among each variable resource with a; R;/gmax < 1. If there is more than one such variable
resource, then the limitation coefficient for the implicit factors becomes negative to compensate. As a result, the effective
number of limiting factors, including all variable resources and the implicit factors, is always M3 = 1, but it can take on
other values for subsets of factors. For example, if there are two variable resources with a; R;/gmax < 1, then the effective
number of limiting resources is Mg (1,2} = 2, but the effective number of limiting factors between one of those resources and
the implicit factors is Meg {1,imp} = 0 (section S1E).

B.2. Multiplicative Monod. This model is a product of Monod models for each resource (12, 16, 17), and besides the Liebig Monod
model, is probably the most commonly-used model for growth rate (Fig. S3, first row and second column):

Q(R) = gmax H ai s

A Er— [S24]
resource @
Coarse-graining a resource k entails absorbing its Monod function into gmax (gmax — gmax@rRik/(ar Rk + gmax)) as well as
transforming the affinities a; — a;ar Rk /(ar Ri + gmax). Again we see that the half-saturation concentrations K; = gmax/a; are
invariant under these transformations. Some empirical tests have favored this model (17), especially over the Liebig Monod
model, although theoretical work has criticized it on the basis of its coarse-graining properties (10).

Since the growth rate exactly factorizes into separate contributions from each resource, the limitation coefficients for the
multiple-resource case are the same as for the single-resource Monod model:

Ri 99
g aRl

Jmax

LP(R) =

[S25]

aiRi + Jmax '

This is the first model we have discussed so far with colimitation between all variable resources and the implicit factors. The
limitation coefficient for each variable resource ranges between 0 and 1, but like the multiplicative Blackman model, it is
possible for the implicit factors to be negatively limiting if multiple variable resources are sufficiently limiting.

Figure S3 shows the limitation coefficients Lj**®, L5**¢ (second row, second column) and effective number of limiting factors

Mg (third row, second column) for this model in the case of two variable resources. The overlap between the contours of
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L (blue) and L5**° (orange) represents colimitation between the resources, while the plot of M5" shows extensive regions of

colimitation (M_:§* > 1) between the two resources and the implicit factors (compare to the schematic in Fig. 1B). Colimitation

is maximized in this case at M!5" = 3 when a1 R1 = a2 R2 = 2¢max (Where L1 = Ly = 1/3).
B.3. Multiplicative Hill. This model is similar to the multiplicative Monod model but using Hill models for each resource (1):

g(R) = gmax H (alg)% [S26]

X max
resource 1

Like the Liebig Hill model, it has been rarely applied in ecology or microbiology. The coarse-graining properties of this model
are analogous to those of the multiplicative Monod model. The limitation coefficient for each resource is the same as for the
single-resource Hill model:

Ll_”ate(R) _ & ag
! " g OR;
s [S27]
i Gmax

T (@i R)™ - G
Like the Liebig Hill model, it allows for limitation coefficients greater than 1 and negative limitation for implicit factors in

some regimes. Like the multiplicative Monod model, there is generally colimitation between all variable resources and the
implicit factors.

B.4. Multiplicative Bertalanffy. This model is similar to the multiplicative Monod and Hill models but using Bertalanffy models for
each resource (16):
—aiR;/gmax
9R) = gmax [ (1427w omex) [528]
Like the Liebig Bertalanffy model, it has been rarely applied in ecology or microbiology. The coarse-graining properties of this
model are analogous to those of the multiplicative Monod model. The limitation coefficient for each variable resource is the
same as for a single-resource Bertalanffy model:

R; 6g

g OR;

aiRi log 2
2a;R;/gmax — ]

Lgate(R) —

[929]

Gmax

The limitation coefficients and colimitation are qualitatively similar to those of the multiplicative Monod model.

C. Poisson arrival time (PAT)/synthesizing-unit model. Besides the Liebig and multiplicative classes of models, there are several
other distinct models for how growth rate may depend on resource concentrations (which can also be applied phenomenologically
to growth yield). The Poisson arrival time (PAT) model, also sometimes called the synthesizing-unit (SU) model, has been
favored theoretically by some researchers due to its derivation from a semi-mechanistic view of biomass growth (10, 11, 16, 18).
Tang and Riley (10) argued that the PAT model represents the most general approximation of a more detailed chemical kinetic
model of biomass growth, with other models (Liebig Monod and additive) being further approximations; however, they did not
find that the PAT model provided a significantly superior fit to data.

The idea of the PAT model is that the time tpiomass to make a new unit of biomass is the sum of the time typtake,total tO
uptake units of all resources and the time tmetabolism t0 metabolize those resources into new biomass:

tbiomass = tuptake,total + tmetabolism - [830]

In general, these times for uptake and metabolism are stochastic, described by some probability distributions. We approximate
the overall growth rate of biomass as the reciprocal of the mean time:
1
g = —-—
t iomass
{Bbtomase) . [S31]

<tuptake,total> + <tmetabolism> '

We assume the mean time of metabolism (¢metabolism) does not depend on the environmental resource concentrations R, since
metabolism relies on resources already recruited into cells in sufficient quantities. Without loss of generality, we therefore
parameterize the mean time of metabolism as (fmetabolism) = 1/gmax, since this will be the maximum growth rate if uptake
time is 0.

The PAT model assumes that uptake of each resource unit occurs as an independent Poisson process, where the uptake time
tuptake,i Of the ith resource has an exponential probability distribution

— Rt .
puptake,i(tuptake,i) =a;R;e @iftituptake,i [832]
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We therefore assume the rate of each resource unit’s uptake is proportional to the concentration R; of the resource in the
environment, with a constant of proportionality a; (this is the stochastic equivalent to the law of mass action in main text
Eq. 4 that also defines the specific affinity a;). Since uptake of each resource unit occurs independently, the total uptake time
for all resource units is the maximum of their individual uptake times:

tuptake,total = mmnax _tuptake,i- [833}
resource i

We want to calculate the average total uptake time so we can calculate the growth rate using Eq. S31. The cumulative
probability that the total uptake time tuptake,total iS less than ¢ equals the probability that all individual resource uptake times
are less than t:

p (tuptake,total < t) = H Pi (tuptake,i < t)

resource i

[T (-e=m,

resource ¢

[934]

where we have used the exponential distribution for the individual resource uptake times (Eq. S32) and the fact these times are
independent of each other. The probability distribution of the total uptake time tuptake,total is the derivative of this cumulative
distribution:

p(tuptake,total) - E p(tuptake,total < t)

t
S35
_ § aiRie*aiRitupmke,toml | I (1 _ e*ajRjtuptake,tocal) [S35]
resource ¢ resource j#i
We can now calculate the average total uptake time:
oo
<tuptake,total> = / dtuptake,total p(tuptake,total) tuptake,total
0
=)
— E —a; Rityptalk, 1 | I —ajRjtuptak 1
= asz/ dtuptake,total tuptake,totale 77 tuptake, tota (1 — e 777 uptake,tota [836}
resource @ 0 resource j#1i
> o > e RaDY ;
aiR; aiR; +a;R; a;Ri +a;R; + ar Ry ’
resource 1 resource pairs i,j resource triplets 7,35,k

where the sums are over individual, pair, triplet, etc. combinations of distinct resources (e.g., pairs of resource indices ¢ and j
such that 7 # j). Note the alternating signs across these sums.
Thus the overall growth rate from Eq. S31 for the PAT model is (Fig. S3, first row and third column)

