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Sequencing advances have generated tremendous break-
throughs in the identification of beneficial mutations aris-
ing in laboratory evolution experiments, as well as mutations 

contributing to the emergence of anti-cancer or anti-bacterial drug 
resistance in clinical environments1–4. However, measuring the 
dynamics of evolutionary processes remains a major challenge, par-
ticularly in large asexual populations where many low-frequency, 
small-effect mutations are known to spread simultaneously5–8. A 
complete quantitative description of evolutionary dynamics there-
fore requires the tracking of a large number of individual lineages, 
most of which occur at extremely low frequencies (10−6 to 10−5), in 
parallel and over multiple generations.

Whole-genome sequencing techniques currently fall short 
of fulfilling this requirement at typical read depths, because they 
are usually unable to detect mutations at frequencies below about 
0.1%9,10. Various alternative solutions have been applied to recon-
struct population dynamics from trajectories of individual lineages 
at much higher resolution than can be accessed by whole-genome 
sequencing11–13. One method that greatly increases the frequency 
resolution of individual lineages is based on tagging chromosomes 
of individual cells with a genetic ‘barcode’ that can be identified by 
deep sequencing14. Previous work implemented this approach in 
Saccharomyces cerevisiae, where chromosomal insertion of about 
500,000 random barcodes using the Cre-loxP recombination system 
allowed a quantitative description of evolutionary dynamics of yeast 
populations (around 108 cells)5,15,16. In bacteria, however, technical 
barriers have limited the number of unique chromosomal barcodes 
to approximately 100–50017–19. Such low levels of barcode diversity 
preclude us from addressing important problems in bacterial evolu-
tion where high-resolution lineage tracking is essential. One such 

scenario is evolution in the presence of sub-inhibitory amounts of 
antibiotics, where the dynamics are driven by multiple mutations of 
low frequency and small fitness effects20.

Here we present a method based on the Tn7 transposon to gener-
ate E. coli populations of >107 cells carrying 105–106 unique chro-
mosomal barcodes. To demonstrate the utility of this technique, 
we evolved barcoded populations by serial passaging in the pres-
ence of sub-inhibitory concentrations of two common antibiotics, 
chloramphenicol and trimethoprim. Whereas previous studies on 
high-resolution microbial barcoding focused primarily on inferring 
the distribution of selection coefficients on new mutations16, we 
pursued a complementary, ecology-inspired approach that focuses 
on tracking the diversity of lineages over time and across popula-
tions. This approach is amenable to a wider variety of conditions, 
such as time-varying environments and initial populations that 
already contain substantial genetic diversity. We found that differ-
ent drug regimens elicited distinct and highly reproducible dynam-
ics of lineage diversity. In particular, low amounts of trimethoprim 
unexpectedly slowed the rate of lineage diversity loss even beyond 
conditions of no antibiotic, hinting at the possibility that in this 
regime the antibiotic could be primarily functioning as a signal-
ling molecule21,22. We also quantified the extent to which individual 
lineages had similar fates across replicate populations evolving in 
the same condition. Analysis of the dynamics of these lineages’ fre-
quency trajectories revealed the relative contributions of pre-exist-
ing mutations (standing genetic variations that arose prior to the 
experiment) versus de novo mutations (those acquired during the 
experiment). In general, stronger selection pressure generated faster 
loss of lineage diversity and more reproducible dynamics at the level 
of individual lineages owing to pre-existing beneficial mutations, 
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whereas weaker selection produced slower diversity loss and less 
reproducible dynamics owing to a greater role of de novo mutations.

Results
Efficient chromosomal barcoding of E. coli cells. Several robust 
genome-editing methods available for E. coli have long made this 
organism a flagship of genetic manipulations23. A high-resolution 
chromosomal-labelling technique, however, has not been available, 
making it difficult to analyse the evolutionary dynamics of large 
bacterial populations segregating at low frequencies. To address this 
problem, we harnessed the well established site-specific recombina-
tion machinery of the Tn7 transposon24,25. We placed the tnsABCD 
genes, which encode the transposase biochemical machinery, 
under the control of an arabinose-inducible pBAD promoter in a 
temperature-sensitive ‘helper’ plasmid (Fig. 1a), while the Tn7 arms 
(Tn7L, Tn7R), which target the genetic cargo at a neutral attnTn7 
attachment site, are on a separate ‘integration’ plasmid (Fig. 1b). 
We placed the barcode cassette carrying a 15-nucleotide random 
sequence (the ‘barcode’) and the adjacent marker of selection 
between the Tn7 arms on the integration plasmid (Fig. 1b,c). To 
minimize the preparation of barcode libraries to two consecutive 
polymerase chain reaction (PCR) steps, we added sequences flank-
ing the barcode cassette that are complementary to Illumina adapter 
primers (Fig. 1c). We used these sequences both to PCR-amplify 
barcodes directly on cell cultures as well as to anchor i5/i7 Illumina 
indices to the amplified barcodes (Methods). Using this Tn7 trans-
poson system, we integrated barcodes into a fixed location on the  
E. coli chromosome in two steps (Fig. 1d). First, we transformed 
cells with the Tn7 helper plasmid and pre-conditioned them by 
inducing the transposase machinery. Second, we transformed the 
pre-conditioned cells with the barcoded integration plasmid. We 
simultaneously selected for chromosomal barcode integration and 
removal of the helper plasmid by plating on selective media and 
incubating the plates at 37 °C (Methods).