Ygmax
R) =
g( ) 1 + Ggmax <tuptakc,total>
—1
1 1 1
= gmax | 1 ‘max - _— —_ .
g t9 Z .aiRi Z ) vaiRi—l—ajRj_'_ ;lt ) ‘kaiRi—ﬁ—ajRj + ar R
resource % resource pairs i,j resource triplets 1,7,

[S37]

Taking the maximum uptake time across all resources generally causes the PAT model to not transform robustly while
coarse-graining resources. If a resource to be coarse-grained is unlimited, then the PAT model does reduce to a model for the
remaining M — 1 resources with unchanged parameters. For example, if all resources but one are unlimited, then the PAT
model is equivalent to a Monod model for the single limiting resource. However, if resource k has finite concentration, then it
cannot be coarse-grained to transform the model into another PAT model for M — 1 resources.

The limitation coefficient for each resource in the PAT model is

R; 89
Llfate R) =2
g 0
- g Rzﬁ (gmax <tuptakc,total>) [838}
1 1 1
—ga;Ri | ——— — I — -
ga (aiRi)Q Z (aiRi + ajRj)Q + Z (aiRi + ajR]‘ + akRk)Q

resource j#i resources j#i,k#i,k#j
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These limitation coefficients range between 0 and 1; there is super-additive colimitation between all variable resources and
colimitation with implicit factors. In the special case of two variable resources, the limitation coefficients are

Lrate _ gmax(a2R2)2(2alRl + a2R2)
1 =

’

(a1R1 + az2R2) [a1R1a2R2(a1R1 + a2R2) + gmax((a1R1)? + a1 Riaz2 Rz + (a2R2)2)}

2 [S39]
gmax(alRl) (alRl + 2a2R2)

rate
L2 ==

(a1R1 + az2R2) [G1R1azR2(a1R1 + a2R2) + gmax((a1R1)? + a1 Riaz2R2 + (a2R2)2)}

Figure S3 shows the limitation coefficients L;**®, L5**® (second row, third column) and effective number of limiting factors M_:§*
(third row, third column) for the PAT model in this case. The overlap between the contours of L}**® (blue) and L5*® (orange)
represents colimitation between the resources, while the plot of M5 shows extensive regions of colimitation (MiF" > 1)
between the two resources and the implicit factors (compare to the schematic in Fig. 1B). Note that these regions for the PAT
model are smaller than those of the multiplicative Monod model with the same parameter values (compare second and third
columns in the third row of Fig. S3), which suggests that the PAT model has less colimitation in some sense. Colimitation is also
maximized at a different combination of parameters compared to the multiplicative Monod model (a1 R1 = a2 Rz = 3gmax/4).

D. Additive model. This model (unrelated to the additivity property of resource supplementation, section S1G) has a similar
motivation to that of the PAT model, in terms of decomposing biomass growth into uptake of individual units of resources
followed by metabolism. However, instead of assuming uptake processes of all resource units occur in parallel, such that the
total uptake time is the maximum of these individual uptake times (Eq. S33), we assume that the uptake processes occur
sequentially, such that the individual uptake times add up to the total uptake time (11, 16):

tuptake,total = Z tuptake,i . [840]

resource ¢

We otherwise make the same assumptions, i.e., that uptake of each resource unit is a Poisson process with rate a; R;. Therefore
the growth rate is (Fig. S3, first row and fourth column)

g(R) = !

<tmetabolism> + <tuptake,total>

1
N <tmetabolism> + Zrcsourcci<tuptake’i> [841]

1
= 3 —1-
Ymax + Zresourcei (a’Rl)

Additive model dependence has also emerged in more complex physiological models of biomass growth (19, 20). Tang and
Riley (10) argued that the additive model is an approximation of the PAT model but found that it fit data at least as well as
the PAT model did. Otherwise, there are few other empirical tests of this model.

Unlike the PAT model, the additive model is robust to coarse-graining resources. To coarse-grain a resource k, we simply
absorb its contribution in the denominator of Eq. S41 into gniy, i.€., gmax — (gmex + (axRx) ") ~'. Note that in the additive
model, the specific affinities a; are invariant under coarse-graining while the half-saturation concentrations K; = gmax/ai are
not; in the multiplicative models, it is the opposite. Thus the question of which of these two parameterizations (using specific
affinities a; or half-saturation concentrations K;) is more fundamental may depend on which of these growth rate models
(multiplicative or additive) is correct.

The limitation coefficient for each resource in the additive model is (Fig. S3, second row and fourth column)

Bi 09
g aRi

Liate(R) —

(aiRi)il [842]

gr;'fllx + Eresource J (aj Rj)71 .

Limitation in the additive model is qualitatively identical to that of the PAT model: the limitation coefficients range between 0
and 1, and there is super-additive colimitation between all variable resources and colimitation with implicit factors. Figure S3
shows the limitation coefficients L}**®, L5 (second row, fourth column) and effective number of limiting factors M_!3" (third
row, fourth column) for this model with two variable resources. The overlap between the contours of L}**® (blue) and L5
(orange) represents colimitation between the resources, while the plot of M§* shows regions of colimitation (MIF* > 1)
between the two resources and the implicit factors (compare to the schematic in Fig. 1B). Note that these regions for the
additive model are smaller than those of the multiplicative Monod and but larger than colimitation regions of the PAT models
with the same parameter values (compare fourth column in the third row of Fig. S3 to the second and third columns in the third
row), which suggests that the additive model has an intermediate extent of colimitation compared to the multiplicative Monod
and PAT models. Colimitation is also maximized at a different combination of parameters compared to the multiplicative
Monod and PAT models (a1 R1 = a2R2 = gmax)-
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E. Mankad-Bungay model. The Mankad-Bungay model is a phenomenological model proposed by Mankad and Bungay (21, 22)
in the form of a weighted sum of Monod functions for each resource (originally for two resources only, but generalized here to

an arbitrary number):
(a;R:)™" a; R;
R) = gmax
gR)=g Z (Z (a;R;)~1 aiRi + Gmax

resource 1% resource j

=g Zresource 3 (a'LRZ + gmax)71
— Ymax —
Zresource 1(a2R1) !

This model is very rarely used and thus has little empirical or theoretical support; one study claimed it fit data better than the
multiplicative Monod model did, but this was based on very few data points (21). Like the Liebig models and the PAT model,
the Mankad-Bungay model is only robust to coarse-graining resources if those resources are at infinite concentrations.

The limitation coefficient for each resource is

Ri 99
g OR;

[S43]

L;ate (R) —

aiRi 1 [S44]

+ .
(aiRi + gmax)2 Zresource j (ajRj + gmax)_l ailt; Zresource j (ajRj)_l
Note that the Mankad-Bungay model has non-monotonic dependence on resource concentrations in some regimes, unlike all

other models considered here, so there can be negative limitation for a resource in those conditions. Specifically, the growth
rate decreases as a function of R; when

1
Ry > P (a2R2 + \/2@2R2(gmax + G2R2)) . [845}
1

In general, this model has colimitation between the variable resources and implicit factors. Colimitation between resources is
mostly super-additive except in regimes of strong single limitation, where it can be sub-additive. These unusual properties
compared to more common models may be artifacts of this model’s particular formulation, and may indicate that it does not
have a sound mechanistic basis.

F. Generalized-additive model of essential and substitutable resources. The aforementioned additive model (section S2D) is
based on the idea that the total time to uptake all resources is the sum of uptake times for each one. This means the growth
rate is the harmonic sum (reciprocal sum of reciprocals) of the rates for each step in the process. A phenomenological way to
generalize this is to use a generalized sum, based on the idea of the generalized (or power) mean (23); this is a family of ways
to average over a set of numbers, encompassing several more common means such as the arithmetic, harmonic, and geometric
means. The generalized-additive model of growth rate is

-1/q

gR) = [ gmic+ Y (@R : [S46]

resource %

Coarse-graining a resource k in this model is similar to that in the regular additive model: gmax — (gmax + (akRk)fq)fl/q.
This definition has several convenient properties, mostly mediated by the key parameter q. First we consider the regime
where ¢ > 0. Since the growth rate g(R) will then always be 0 if any one resource ¢ has zero concentration R;, this regime
describes essential, non-substitutable resources, all of which are required for nonzero growth. It also has linear proportionality
to R; in the limit where R; < gmax/a: and R; < ajRj/a; for all other resources j # i. One of the most important properties
of the generalized-additive model is that in the limit of ¢ — oo, the model recovers Liebig Blackman dependence on resources
(Eq. S13):
lim g(R) = min (gmax, a1 R1,a2R2,...,anRu) . [S47]
q—ro0
Finite values of ¢ thus represent deviations from this Liebig limit. Another interesting limit is ¢ = 1, where the growth rate is
equivalent to the additive model (Eq. S41):

-1

. -1 -1
limg(R) = {gmas+ D (@R | [S45]
Note that with positive values of g, the smallest values of a; R; always dominate the sum, and the magnitude of ¢ determines by
how much — infinite ¢ represents complete dominance of the minimum (Liebig case), while finite g allows for a soft dependence
on the other non-minimum resources. We also point out that the growth rate g(R) is a monotonically increasing function of
the parameter ¢, so that the Liebig case (¢ — oo) always represents the greatest growth rate that can be produced for a given
set of resources. Finite values of ¢ therefore represent less efficient growth. Altogether this suggests that we can think of the
magnitude of the parameter ¢ as measuring the interaction between resources in determining the total growth rate.
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So far we have considered only models for resources that are essential and non-substitutable, like a carbon source and a
nitrogen source, such that growth rate is nonzero only if all resources are present at nonzero concentrations. However, some
resources are substitutable, such as a two different carbon sources, so it is valuable to consider growth rate limitation on these
resources as well. If substitutable resources are consumed sequentially (diauxie), then their growth rate limitation is the same
as for single resources, since by definition only a single resource affects growth rate at any instant in time. Therefore the
important case to consider here is when the resources are consumed (and therefore affect growth rate) simultaneously. This is
described by the generalized-additive model with ¢ < 0: the total growth rate is a sum over the rates themselves (raised to a
power), instead of the reciprocal of the sum of reciprocal rates, and as a result growth rate is only zero if all resources have
zero concentration. However, for ¢ # —1, this includes nonlinear dependences on those resource concentrations, which makes it
unusual compared to more common models of growth dependence on substitutable resources (sections S2G,H).

The limitation coefficient for each resource in the generalized-additive model is

R 99
g 8Rz

LI (R) =

(@R [549]

gl;gx + Zresource J (aj Rj)iq .

These limitation coefficients range from 0 (if resource ¢ is unlimited, so R; — o0) to 1 (if resource 4 is the only finite resource).
Like the additive model, there is colimitation between all variable resources as well as colimitation with implicit factors.
Colimitation between resources is super-additive if ¢ > —1 (which includes all cases with non-substitutable resources) and
sub-additive if ¢ < —1; it is exactly additive when ¢ = —1 since then the growth rate is a linear sum of contributions from each
resource.

G. Saito substitutable model. Besides the generalized-additive model with ¢ < 0, a more common model of growth rate
dependence on substitutable resources is attributable to Saito (13) (Fig. S4, first column and first row):

=y Zresource 7 aiRi
= Jmax .
gmax + Z a;R;

9(R) [S50]

resource 1

This model is not robust to coarse-graining resources under any case. In particular, if any one resource is unlimited, then the
growth rate is constant in this model, regardless of the concentrations of the other resources.
The limitation coefficients are

Ri 99
g BRZ

L;ate (R) —

(Zresource 7 aJRJ) (gmax + Zresource J a]RJ)

The limitation coefficients range between 0 and 1, with colimitation between variable resources and with the implicit factors.
Unlike most of the other models here, colimitation between the variable resources is sub-additive in the Saito substitutable
model.

Figure S4 shows the limitation coefficients L}**®, L5**® (second row, first column) and effective number of limiting factors
M5 (third row, first column) for this model with two variable resources. The overlap between the contours of L}** (blue) and
L5 (orange) represents colimitation between the resources, while the plot of M5 shows regions of colimitation (M > 1)
between the two resources and the implicit factors. Note that the geometry of the limitation coefficients in this model is flipped
from that of the previously-described models for non-substitutable resources (compare to Fig. S3, second row): in those models
the limitation coefficients for a resource mostly depend on the concentration of that resource (e.g., the blue contours L;**® for
resource 1 are mostly vertical), but for the Saito substitutable model, the limitation coefficient of a resource mostly depends on
the other resource (e.g., the blue contours Lj**° for resource 1 are more horizontal). That is, the population is only strongly
limiting for a resource if the other substitutable resource is scarce.

H. Mean Monod model of substitutable resources. A second model of substitutable resources assumes that growth rate is a
weighted average of Monod models over all resources (Fig. S4, second column and first row) (24):

aiRi
g(R) = Gmax Z W; a‘R' ¥ g ) [852]

resource %

where the weights w; are normalized: Zresource ,wi = 1. The growth rate saturates at gmax if all resources are unlimited, but
note that if one resource is unlimited, the growth rate still responds to changes in concentration of the other resources (in
contrast to the Saito model Eq. S50). However, it still does not transform robustly under coarse-graining, similar to the Saito

model.