To assess the quality of the library preparation, we sequenced the 
barcode library at three points during the process: (1) the raw DNA 
library, as synthesized by the manufacturer and prior to incorpora-
tion of barcode cassettes into the integration plasmid (Methods); 
(2) the integration plasmid library, before incorporation into the 
chromosome; and (3) the library of barcodes successfully incorpo-
rated into the E. coli chromosomes. We identified about 1.3 × 106 
unique barcodes in the raw library (Supplementary Table 1), with a 
fairly narrow distribution of frequencies: all barcodes but one had 
frequencies between 3 × 10−7 and 3 × 10−5 (Extended Data Fig. 1a). 
The nucleotide composition of these barcodes was also very close 
to random, as quantified by the entropy of nucleotides per position 
(Extended Data Fig. 1B). Incorporating the barcodes onto plasmids 
and then onto chromosomes reduced this diversity (about 8.4 × 105 
unique barcodes on plasmids and about 4.6 × 105 on chromosomes; 
Supplementary Table 1). The process also introduced more redun-
dancy into the distribution of frequencies, especially the chromo-
somal incorporation step, with some barcodes reaching frequencies 
of around 10−3 (Extended Data Fig. 1a). These increases in redun-
dancy also led to a minor decrease in nucleotide entropy (Extended 
Data Fig. 1b). However, the presence of some barcodes with high 
initial frequencies did not appear to play a major part in the result-
ing lineage dynamics during evolution, as we show below.

We also compared the frequencies of individual barcodes 
between the different initial libraries, which showed a weak but sig-
nificant correlation of frequencies between steps (Extended Data 
Fig. 1c,d); that is, barcodes that started at high frequencies tended 
to remain at high frequencies during the preparation process, but 
with fluctuations due to the incorporation procedure. To test the 
effect of noise from the PCR and sequencing processes, we also pro-
duced four independent sequencing replicates of the chromosomal 
library (Supplementary Table 1). The frequencies of individual  

barcodes across these replicates are strongly correlated 
(Supplementary Fig. 1), indicating that our sequencing and barcode 
identification methods are reproducible.

Laboratory evolution of the barcoded population. Bacteria are 
often exposed to antibiotic concentrations far below the minimal 
inhibitory concentration (MIC), both in natural environments and 
in patients receiving antimicrobial therapy26,27. Previous studies have 
shown that, compared to a lethal dosage, sub-MIC concentrations 
greatly expand the mutational space by allowing a large number of 
small-effect mutations to enter a population simultaneously21. The 
importance of low-frequency lineages in sub-MIC concentrations 
make these conditions a perfect setting in which to employ our bar-
coded population of E. coli. To this end, we chose two frequently 
used antibiotics with distinct modes of action: chloramphenicol 
(CMP), which inhibits protein synthesis via inactivation of peptidyl 
transferase activity of the bacterial ribosome28; and trimethoprim 
(TMP), which functions as a competitive inhibitor of the essential 
protein dihydrofolate reductase29. Previous work demonstrated that 
sub-inhibitory concentrations of antibiotics as low as 1% MIC can 
still select for resistant mutants over the wild type30. Therefore, we 
aimed for antibiotic concentrations around 1% MIC in our evolution 
experiments. Specifically, we identified concentrations that reduced 
the total number of cells by no more than 30% at the end of a single 
propagation cycle (about 10 h), compared to the untreated culture 
(Methods). These concentrations were 1 μg ml–1 CMP (6.25% MIC) 
and 0.1 μg ml–1 TMP (1% MIC) (Supplementary Fig. 2). To reduce 
the selection pressure even further below the minimal selective con-
centration, we also chose ultra-sub-MIC concentrations that were 
10% of the aforementioned concentrations.

Altogether, we conducted laboratory evolution via serial passag-
ing under five conditions: low CMP (6.25% MIC), ultralow CMP 
(0.625% MIC), low TMP (1% MIC), ultralow TMP (0.1% MIC) and 
a control without any drug (Extended Data Fig. 2a,b). We evolved 
14 independent replicate populations under each of these five con-
ditions (Extended Data Fig. 2c,d and Supplementary Table 2). We 
diluted batch cultures (500 μl each) grown in 96-well plates by 1:100 
every 6 generations (that is, passaging twice daily; Extended Data 
Fig. 2e,f) with a bottleneck population size of about 3 × 107 cells 
(Extended Data Fig. 2c,d). To sustain the selection pressure during 
the evolutionary experiment (around 420 generations), we gradu-
ally increased the antibiotic concentrations for some of the condi-
tions (Extended Data Fig. 2a,b and Supplementary Fig. 3; Methods). 
This helped to keep the number of cells at the end of each passage 
roughly constant along the entire evolutionary experiment for each 
population (Extended Data Fig. 2c,d). We randomly chose three 
replicate populations from each condition for all further analysis 
(sequencing and growth measurements), resulting in 15 total popu-
lations to consider.