15 of 57



The limitation coefficients are

R; 8g
L;ate R) = =

Wi RiGmax /(@i Ri + Gmax)?
> resource j Wi i /(@i Rj + gmax)

[S53]

There is colimitation between variable resources and implicit factors; colimitation between resources is perfectly additive due to
the additive nature of the model (in contrast to sub-additive colimitation in the Saito model, Eq. S50).

Figure S4 shows the limitation coefficients L}**®, L5**® (second row, second column) and effective number of limiting factors
MZE*® (third row, second column) for this model with two variable resources. The overlap between the contours of L}**
(blue) and L5 (orange) represents colimitation between the resources, while the plot of MI5*® shows regions of colimitation
(M > 1) between the two resources and the implicit factors. Note that the geometry of the limitation coefficients in this
model is flipped relative to those in the Saito substitutable model (compare first and second columns in the second row of
Fig. S4) and is actually more similar to the limitation coefficients of models for non-substitutable resources (Fig. S3, second
row), meaning that the limitation coefficient for a resource mostly depends on that resource’s own concentration rather than
the concentration of the other resource. This behavior, along with the other distinct properties, suggests that the mean Monod
and Saito models of substitutable resources are biologically quite different.

. Chemically-dependent resource model. Another possible relationship between non-substitutable resources is where one
resource may be chemically-dependent on the other for uptake or usage (13). This is true especially for pairs of resources
involving a metal serving as an enzyme cofactor; for example, the growth rate dependence on bicarbonate in marine diatoms
depends on the availability of zinc (13). In this case, growth rate will depend asymmetrically on the concentrations of both
resources, since the dependent resource will have a weaker effect. In the case where resource 1 depends on resource 2, one such
model for growth rate is (Fig. S4, third column and first row) (13)

al R1a2R2
a1 R1a2Ra + gmax(a2R2 + gmax)

9(R1, R2) = gmax [S54]

We can interpret this model as meaning that the effective half-saturation concentration for resource 1 ((gmax/a1) - (a2R2 +
gmax)/(a2R2)) depends on the concentration of resource 2: at low concentrations of resource 2, the effective half-saturation
concentration for resource 1 becomes very large, while at high concentrations of resource 2, the half-saturation concentration
for resource 1 decreases down to approximately an intrinsic lower limit of K1 = gmax/a1.

The limitation coefficient for the dependent resource is

Ry 69
g OR:

gmax(a2R2 + gmax)
a1R1a2R2 4 gmax(a2R2 + gmax) )

Li™(R1, Ra) =
[955]

Again, this is equivalent to the limitation coefficient for resource 1 by itself but with an effective half-saturation concentration
that depends on Ry. The limitation coefficient for the independent resource is

R ag

Lrate Ri. R _ -2
2 (R1, Re) s R

) (556

— 9max

" a1R1a2R2 + gmax (a2R2 + gmax)

Both limitation coefficients range between 0 and 1. Colimitation between the variable resources is mostly super-additive except
when the independent resource R: is limiting and the dependent resource R; is abundant.

Figure S4 shows the limitation coefficients L}**®, L5*® (second row, third column) and effective number of limiting factors
M&* (third row, third column) for this model. The overlap between the contours of Li**® (blue) and L5**® (orange) represents
colimitation between the resources, while the plot of M 3" shows regions of colimitation (M§*® > 1) between the two resources
and the implicit factors. The main difference between this model and the other models of non-substitutable but independent
resources is the asymmetry of limitation regimes between the two resources (compare third column of Fig. S4 with analogous
plots in Fig. S3), where the independent resource (resource 2) has a stronger effect on limitation for both resources.

S3. Mechanistic models of growth yield colimitation from population dynamics

In this section we show how different models of population dynamics give rise to mechanisms of colimitation for growth yield,
in contrast to the phenomenological models of section S2.
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A. General batch dynamics. These dynamics entail an initial biomass concentration N(0) being given a set of initial concen-
trations of M resources R(0) = (R1(0), R2(0),..., Ram(0)) and allowing the biomass to consume the resources until growth
stops. We assume these resources are essential and non-substitutable, so that growth stops only when at least one resource
concentration reaches zero. The dynamics of the biomass N(¢) and resource concentrations R(t) over time are determined by

LN =g RON),

d 1 d

[957]

where g(R) is the per-capita biomass growth rate that depends on the instantaneous environmental resource concentrations
(e.g., one of the models from section S2) and s; is the biomass stoichiometry of resource i (amount of new biomass produced
per unit resource i). Note that we allow for the possibility that the stoichiometries can change depending on the resource
concentrations. Equation S57 assumes that resources are consumed only by growth of new biomass (hence the proportionality
of dR;/dt with dN/dt), but in section S3B we address the case where resources are also consumed by existing biomass for
maintenance. For the figures (Figs. 1C,E and S6) we solve these equations numerically using scipy.integrate.solve_ivp (25).
If we are concerned only with the relative dynamics of the resources, then we can simplify Eq. S57 to describe dynamics in
the space of resource concentrations. For example, in the case of two resources, we obtain
Ry _ o1(f, Re) [958]
dR1 S2 (R1 , Rz)
We obtain this mathematically by taking the ratio of dR2/dt and dR1/dt and then changing variables from ¢ to R1, which is
possible because both resource concentrations R; and Rz must depend monotonically on time ¢ since the resources are only
consumed and not produced in this model. The right-hand side of Eq. S58 is the ratio of biomass stoichiometries for the two
resources, which is the stoichiometry between those two resources in the biomass. For example, if every unit of biomass requires
3 units of resource 1 and 4 units of resource 2, then the stoichiometric ratio in Eq. S58 is 4/3.
This ratio thus defines the slope of depletion trajectories in the space of resource concentrations, as in Fig. 1E. Therefore
depletion trajectories will be straight lines if the stoichiometry is constant over resource concentrations (Fig. S5A). However, if
the stoichiometry is variable over concentrations, then the trajectories can curve (Fig. S5B). Let

Ry = f(R1) [S59]
be any solution to Eq. S58. The solution for a specific set of initial concentrations R;(0) and R2(0) is therefore
Ry = R2(0) + f(R1) — f(R1(0)). [S60]
For example, in the case where stoichiometry is constant, then f(R:) is a linear function of R; and so

Ry = Ry(0) — zi (R1(0) — Ry). S61]

The growth yield of the population is the amount of new biomass produced in the infinite time limit:

lim N(t) — N(0) = AN

t—o0
o0 d
= =N
/(; a dt (t)

lim¢_y 00 R1(t) [862]
_ / dR; s1(R1, Ra(Ry))

R1(0)

lime_s o0 Ra(t)
= —/ dR2 s2(R1(Rz), Ra),

R2(0)

where the latter two equations are obtained from the first by changing variables from time ¢ to either resource concentration R;
or Ry using Eq. S57 (which, as aforementioned, is valid since these quantities all depend monotonically with each other). To
calculate the growth yield, we therefore need to know the limit of either R; or Rz in the infinite time limit. In batch models,
growth stops only when one or both resources reach zero concentration (Figs. 1E and S5A); this is the case for all the growth
rate models for non-substitutable resources discussed in section S2, where g(R1, Rz) = 0 if and only if R =0 or R, =0. In
this case, either lims—,oc R1(t) = 0 or lim;— oo R2(t) = 0, but not necessarily both. Which limit is realized depends on the initial
conditions R1(0) and R2(0). If we imagine the phase portrait of Eq. S58 (Fig. S5A,B), this problem is geometrically realized as
determining which trajectories terminate at the vertical R; = 0 axis (the population runs out of resource 1 first) or at the
horizontal R2 = 0 axis (the population runs out of resource 2 first).

There is only one trajectory that hits the origin (R1, R2) = (0,0) (runs out of both resources simultaneously). The initial
conditions that follow this trajectory are defined by R2(0) = f(R1(0)) — f(0) (using Eq. S60). Because trajectories cannot
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cross each other, all trajectories above this one will end at the R; = 0 axis, while all trajectories below will end at the Rz =0
axis. Define the former region as €21 and the latter region as (22, or more precisely,

Q1 = {(R1(0), R2(0)) such that R2(0) > f(R1(0)) — f(0)},

Qs = {(R1(0), Ra(0)) such that Ra(0) < F(R1(0)) — £(0)}. [563]

For example, in the case of constant stoichiometry, the set of initial conditions that follow the trajectory ending at the origin is
given by the straight line R2(0) = (s1/s2)R1(0) (Fig. S5A). So all initial conditions above this line (R2(0) > (s1/s2)R1(0),
region 1) will follow trajectories terminating at Ry = 0, while all trajectories below (R2(0) < (s1/s2)R1(0), region ) will
terminate at R, = 0 (Fig. S5A). Equation S63 holds for curved resource depletion trajectories from variable stoichiometry as
well, but with a more complex boundary between Q1 and Q2 (Fig. S5B).

We can now formally express the resource concentration limits lim; oo R1(¢) and lim; o R2(¢), and in turn the growth
yield of the biomass, in terms of the initial conditions R;(0), R2(0):

R1(0)
/ dRy s1 (Ri, R2(0) + f(R1) — f(R1(0))) if (R1(0), R2(0)) € (0,
an=1{ " [964]

R2(0)
/ dRs s5 (R1(0) + f~(R2) — f~'(R2(0)), Ra)  if (R1(0), R2(0)) € Qa,

where f™! is the inverse function of f as defined by a solution to Eq. S58. That is, we choose the resource integral from Eq. S62
based on which resource goes to zero (since that simplifies the limits of the integral) and use the solution to the resource
dynamics ODE (Eq. S58) to express the integral fully in terms of that one resource (using Eq. S60). In the special case of
constant stoichiometry, Eq. S64 simplifies to

{ S1R1(O) if RQ(O) > (81/52)R1(0),
AN =

saR2(0)  if R2(0) < (s1/s2)R1(0), [S65]
= min (s1R1(0), s2R2(0)) .

That is, the growth yield equals the biomass produced by whichever resource is initially less, according to its stoichiometry.
This is a derivation of the Liebig Blackman model for growth yield (section S2A.1). For constant stoichiometry, there is no
yield colimitation between the resources.

Equation S64 also says that for initial conditions in 1, the growth yield always depends on R1(0) (as expected since resource
1 runs out at the end), but it can also depend on the initial resource 2 R2(0) if the biomass stoichiometry s; for resource 1
depends on the concentration Rz of resource 2. The reverse is true for initial conditions in €23. Thus, for the growth yield to
depend on both resources simultaneously (yield colimitation), the biomass stoichiometry for one resource must depend on the
concentration of the other resource. We can interpret that property as a form of interaction between the resources: usage of
one resource depends on the availability of the other. Note that this is a more specific requirement of the stoichiometries than
just variable stoichiometry leading to curved resource depletion trajectories (Fig. S5B), which could occur without causing
yield colimitation (e.g., s1 depends on R; but not on R2).

B. Batch dynamics with variable stoichiometry from maintenance resource consumption. In this section we consider the
possibility of resources being consumed by existing biomass for maintenance, as well as to grow new biomass. This provides a
specific mechanism for generating variable stoichiometry and yield colimitation.

B.1. One resource. We first consider the case of a single resource; there is no colimitation with only a single resource, but it
provides a simpler foundation for the model. Modifying Eq. S57, the dynamics of biomass growth and resource consumption
are given by

LN(D) = g(RUN ),

[S66]
d 1 d 1
4 R(t) = (—ngwth LN () - Smamzwt)) o (R(),

where Sgrowth is the growth stoichiometry (amount of new biomass produced per unit resource consumed, same as the biomass
stoichiometry in the original model of Eq. S57) and Smain is the maintenance stoichiometry (amount of existing biomass
maintained per unit resource consumed per unit time). For simplicity, we assume these are constant parameters and do not
also depend on the resource concentrations as in the previous section. The Heaviside step function © is necessary so that once
resources reach zero, there is no additional consumption due to maintenance (otherwise resource concentrations will become
negative). Presumably the existing biomass will start to decay at some point after that, but we do not model it here.
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We can express the second line of Eq. S66 in terms of an effective growth stoichiometry

d 1 d
—R(t) = ———=——=—N([ S67
dt ®) Serowth (R(t)) dt ®) [S67]

where

-1
. B 1 1
Bgrowth (R) = <ngwth iPe— R)> : [S68]

This predicts a positive but nonlinear correlation between growth rate and stoichiometry, across varying resource concentrations
R (26, 27). In particular, when the growth rate is zero, the effective growth stoichiometry is also zero, because all resource
consumption goes to maintenance. When the growth rate is infinite, then the effective growth stoichiometry converges to the
regular growth stoichiometry sgrowth, Since maintenance consumption becomes negligible. If the growth rate is described by a
Monod model g(R) = gmaxaR/(aR 4 gmax), then the effective growth stoichiometry becomes

_r
R+ Sgrowth (00) 7

@Smain

ggrowth (R) - §growth (OO) [869]

where the effective growth stoichiometry at infinite resource is

Egmwth(oo)—< LI ) [S70]

Sgrowth Smaingmax

Thus the effective growth stoichiometry depends as a Monod function on the resource concentration R, with a saturating yield
at Sgrowth(00) (the growth stoichiometry at maximum growth rate) and a half-saturation concentration of Sgrowth (00)/(@Smain)-
This therefore constitutes a model of variable stoichiometry: the resource consumption changes dynamically over a growth
cycle.

To determine the growth yield, we can integrate Eq. S67 to get the total change in biomass:

R(0)
AN = / dR Sgrown(R)
0

pronen (00) Sgrowen (00) [S71]
= o) ( 10+ B |
main R r— + R(O)

For very large initial resource concentrations R(0) this is approximately the regular growth yield Sgrowtn(00)R(0), since growth
consumption dominates over maintenance in that case. The logarithm term is a correction at low initial resource concentrations
R(0) due to maintenance.