We expected two major components of selection in the experi-
ment: selection for traits that are beneficial to the specific type and 
concentration of antibiotic, and selection for traits that are beneficial 
under the general laboratory growth conditions (growth medium, 
aeration and so on). It is possible that there are tradeoffs between 
these two types of traits, that is, costs associated with the acquisition 
of drug resistance31,32. To assess the contributions of these factors, we 
measured two quantitative properties of each evolving population 
at several time points (Supplementary Table 3): the IC50 (antibi-
otic concentration inhibiting 50% of growth; Supplementary Fig. 4  
and Methods), which provides an overall measure of the popula-
tion’s ability to grow in a specific antibiotic; and the growth rate in 
the absence of drug, which measures the adaptation of the popula-
tions to the general laboratory conditions and also measures possi-
ble costs of resistance. For populations evolving under the low CMP 
and low TMP conditions, the IC50 measurements revealed a mod-
erate increase in antibiotic resistance over the evolution experiment 
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(Extended Data Fig. 3a,b). In contrast, both ultralow conditions, as 
well as the control without drug, produced no measurable improve-
ment in IC50 measured at concentrations ≥1 μg ml–1 for CMP and 
≥0.5 μg ml–1 for TMP (Extended Data Fig. 3a,b). Furthermore, the 
increases in drug resistance evolved under the low CMP and low 
TMP conditions were accompanied by a growth rate reduction in 

the absence of antibiotics (Extended Data Fig. 3c,d). In particu-
lar, the population that evolved to resist the highest levels of CMP 
(low CMP replicate 1, Extended Data Fig. 3a) showed the strongest 
growth rate reduction among the three replicate populations in the 
same condition (Extended Data Fig. 3c). However, we observed no 
growth rate cost in the populations evolved under ultralow CMP. 
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Fig. 1 | Barcoding E. coli cells with Tn7 transposon machinery. a, Map of the helper plasmid expressing the Tn7 transposon machinery (tnsABCD). b, Map 
of the integration plasmid carrying the barcode cassette and spectinomycin resistance-conferring gene (SpR) nested between the left and right Tn7 arms. 
c, Map of the segment undergoing chromosomal integration into the Tn7 attachment site (attnTn7). The inset shows the sequence of the barcode-carrying 
cassette. d, Steps for preparation of the barcoded plasmid and chromosomal libraries. See Methods for complete details. Recombineering is recombination-
mediated genetic engineering, and Gibson assembly is a robust exonuclease-based method to assemble DNA fragments55,56. FRT, FLP Recognition Target 
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Instead, the growth rate trajectories for these populations were gen-
erally similar to those for the populations that evolved in the absence 
of antibiotics (Extended Data Fig. 3c). Surprisingly, in the popula-
tions evolved under ultralow TMP, the improvement in growth rate 
lagged behind that of the populations evolved under no antibiotics 
(Extended Data Fig. 3d), suggesting that the rate of adaptation to 
growth conditions at 0.1% MIC of TMP was diminished, despite 
the fact that we observed no improvement in TMP IC50 (Extended 
Data Fig. 3b).

Barcodes allow high-resolution monitoring of lineage trajecto-
ries. To elucidate the evolutionary dynamics of these populations 
at the level of individual lineages, we sequenced the barcodes of the 
same 15 populations at 16 time points (Supplementary Table 1). 
From the sequenced barcodes, we assembled frequency trajectories 
for all ~4.5 × 105 initial lineages over the course of the experiment 
(Fig. 2 and Extended Data Fig. 4). Plots of these trajectories imme-
diately suggest several important qualitative insights. First, just one 
or two lineages dominated each population (>70%) by the end of 
the experiment (see also Supplementary Table 4). Second, some 
lineages rose to high frequency in multiple independent popula-
tions (lineage colours match across panels in Fig. 2 and Extended 
Data Fig. 4). Third, there is evidence of widespread clonal interfer-
ence: some lineages that initially increased in frequency as a result 
of positive selection later decreased as a result of competition from 
higher-fitness lineages. Fourth, Fig. 2 suggests that the rate of lin-
eage diversity loss was reproducible between replicate populations 
under the same conditions, while systematically distinct across dif-
ferent conditions. This implies that condition-specific selection, 
rather than selection for general laboratory conditions or neutral 
dynamics, dominated the lineage dynamics at the whole-popula-
tion level. Indeed, although genetic drift causes the loss of many 
individual low-frequency lineages, approximately 2N generations 
(where N is the effective population size) are required for a single 
lineage to fix by genetic drift alone33. Since the effective popula-
tion size in our experiments was of the order of 107 (Extended Data 
Fig. 2c,d), neutral dynamics cannot be responsible for the overall 
loss of lineage diversity we observe, which includes near-fixation in 
several populations.

Quantifying lineage diversity dynamics across conditions. To 
quantify the dynamics of lineage diversity, we adopted a measure of 
diversity widely used in ecology, the diversity index34,35:

qD ¼
X

lineage k

xqk

0

@

1

A
1=ð1#qÞ

ð1Þ

where xk is the frequency of the kth barcoded lineage and q is the 
‘order’ of the diversity index, which determines the sensitivity of 
diversity to abundant versus rare barcodes (Methods). In general, 
we can interpret the diversity index as the effective number of lin-
eages present in the population. When q = 0, the diversity index 
simply counts the number of unique barcoded lineages, irrespective 
of their frequencies. This case is equivalent to measuring diversity 
as ‘species richness’ in ecological contexts34. When q = 1, the diver-
sity index weights all barcoded lineages by their frequencies, which 
is sometimes known as the Shannon diversity because it is equiva-
lent to the exponential of the Shannon entropy of the frequencies. 
In the limit of q→∞, the diversity index equals the reciprocal of 
the maximum lineage frequency, meaning that it depends only on 
the most abundant lineage and no others. Thus, by comparing the 
lineage diversity index across different q values, we can estimate the 
relative contributions of rare and abundant lineages to that diver-
sity. We note that if all lineages have equal frequencies, then the 
diversity index equals the actual number of lineages for any value 

of q. We emphasize that ‘diversity’ here refers to the diversity of lin-
eages descending from the initial population, meaning that it must 
decrease monotonically over time, unlike the genetic diversity of the 
population, which can increase owing to new mutations.