B.2. Two resources. We now consider two resources to see how variable stoichiometry from maintenance resource consumption
leads to yield colimitation. The effective growth stoichiometries are

-1
1 1
51, grow R 7R = B
L th( ! 2) <31,growth + Sl,maing(RhRQ))

-1
1 1
§ TOW R 7R - .
e th( ! 2) <32,growth + 52,maing(R17R2)>

If we take the ratio to get the stoichiometry between resources, we can then express the depletion trajectory of both resources
as

[S72]

dRy _ 31grown (B, Ra)
de gQ,growth(Rlv RQ)

1 1 S73
(SZ,growth + 52,maing(R17R2)> [ ]

1 + 1
S1,growth $1,maing(R1,R2)

Since the stoichiometry varies with the resource concentrations, this will lead to curved trajectories of resource depletion
(Fig. S6A). Since the stoichiometry only depends on the resources through the growth rate, we can characterize its behavior as
a function of growth rate. That is, the stoichiometry interpolates between two values at different extremes of growth rate:

S i .
75;"”3?“ for slow growth (low resource concentrations),
,main
S1
2 ( Ly ) [S74]
S9 S1,growth $1,main Ymax

for fast growth (high resource concentrations).

1 + 1
52, growth $2,main9max
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We plot an example phase portrait of this using the additive model of growth rate (Eq. S41) in Fig. S6A. Moreover, since the
yield for each resource depends on the other resource’s concentration (e.g., s1 depends on Rs via the growth rate in Eq. S72),
this will also produce biomass growth yield AN that depends on both resource concentrations (Fig. S6B). Thus resource
consumption for maintenance is a mechanism for producing yield colimitation of two resources.

C. Batch dynamics with variable stoichiometry from dynamic proteome allocation. The basic mechanism by which maintenance
causes variable stoichiometry is that it causes stoichiometry to depend on growth rate. However, another phenomenon besides
maintenance that could cause stoichiometry to depend on growth rate is dynamic proteome allocation. We know that the
allocation of protein biomass between different sectors of the proteome changes significantly across growth rates (28, 29).
Suppose that cells consist of two biomass components, A and B. Let the biomass stoichiometries of component A on resources
1 and 2 be s and s3, while the biomass stoichiometries of component B are s and s¥. Thus the resource stoichiometry
of component A is sf / s» and the resource stoichiometry of B is s¥ / s%. We assume these stoichiometries are unequal, since
otherwise the two biomass components are equivalent in their resource usage.

Let the physiological state variable 6 parameterize the fraction of biomass in component A (so the fraction in component B
is 1 — 0). The biomass stoichiometries of both resources depend on this biomass state according to

. [ST5]
S = i + 1-6
G
We assume the physiological state is regulated by growth rate, such that the two are linearly proportional:
emax - emin
0(g) = (g > g+ Omin, [S76]

so that at zero growth, €, is the fraction of component A in the biomass, while at maximum growth rate gmax, @max is the
fraction of A. This is motivated by the linear relationship between growth rate and fraction of a proteome sector (28). Without
loss of generality, we assume the shift is in favor of component A at high growth rates.

Since the growth rate depends on the resource concentrations g(R1, R2) (e.g., according to a model from section S2), we
arrive at a model of resource depletion with variable stoichiometry:

s 0(R1R2) + r [L-6(g(Rn, B2))]
2 x0(9(Ri, Ra)) + k& [1— 0(g(Ra, Ba))]

S92 “x
) ST
_ é [(W) g(R1,R2)+9mjn] +$ [17 (%)Q(RhRQ)*@mm] [S77]
é [(Gmagxm%) 9(R1, R2) + Omin ] + % [1- (%XT?) 9(R1, R2) — Oumin]

In Fig. S6C we plot an example phase portrait for this model. As with variable stoichiometry arising from maintenance,
resource stoichiometry in this model interpolates between two values depending on the growth rate: at slow growth rates, the
biomass is made mostly of component B, and so the resource stoichiometry is approximately that of component B (3113 / SQB),
while at fast growth rates, the biomass is made mostly of A and therefore reflects that component’s resource stoichiometry
(s? / 59) Figure S6D shows how the growth yield depends on both initial resource concentrations simultaneously, demonstrating
the existence of yield colimitation.

D. Chemostat dynamics. The batch models of sections S3A—C assume that growth stops only when at least one resource reaches
zero concentration. However, it is possible that growth could stop before that point, i.e., when resources reach some nonzero
concentrations R; > 0 (Fig. S5C) (30). While this is possible under batch dynamics (e.g., if cells sense resources getting too
low), a more typical scenario in which this occurs is chemostat dynamics, where cell birth must balance a nonzero death rate.
We define chemostat dynamics using a model analogous to the batch case (Eq. S57):

LN = (g(R) ~ ) N (D),

SRi(t) = —g(RIN(E) + d (R = R0).

[S78]

where R;°""°° is the concentration of resource 7 in the source media flowing into the chemostat and d is the dilution factor
(d = w/V, where w is volume flowing in and out per unit time and V is the total volume). Here we assume constant biomass
stoichiometry s;, but we can generalize our results to the case of variable stoichiometry as we do in the batch case (section S3A).
Note that we express the resource consumption by biomass (first term on the right-hand side of dR;/dt) as being proportional
to g(R)N (¢) rather than dN/dt as in the batch model (Eq. S57). This is because dN/dt includes a death process as well as the
growth of new biomass, while we assume resource consumption is only associated with growth of new biomass.
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For chemostats we primarily care about their steady states, so let N* and R* be the steady-state concentrations of biomass
and resources. To calculate these concentrations, we first set dN/dt = 0, which gives us the condition that the growth rate
must equal the dilution rate:

gR") = d. [S79]

Assuming there are M total resources, this defines an (M — 1)-dimensional manifold in the space of resource concentrations
R*. Next we must also set dR;/dt = 0, which gives us

N* = (R — RY)s;. [S80]
Note this requires that R;°""°° > R; for a steady state to exist. Since this must hold for each resource i, we have
(RS — Ri)ss = (R — Rg)sa = - = (RS — Rig)sar. £)

These equations are also apparent from the assumption of constant stoichiometry of resources and biomass: the difference in
resource concentrations between the source and the vessel corresponds to what the population is consuming, and that consumed
quantity must exactly match the stoichiometry of the biomass (s;/s;) for it to be in steady state. To solve the steady state,
we must solve for solutions of Egs. S79 and S81 (M equations) to get the resource concentrations R* (M unknowns), and
then plug those into Eq. S80 to get the biomass concentration N*. In Fig. 1D,F we plot the dynamics to steady state for an
example chemostat model (solving numerically using scipy.integrate.solve_ivp (25)).