We first tested the diversity index on the initial barcode librar-
ies. For each of the initial barcode libraries (raw DNA library, plas-
mid library and chromosomal library; Extended Data Fig. 1), we  
calculated the diversity index in equation (1) for q = 0, q = 1 and 
q = ∞ (Supplementary Fig. 5a). As expected, we see that the diver-
sity decreased at each step of the library preparation (except for ∞D 
in going from the raw library to the plasmid library, which sup-
pressed the frequency of the most-frequent barcode; see Extended  
Data Fig. 1a). We also see that the diversity index decreases as the 
order q increases, since increasing the weight of higher-frequency 
lineages reduces their effective number. Indeed, the total number 
of unique chromosomal barcodes is 0D ≈ 4.5 × 105 (Supplementary  
Fig. 5a, left panel), but the effective number of lineages, using q = 1 to 
weight them by their unequal frequencies (Extended Data Fig. 1a),  
is approximately ten-fold lower, 1D ≈ 4.6 × 104 (Supplementary  
Fig. 5a, centre panel). To test the robustness of the diversity index 
to noise in the PCR and sequencing process, we also calculated 
the diversities of the four replicate samples of the initial chromo-
somal library (Supplementary Fig. 5a). Although there is noise at 
the level of individual low-frequency barcodes across these repli-
cates (Supplementary Fig. 1), the diversity indices are highly repro-
ducible, with all replicates falling within 10% of each other for all 
q values (within 2% for q = 1). Furthermore, while pooling these 
replicate samples increases the total number of unique barcodes 0D 
by 70–80% (Supplementary Fig. 5a, left panel), it only increases the 
q = 1 diversity by 5% to 6% (Supplementary Fig. 5a, centre panel). 
Therefore, while sampling noise in the sequencing process can have 
an important effect on estimates of the absolute number of bar-
codes, the effective number is relatively robust at the sampling and 
sequencing depths we are using.

We now turn to assessing the diversity of the populations in the 
evolution experiment. Figure 3a shows the effective number of lin-
eages for each population over the time of the experiment, using 
three different values of q. Low CMP produced the fastest collapse 
of lineage diversity, extinguishing over 90% of unique barcodes 
in less than 50 generations. This behaviour was displayed at all q  
values, indicating that rare and frequent barcodes contributed 
equally to these dynamics. In contrast, populations under low TMP 
conditions lost 0D diversity more rapidly compared to the ultralow 
CMP and no drug conditions, but it lost 1D and ∞D diversities at 
approximately the same rate; this indicates that the dynamics of 
abundant lineages were similar for these three conditions, but 
that low-frequency lineages disappeared more quickly under low 
TMP. More surprising was the fact that populations under ultralow 
TMP lost diversity even more slowly than did populations under 
no drug. Indeed, the diversity of populations under ultralow TMP 
maintained 40% to 50% of the initial effective diversity (q = 1) up to 
approximately generation 120, whereas populations with no drug 
had only about 1% of their initial diversity by that time point. This 
difference in the rates of lineage diversity deterioration between the 
ultralow TMP and no drug conditions is consistent with our mea-
surements of growth rate reduction in the absence of drug, wherein 
the rate of adaptation under ultralow TMP lagged behind that of no 
drug populations (Extended Data Fig. 3d). Interestingly, 0D diversity 
under ultralow TMP was similar to the other populations by about 
generation 250, but its diversity at larger q remained higher until the 
very end of the experiment. Towards the end of the experiment, we 
saw that the effective diversity of all populations is 1–5 lineages (1D), 
consistent with the observations from Fig. 2. However, we note that 
despite the drop in lineage diversity, there was still an ample number 
of surviving barcode lineages: each population retained a few thou-
sand barcodes by the end of the experiment, as seen in 0D (Fig. 3a).

NATURE ECOLOGY & EVOLUTION | VOL 4 | MARCH 2020 | 437–452 | www.nature.com/natecolevol440

http://www.nature.com/natecolevol


ARTICLESNATURE ECOLOGY & EVOLUTION

Replicate 1 Replicate 2 Replicate 3

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300 350 400

Time (generations)

Li
ne

ag
e 

fr
eq

ue
nc

y

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300 350 400

Time (generations)

Li
ne

ag
e 

fr
eq

ue
nc

y

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300 350 400

Time (generations)

Li
ne

ag
e 

fr
eq

ue
nc

y

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300 350 400

Time (generations)

Li
ne

ag
e 

fr
eq

ue
nc

y

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300 350 400

Time (generations)

Li
ne

ag
e 

fr
eq

ue
nc

y

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300 350 400

Time (generations)

Li
ne

ag
e 

fr
eq

ue
nc

y

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300 350 400

Time (generations)

Li
ne

ag
e 

fr
eq

ue
nc

y

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300 350 400

Time (generations)

Li
ne

ag
e 

fr
eq

ue
nc

y

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300 350 400

Time (generations)

Li
ne

ag
e 

fr
eq

ue
nc

y

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300 350 400

Time (generations)

Li
ne

ag
e 

fr
eq

ue
nc

y

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300 350 400

Time (generations)

Li
ne

ag
e 

fr
eq

ue
nc

y

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300 350 400

Time (generations)

Li
ne

ag
e 

fr
eq

ue
nc

y

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300 350 400

Time (generations)

Li
ne

ag
e 

fr
eq

ue
nc

y

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300 350 400

Time (generations)

Lo
w

 C
M

P
Lo

w
 T

M
P

U
ltr

al
ow

 C
M

P
U

ltr
al

ow
 T

M
P

N
o 

dr
ug

Li
ne

ag
e 

fr
eq

ue
nc

y

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250 300 350 400

Time (generations)

Li
ne

ag
e 

fr
eq

ue
nc

y

Fig. 2 | Dynamics of barcoded lineage frequencies over evolution experiment. Each row corresponds to a different antibiotic regimen, while each column 
corresponds to a different replicate. Individual panels show the frequency trajectories for all barcoded lineages in single populations over time of the 
experiment. Each coloured band corresponds to a unique lineage, with its vertical width indicating its frequency at a particular time point. For the top 
20 lineages in each population (ranked by mean frequency over time), we assign a unique colour to each lineage that is consistent across panels, that is, 
the same colour represents the same barcode across panels (Supplementary Table 4). We use random colours for all lower-frequency lineages. The grey 
band at the top represents the frequency of reads without identified barcodes. Dots above each plot mark times at which the drug concentration for that 
population changed (Extended Data Fig. 2a,b).
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Reproducibility of individual lineage dynamics. Not only did 
different antibiotic regimens produce distinct patterns of lineage 
diversity loss, but we also observed that these patterns are consis-
tent across replicate populations. In Fig. 3b we show the Pearson 
correlation coefficients between the 1D diversity trajectories from 
all pairs of populations. Although all trajectories are somewhat cor-
related because they must monotonically decrease, we saw stronger 
similarity among trajectories from the same conditions. To further 
dissect whether individual lineages have similar fates across popula-
tions, we must quantify the similarity between lineage frequencies 
in different populations.

To compare the lineage composition of two or more populations 
at a single time point, we used a definition of diversity dissimilarity 
from ecology (Methods). Suppose we have M populations whose 
lineage compositions we want to compare. We first calculate the 
diversity index (equation (1)) for all M populations pooled together, 
qDpooled. We then calculate the diversity index for each population 
alone and determine the mean across all populations, qDmean. The 
ratio of these two quantities, shifted and rescaled, measures the dis-
similarity among lineage compositions, calculated as34,35:

qDpooled= qDmean ! 1
M ! 1

ð2Þ

If the lineage compositions of all populations are identical, then the 
pooled population has diversity equal to the mean diversity, and so 
the dissimilarity equals zero. In contrast, if the lineage compositions 
of M populations have no overlap, then the pooled population has 
diversity M times greater than that of the mean single population, 
and so the dissimilarity index equals 1. As with the diversity index, 
the parameter q allows us to vary the importance of low- and high-
frequency lineages in the overall lineage dissimilarity. For q = 0, 
lineage dissimilarity measures how many lineages multiple popu-
lations have in common, regardless of their frequencies, while for 
q→∞, it compares only the highest-frequency lineages (Methods).

We first tested the measure of lineage dissimilarity by calculat-
ing it between all pairs of initial barcode libraries (Supplementary 
Fig. 5b). We see very low dissimilarity among the sequencing repli-
cates of the chromosomal library; for example, the q = 1 dissimilar-
ity among the chromosomal replicates is about 3% (Supplementary 
Fig. 5b, centre panel). As with the diversity indices themselves, we 
see little effect of pooling samples to increase read depth, indicat-
ing that our read depth is sufficient. This analysis furthermore con-
firms that the largest change in barcode frequencies occurs during 

incorporation of the plasmid library onto the chromosomes, as the 
raw library and plasmid library are more similar to each other than 
to the chromosomal libraries (Supplementary Fig. 5b; see Extended 
Data Fig. 1c,d).

We then calculated the dissimilarity across all evolved popula-
tions at each time point. In Fig. 4a (left panel), we show the q = 1 
dissimilarity between all pairs of populations at generation 120. At 
the beginning of the experiment, the populations were identical and 
so the dissimilarity between all pairs of populations was zero. By 
generation 120, we see that many pairs of populations from different 
conditions have already diverged (dissimilarity close to the maxi-
mum value of 1), while pairs of populations from the same condi-
tions remained more similar (except for low TMP). Furthermore, 
we see some similarity even between conditions: populations under 
the weakest antibiotic pressures (ultralow CMP, ultralow TMP and 
no drug) all maintained similarity between conditions comparable 
to their similarity between replicates. However, by the end of the 
experiment at generation 420 (Fig. 4a, right panel), most of the 
similarity between populations disappeared. The main exception 
was for low CMP, where the three replicate populations maintained 
strong similarity. There was also a small amount of residual similar-
ity among the populations for low CMP, ultralow CMP (two out 
of three replicates) and low TMP (two out of three replicates). In 
contrast, replicate populations under the ultralow TMP and no drug 
conditions showed no similarity among each other by the end of the 
experiment. There was also strong similarity between replicate 3 in 
ultralow CMP and replicate 2 of ultralow TMP.