D.1. One resource. To define growth rate and growth yield limitation under chemostat dynamics, we first consider the case of a
single resource. We define growth rate limitation as the response of the instantaneous growth rate to a small perturbation in
resource concentration at steady state. Note that the response to this perturbation represents a transient departure from steady
state itself. For a single resource, the steady-state resource concentration is determined by g(R*) = d (Eq. S79). Assuming a
Monod model of growth rate g(R) = gmaxaR/(aR + gmax), the resource concentration is (assuming R* < R*°"*°® such that a
steady state exists)
* gmaxd
RR=——"—"——. S82
a(gmax - d) [ ]
Since the growth rate limitation coefficient for a single resource in the Monod model is L™ = gnax /(aR + gmax) (main text
Eq. 1), the limitation coefficient for a steady-state chemostat is

prate — _ 9max
aR* + Gmax
p 983]
=1—-
Jmax

Therefore if the dilution rate is far below the maximum growth rate of the population (d < gmax), then limitation is very close
to its maximum value of L™ = 1. This makes sense as limitation is highest when growth rates are slow, which corresponds to
low resources. In contrast, if the dilution rate d is very close to the maximum growth rate gmax (fast growth), then limitation
becomes close to its minimum value of L' = 0, which corresponds to a high steady-state resource concentration R*.

We similarly define yield limitation of a population growing under chemostat dynamics as the response of its steady-state
biomass to changes in the source concentrations of resources being supplied. For a single resource, the biomass at steady state
is (Eq. S80)

N* — (Rsourcc _ R*)S

S84
_ (prowee _ _ gmaxd 1\ [S84]
a(gmax - d)

where we have used the solution for R* in Eq. S82. Therefore the yield limitation coefficient is

RSOUI‘CG 6N*

N* aRsource
Rsource [885]

a .
Rsourcc __ __Y9maxd@
a(gmax —d)

Lyield _

When R*°"*°® is high, then the limitation coefficient takes approximately its minimum value of LY'*!4 = 1: growth yield responds

approximately linearly to changes in R*°"*°°. When R*°"**® is low (i.e., close to its lower bound set by the dilution rate d and
intrinsic growth traits gmax and a such that a steady state is feasible), then L¥**' is much greater than 1. Note that while the
biomass is always a linear function of R*°""°® (Eq. S80), there is an apparent super-linearity here due to the shift in R*°"*°® by
R*. So on a log-log scale, N* will increase with R*°""® faster than linear near that minimum value.
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D.2. Two resources. For multiple resources, we repeat this procedure, although solving Eqgs. S79 and S81 to obtain the steady-state
concentrations R* is more complicated and may only be possible numerically for complex growth rate models or many resources.
As an example with two resources, let us consider the additive model of growth rate (Eq. S41):

1

9(fs, ) = Gmax + (@1 R1) ™! + (a2R2)~1’ 15861
Therefore the steady-state resource concentrations R} and R3 are determined by the following equations:
1 —
Gmax + (@ RY) ' + (agR3) "1 [987)

(Riource _ RT)Sl — (Rgource _ R;)SQ.

Figure S6E shows the phase portrait of resource depletion trajectories. In this case we can still solve these equations analytically
to obtain the steady-state resource concentrations:

oy +y2 4+ (v = D — y2r2) + VD Gmax
1 — )

2 -1
yi(y—1) a1 (S88]
pr = Wty (0= D(er2 — 11m1) + VD gmax
? 2y2(y - 1) az ’
where

Yy :gmax/d7

alRSOUI‘Ce
T1 271 s

Jmax

aQRSOUI‘Ce

T2 272 s
Jmax
ay
Vs :gmax 2,
az

D =y{(1+rlri(y = 1) = 2)ly = 1)) + g5 (1 +r2[r2(y = 1) = 2][y - 1])

+2y1y2(1 — 71 — 12 — P72 + [r1 + 72 + 2r1m2)y — rir2y).

The total biomass in steady state is therefore
N* — Rsource _ R* s
( 1 1) 1, [890}

— (R;OLII‘CG _ R;)SQ.

Figure S6F shows how the growth yield (biomass in steady state) depends on the source concentrations R{°**°® and R5"'°°,
which indicates that even with constant stoichiometry, this yield depends on both resources simultaneously. This is also evident
mathematically from the fact that N* depends on R} or R5, which each depend on both Ri°""™® and R5°""“® according to
Eqgs. S88 and S89. Therefore the yield of a population growing in a chemostat will be colimited by both resources.
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Fig. S1. Factorial supplementation experiments are incomplete tests of colimitation. (A) Schematic of four factorial supplementation experiments overlaid on the
global dependence of a growth trait (e.g., growth rate or growth yield) on two resource concentrations. (B) Outcomes of the same four factorial supplementation experiments
from (A), classified according to their apparent limitation state (single limitation, serial limitation, additive colimitation, super-additive colimitation; section S1G). (C) Factorial
supplementation experiment on the same background concentrations as experiment Ill from (A) and (B), but with different supplemented concentrations of both resources
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concentrations as experiment IV from (A) and (B), but with different supplemented concentrations of both resources leading to a qualitatively different outcome (apparent
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Fig. S2. Effective number of limiting factors over the limitation coefficient simplex. Example of three limiting factors whose limitation coefficients range from 0 to 1 and
thus form a simplex, with the number of limiting factors Mg (main text Eq. 3) plotted as color.
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Fig. S3. Summary of common growth rate models and their limitation properties. Each column corresponds to a different common model of how growth rate depends on
resource concentrations (section S2). These models can be equivalently applied to growth yield. First row: For each growth rate model in a different column, we show the
growth rates g(R1, R2) as functions of resource concentrations R1 and R2. Second row: Rate limitation coefficients for resource 1 (L}, blue contours) and for resource 2
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as functions of resource concentrations (compare to schematic in Fig. 1B). Parameters in all models are gmax = a1 = a2 = 1.
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combination of concentrations (dashed gray line), e.g., when net growth rate reaches zero in a chemostat (section S3D).
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values gmax =2, @1 = a2 =2, 51 main = 0.5, 52, main = 10, 51, growth = 2, and sz growth = 0.1. (B) For the model in (A), we calculate the growth yield IV after one batch
growth cycle for all possible initial resource concentrations. (C) Same as (A) but for a model of batch dynamics in which stoichiometry varies with growth rate according to
changes in proteome allocation (section S3C). We use the additive model of growth rate (Table S1, section S2) with parameter values gmax =1, a1 = a2 =1, Omin =0,
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Fig. S7. Luminescence growth curves across glucose and ammonium concentrations for biological replicate 1. Growth curves of luminescent E. coli K-12 MG1655
pCS-\ (31) with each well having a different starting concentration of glucose and ammonium (Dataset S1, Materials and Methods). Data shown here is for replicate 1. The
observed maximum growth rates, fitted from the data, are overlayed in black lines with the R? value. The fitting interval (exponential growth phase) is shown in colored shading.
Gray shading indicates wells where the added concentration of either glucose or ammonium was zero. We skipped fits for some wells due to low quality.
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Fig. S8. Luminescence growth curves across glucose and ammonium concentrations for biological replicate 2. Same as Fig. S7 but for replicate 2.
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Fig. S9. Luminescence growth curves across glucose and ammonium concentrations for biological replicate 3. Same as Fig. S7 but for replicate 3.
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Fig. S10. Optical density growth curves across glucose and ammonium concentrations. Growth curves of OD at 600 nm for E. coli MG1655 with each well having a
different starting concentration of glucose and ammonium (Dataset S2, Materials and Methods). Triplicate growth curves are shown as colored lines; the observed growth
yields, fitted from the data (as averaged OD from 12 to 16 hours), are overlayed in gray dotted lines. Gray shading indicates wells were the concentration of either glucose or

ammonium was zero. See Fig. S11 for the same data plotted on a log scale.
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dots mark statistics for fits to all three replicates together; the three colored bars show the statistics from the three replicates fitted separately. The gray boxes (first to third
quartiles, with the whiskers extending to 1.5 times the interquartile range above and below) show the distributions of these statistics across 100 data sets bootstrapped from the