We can further quantify the reproducibility of lineage dynamics 
by calculating diversity dissimilarity among all replicate populations 
under each condition over time (Fig. 4b and Supplementary Fig. 6). 
For q = 0, we see that the dynamics of within-condition dissimilar-
ity were similar to the dynamics of the diversity indices themselves 
in Fig. 3a. That is, populations under low CMP diverged from each 
other most rapidly, followed by those under low TMP, then by those 
under ultralow CMP and no drug concurrently, and finally with 
those under ultralow TMP diverging last. Interestingly, all condi-
tions settled at an intermediate amount of around 0.8 dissimilar-
ity for q = 0 by the end of the experiment; this value corresponds 
to having about 20% of their lineages in common (Methods). The 
q = 1 lineage dissimilarity, which accounts for heterogeneity in 
lineage frequencies, shows some differences with the q = 0 case, 
which simply counts barcodes. With q = 1, low CMP populations 
actually diverged more slowly from each other than did popula-
tions in the other conditions. Moreover, the low CMP populations 
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Fig. 3 | Dynamics of lineage diversity over time. a, For each population and at each time point, we measured the effective number of barcoded lineages 
using the diversity index qD (equation (1); see also Methods) for three different values of q, which controls the weight of low- versus high-frequency 
lineages: 0D (number of unique barcodes, left), 1D (Shannon diversity, centre), and ∞D (reciprocal of the maximum lineage frequency, right). Dots above 
each plot mark times at which drug concentrations changed (Extended Data Fig. 2a,b); their colours indicate the drug environment according to the key.  
b, Pearson correlation coefficient between diversity trajectories (for 1D) from all pairs of populations. r1, replicate 1; r2, replicate 2; r3, replicate 3.
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actually reached some maximum level of q = 1 dissimilarity around 
generation 150, and then began converging toward more similar 
lineage compositions. At the other extreme, ultralow TMP and no 
drug populations reached maximum dissimilarity by the end of the 
experiment, while low TMP and ultralow CMP populations had 
an intermediate value of dissimilarity. The dissimilarity index with 
q = ∞ shows a similar pattern of rise and fall for low CMP popula-
tions; since this case depends only on the most frequent lineage, it 
implies that the high level of similarity between low CMP popula-
tions by the end of the experiment was due to their sharing of the 
same dominant lineage.

Altogether, this analysis shows that lineage dynamics under iden-
tical conditions are highly reproducible, even at the level of individ-
ual lineages. Specifically, it suggests that some lineages repeatedly 
rose to high frequency over multiple experiments. To demonstrate 
this more explicitly, in Fig. 5a,b we compare the frequencies of all 
barcoded lineages at the end of the experiment for three replicate 
populations under low CMP conditions. Furthermore, in Fig. 5c 
we show the overlap of the top ten barcodes (ranked by mean fre-
quency over time) between all three replicate populations under low 
CMP conditions: four of the top ten in each population are shared 
among all replicates, with three more barcodes shared between two 
replicates (see also Supplementary Table 4). Indeed, the most fre-
quent lineage in replicates 2 and 3 is the same lineage (green tra-
jectories in Fig. 2); this lineage is also the second-most frequent 
lineage in replicate 1. In contrast, Fig. 5d–f shows the same plots for 

the no drug populations, which have little similarity among their 
most frequent lineages. In particular, the only overlap between their 
top ten barcodes is one barcode shared between replicates 2 and 3  
(Fig. 5f and Supplementary Table 4). In Supplementary Figs. 7 and 8 
we show direct comparisons of lineage frequencies between all pairs 
of populations.

One possible explanation for the repeated dominance of certain 
lineages is that those lineages may have started at unusually high 
frequencies (Extended Data Fig. 1a). However, several lines of evi-
dence refute this possibility. In Supplementary Fig. 9 we compare 
the initial and final frequencies for all lineages in each population. 
In general, the final frequencies are poorly correlated with the 
initial frequencies; in particular, the initial frequencies of the lin-
eages that dominate at the end of the experiment are often below 
or very near the average initial frequency (grey vertical bars in 
Supplementary Fig. 9). We also calculate the lineage dissimilarity of 
each population at each time point compared to the initial popula-
tion (Supplementary Fig. 10); this also shows that the evolved popu-
lations are almost maximally dissimilar from the initial populations, 
indicating that the initial frequencies of lineages are largely inde-
pendent of their final values.

Individual lineage trajectories reveal the relative contributions of 
pre-existing and de novo mutations. To further probe the striking 
amount of similarity among some populations at the level of indi-
vidual lineages, we first note that many lineages within populations  
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appear to follow similar trajectories (Extended Data Fig. 4). We 
therefore performed hierarchical clustering of a subset of high- 
frequency lineage trajectories in each population, based on the cor-
relation coefficients between trajectories (Supplementary Figs. 11  
and 12; see also Methods). The trajectories indeed formed well 
defined clusters with distinct dynamics (Supplementary Fig. 13); in 
particular, similar clusters appeared in replicate populations from 
the same condition, while clusters in populations from different 
conditions appeared to be more dissimilar. A few clustered trajec-
tories also shared barcodes with very similar sequences, suggesting 
these lineages are actually the same (that is, the apparently distinct 
barcodes arose from sequencing errors; Supplementary Fig. 14); 
however, the vast majority of clustered trajectories involved unre-
lated barcode sequences, suggesting they are truly distinct lineages 
with highly correlated dynamics.