Fig. S14. Fits of growth rate scans to models. Each panel shows a different statistic from fitting the growth rate scan data to all models (across horizontal axes). The black
three replicates (Materials and Methods). The thin vertical lines are to guide the eye to the model names on the bottom and top horizontal axes.
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; Dataset S1). We incorporated experimental noise to the simulations
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with parameters from that model’s fit to the experimental growth rate data (gmax =2 0.62 per hour, ag1, ~ 2.01 per hour per mM
0.15 MM, Ramm,min ~ 0.089 mM

regression in Fig. S16. The purple boxes (first to third quartiles, with the whiskers extending to 1.5 times the interquartile range above and below) show the distributions of these

by adding a Gaussian-distributed random number to each measurement with mean zero and standard deviation that is a linear function of the mean according to the linear
statistics across 10* simulated data sets. The true values of the parameters used in the simulations are marked by horizontal dashed lines.

Fig. S17. Fits of simulated (Liebig Blackman model) growth rate scans to models. Similar to Fig. S14 but for fits to data simulated from the Liebig Blackman model

(Materials and Methods; Table S1, section S2)
glucose, aamm ~ 4.2 per hour per mM ammonium, Rgiu, min =
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Fig. S18. Fits of simulated (Liebig Monod model) growth rate scans to models. Same as Fig. S17 but for 10* simulations of the Liebig Monod model (Materials and

Methods; Table S1, section S2) with parameters from that model’s fit to the experimental growth rate data (gmax ~ 0.66 per hour, ag1, ~ 20 per hour per mM glucose,

Gamm ~ 87 per hour per mM ammonium, Rglu,min ~ 0.026 MM, Ramm,min ~ 0.0034 mM; Dataset S1).
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Table S1, section S2) with parameters from that model’s fit to the experimental growth rate data (gmax = 0.66 per hour, ag1, ~ 23 per hour per mM glucose, aamm ~ 90 per

Fig. S19. Fits of simulated (PAT model) growth rate scans to models. Same as Fig. S17 but for 10* simulations of the Poisson arrival time model (Materials and Methods;
hour per mM ammonium, Rglu, min ~ 0.023 MM, Ramm, min ~ 0.0039 mM; Dataset S1).
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Fig. S20. Testing significance of growth rate colimitation at different thresholds. (A) Number of supplementations (Materials and Methods) with growth rate limitation
coefficients for both glucose Lgl’ff and ammonium LX2¢ above a given threshold, as a function of that threshold. (B) Fraction of supplementations with growth rate limitation
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Table S1, section S2; Materials and Methods). (C) p-values of the observed fractions of supplementations with growth rate colimitation between glucose and ammonium as
functions of the limitation threshold.
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Fig. S24. Fits of growth yield scans to models. Same as Fig. S14 but for fits to growth yield data.
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Fig. S27. Fits of simulated (Liebig Blackman model) growth yield scans to models. Same as Fig. S17 but for 10* simulations of the Liebig Blackman model (Materials and
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Fig. S28. Fits of simulated (Liebig Monod model) growth yield scans to models. Same as Fig. S17 but for 10* simulations of the Liebig Monod model (Materials and

Methods; Table S1, section S2) with parameters from that mode!’s fit to the experimental growth yield data (Nmax ~ 0.67 OD, ag1, ~ 0.14 OD/mM glucose, aamm ~ 0.23

0; Dataset S2).

amm,min =

OD/mM ammonium, Rglu,min = 0, and R,
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0; Dataset S2).

Fig. S29. Fits of simulated (PAT model) growth yield scans to models. Same as Fig. S17 but for 10* simulations of the Poisson arrival time model (Materials and Methods

Table S1, section S2) with parameters from that model’s fit to the experimental growth yield data (Nmax ~ 0.68 OD, ag1, ~ 0.15 OD/mM glucose, aamm ~ 0.25 OD/mM

ammonium, Rglu, min = 0, and R,
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Fig. S30. Testing significance of growth yield colimitation at different thresholds. Same as Fig. S20 but for growth yield.
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Fig. S31. Effective number of limiting factors for growth rate and growth yield. (A) The effective number of rate-limiting factors as a function of glucose and ammonium
concentrations, implied by the model fit to the growth rate scan data in Fig. 2A (Poisson arrival time model with gimax ~ 0.66 per hour, sg1, & 23 per hour per mM glucose,
Samm =2 90 per hour per mMM ammonium; Rglu,min ~ 0.023 MM, Ramm,min =~ 0.0039 mM; Materials and Methods; Dataset S1). (B) The effective number of yield-limiting
factors as a function of glucose and ammonium concentrations, implied by the model fit to the growth yield scan data in Fig. S21A (Poisson arrival time model with Ny ax =~
0.68 OD, ag1u ~ 0.15 OD/mM glucose, and aamm ~ 0.25 OD/mM ammonium; Materials and Methods; Dataset S2).
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Fig. S32. Histograms of number of rate-limiting resources and rate limitation coefficients for collected organism-resource combinations. Same data as in Fig. 4B,C
but plotted as histograms across each example growth rate model (Dataset S3; Table S1, section S2).
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SI Dataset S1 (Dataset_S1.xlsx)

Scan of E. coli growth rates across glucose and ammonium concentrations. This file includes Tab 1 (growth rates), Tabs 2-4
(raw luminescence data for each of the three replicate experiments), Tab 5 (map of glucose and ammonium concentrations used
on the plate), and Tabs 6-9 (summaries of model fits).

SI Dataset S2 (Dataset_S2.xlsx)

Scan of E. coli growth yields across glucose and ammonium concentrations. This file includes Tab 1 (growth yields), Tabs
2-4 (raw OD data for each of the three replicate experiments), Tab 5 (map of glucose and ammonium concentrations used on
the plate), and Tabs 6-9 (summaries of model fits).

SI Dataset S3 (Dataset_S3.xlsx)
Monod growth data and resource concentration data, collected from the literature.
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