The clustering analysis revealed two key types of adaptive tra-
jectories. Trajectories of the first type increased immediately at the 
beginning of the experiment, before later getting outcompeted by 
other lineages (Fig. 6a, left panel). The initial increase suggests that 
these lineages carried pre-existing beneficial mutations at the begin-
ning of the experiment; these mutations were presumably acquired 
during the approximately 30 generations of growth that occurred 
during preparation of the barcode library (Fig. 1d). Trajectories of 
the second type were initially flat and started to increase only later 
in the experiment (Fig. 6a, right panel); these lineages presumably 
acquired beneficial mutations de novo during the experiment. To 
test these interpretations, we identified trajectories of both types in 

each population (Supplementary Fig. 13) and compared the lineages 
in each type across populations; lineages with pre-existing muta-
tions should show the same behaviour across multiple populations, 
while lineages with de novo mutations should not. Indeed, we see 
substantial overlap in lineages with putative pre-existing mutations 
across populations (Fig. 6b, left panel), while almost no overlap can 
be observed in lineages with putative de novo mutations (Fig. 6b, 
right panel). We also compared the initial frequencies of trajecto-
ries in both types of clusters; a set of lineages carrying pre-existing 
mutations with similar selection coefficients (and which there-
fore cluster together) should have more similar initial frequencies 
owing to their similar growth dynamics during library preparation, 
whereas lineages that acquire only de novo mutations later should 
have unrelated, more variable initial frequencies. We find that tra-
jectories with putative pre-existing mutations do in fact have some-
what less variable initial frequencies on average (Supplementary 
Fig. 15; Welch’s t-test, P value ≈ 0.03).

To assess the overall contributions of pre-existing and de novo 
beneficial mutations to the evolutionary dynamics, we summed all 
trajectories of each type in each population (Fig. 6c). For low CMP, 
the lineages with pre-existing beneficial mutations dominated from 
the beginning of the experiment (Fig. 6c, left panel); in fact, we 
observed no trajectories with the signature of de novo mutations in 
this condition (Supplementary Fig. 13). This does not mean that no 
de novo mutations occurred in this condition, but rather that they 
apparently occurred on the background of lineages with pre-exist-
ing beneficial mutations. For example, the dominant purple lineage 
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in replicate 1 (Fig. 2) appears to have acquired at least a second 
strongly beneficial mutation around generation 324. The existence 
of strongly beneficial pre-existing mutations under low CMP con-
ditions explains why these populations demonstrated such strong 
convergence in lineage composition (Figs. 4 and 5a–c). In contrast,  

most other populations show a balance between lineages with 
pre-existing mutations and lineages with de novo mutations, with 
pre-existing mutations driving the initial dynamics and de  novo 
mutations dominating later. For example, the populations evolv-
ing under the no drug conditions also have lineages with apparent  
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pre-existing beneficial mutations (Fig. 6c, left panel), but they rap-
idly lost frequency after about generation 120, when the lineages 
with de novo mutations took over (Fig. 6c, right panel). This is also 
consistent with the low level of convergence we see in these popula-
tions (Figs. 4 and 5d–f). Finally, we note that the populations under 
the ultralow TMP and no drug conditions appear to have similar 
selection on their trajectories with pre-existing mutations (Fig. 6c, 
left panel), even though populations under the ultralow TMP con-
dition lost their diversity much more slowly than did the popula-
tions under the no drug condition (Fig. 3a). The difference arose for 
the de novo mutations, which appeared to be under much weaker 
selection under the ultralow TMP condition than under the no drug 
condition (Fig. 6c, right panel).

Lineage dynamics under constant drug conditions. In the above-
mentioned evolution experiment, we increased the concentrations 
of drugs in some conditions to maintain approximately constant 
selection pressure as the populations adapted (Extended Data  
Fig. 2). To verify the robustness of those results, we repeated the 
evolution experiments in conditions with constant rather than 
changing drug concentrations, and with consistent bottlenecking 
every 12 h (Methods). We also sequenced the barcodes at several 
earlier time points to better capture the initial dynamics (Extended 
Data Fig. 5 and Supplementary Fig. 16).

Evolution with constant concentrations recapitulated all the 
major conclusions of the original experiment in increasing con-
centrations (Extended Data Figs. 6–8 and Supplementary Figs. 17  
and 18). In particular, constant low CMP again produced the fastest 
loss of lineage diversity (Extended Data Fig. 6a; see Fig. 3a). The lin-
eage dissimilarity of these populations also diverged more quickly 
with q = 0 but more slowly with q = 1 compared to the other popula-
tions (Extended Data Fig. 7b; see Fig. 4b), indicating the dominance 
of pre-existing beneficial mutations, which were again identified 
by clustering the lineage trajectories (Extended Data Fig. 8b; see 
Fig. 6c). We also recovered the effect of TMP on slowing diversity 
loss compared to no drug; however, in the second experiment this 
occurred for the low TMP condition rather than for the ultralow 
TMP condition (Extended Data Fig. 6a; see Fig. 3a). This mis-
match between the experiments is due to the difficulty of accurately 
reproducing such low concentrations of TMP in separate dilutions 
(TMP concentrations are tenfold lower than CMP concentrations; 
see Methods): low TMP in the second experiment turned out to be 
closer to ultralow TMP in the first experiment, and ultralow TMP 
in the second experiment appeared to be similar to no drug at all. 
This difference, however, is not essential because we nevertheless 
observe that some low concentration of TMP produces the same 
effect in both experiments.

Other comparisons of lineage dynamics between populations 
under the same conditions, and between different conditions, were 
generally similar in the experiment with constant concentrations, 
albeit noisier because the weaker selection pressures and shorter 
timescale of the second experiment produced a smaller range of 
lineage dynamics. For example, the rates of lineage diversity loss 
were once again similar across replicates under the same conditions 
(Extended Data Fig. 6b; see Fig. 3b), except for distortions in some 
comparisons (for example, low TMP replicate 2, ultralow TMP 
replicate 1, and no drug replicate 2) owing to noise in the lineage 
diversity estimates at single time points (Extended Data Fig. 6a). 
The smaller dynamic range of trajectories also meant that trajectory 
clustering was less robust (Supplementary Figs. 17 and 18), but this 
analysis nevertheless recovered similar patterns of pre-existing and 
de novo beneficial mutations (Extended Data Fig. 8).

Simulations reproduce observed lineage dynamics. To further 
test our interpretations of the experimental results, we simulated 
evolutionary dynamics of a barcoded population under a serial 

dilution scheme similar to the experiment (see Methods for com-
plete details). We focused on varying the supply of pre-existing 
mutations, which accumulate during the preparation of the barcode 
library, and the supply of de  novo mutations, which accumulate 
during the evolution experiment. In general, we found that having 
both types of variation was necessary to qualitatively reproduce tra-
jectories similar to the observed experimental data (Extended Data 
Fig. 9; see Fig. 2 and Extended Data Fig. 4).

Although we explored a range of parameter values (mutation rates 
and distributions of selection coefficients of mutations) in the simu-
lations, for simplicity we present two contrasting cases (Methods). 
Both cases have pre-existing as well as de novo mutations, but pre-
existing mutations dominate in the first case (intended to mimic 
low CMP conditions), whereas de novo mutations dominate in the 
second case (intended to mimic no drug conditions). We simulated 
two replicate populations in each case. We first checked whether 
pre-existing and de novo mutations in the simulations led to tra-
jectories similar to what we observed from the clustering analysis 
of the real data. Indeed, the simulated trajectories for these two  
types of lineages qualitatively match the behaviour of the  
observed trajectories (Supplementary Fig. 19; see Fig. 6a and 
Supplementary Fig. 13).

Next, we analysed the lineage diversity of the simulated popula-
tions. We calculated the effective number of lineages (equation (1))  
in each of the populations over time (Extended Data Fig. 10a). As 
in the experiment, the simulated replicates show a high degree of 
reproducibility in their diversity dynamics, and the dominance 
of pre-existing beneficial mutations clearly accelerates the decay 
of diversity. This supports our interpretation of the experimental 
data regarding the increased role of pre-existing mutations under 
low CMP compared to other conditions. We also simulated popu-
lations under purely neutral dynamics and confirmed that neutral 
processes alone cannot reproduce the observed amount of diversity 
loss (see Fig. 3a). Moreover, we tested the effect of finite sampling 
of barcodes on the estimated diversity. That is, we subsampled 10% 
of each simulated population three times and calculated the lineage 
diversities on the basis of these subsamples (Supplementary Fig. 20). 
We found that the effect of subsampling was negligible, especially 
for q > 0 where lineages are weighted by their frequencies.

Finally, we calculated the lineage dissimilarity (equation (2)) 
across replicates in each of these conditions (Extended Data Fig. 10b).  
This further demonstrates how our two contrasting simulation con-
ditions mimic the experimental data: the populations dominated by 
pre-existing mutations initially diverged from each other but then 
later converged, as seen in the low CMP population, while the pop-
ulations dominated by de novo mutations simply diverged mono-
tonically. Again, the simulated neutral populations diverged much 
more slowly than what we observed in the experiment (see Fig. 4b),  
and the effect of subsampling on the estimated dissimilarity was 
negligible (Supplementary Fig. 21). This analysis also supports 
our conclusion that the fates of individual lineages are not strongly 
determined by the initial frequency distribution, since the distribu-
tion used in our simulations was the same as the one measured for 
the real chromosomal library (Extended Data Fig. 1a). If this dis-
tribution had a dominant role in determining which lineages fixed, 
then we would see a high level of convergence across replicates in 
all cases; however, that does not happen without strongly selected 
pre-existing mutations.

Discussion
We have demonstrated a method that generates E. coli populations 
carrying 105 to 106 unique chromosomal barcodes. We tested the 
utility of the method by evolving the barcoded population in the 
presence of sub-inhibitory concentrations of two common antibiot-
ics. Fitness phenotyping, especially of spontaneous single mutations, 
has been the major focus of previous applications of high-resolution 
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microbial barcoding16. However, this approach is applicable only 
under a strict set of conditions: environments must be constant, the 
population must start with minimal genetic diversity, and the popu-
lation can be meaningfully tracked only over a short amount of time 
before any lineages rise to high frequency. Here we have pursued 
a complementary, ecology-inspired approach to high-resolution  
lineage tracking which focuses on measuring lineage diversity over 
time and between populations. Because this approach is more phe-
nomenological, it can be applied to a wider variety of conditions, 
such as time-varying environments and initial populations that 
already contain substantial genetic diversity. Although lineage 
diversity has been used in some previous studies5,19, here we have 
provided a comprehensive investigation of how it can be used to 
analyse lineage-tracking data from DNA barcodes in bacterial pop-
ulations. We believe our methodology provides a valuable guide for 
the design and analysis of future barcoding applications in bacteria, 
especially for experiments involving fluctuating environments and 
comparisons across large numbers of environments and replicates.

We found that each drug regimen in our experiment prompted a 
distinct and reproducible rate of lineage diversity loss (Fig. 3), with 
the exception of the ultralow CMP and no drug conditions, which 
exhibited similar diversity loss dynamics (although they differed in 
other ways). Since the effect of genetic drift on the loss of lineage 
diversity at the population scale was limited, owing to the large size 
of the evolving populations (>107) and the short timescale (about 
420 generations), we can interpret the rate of lineage diversity loss 
as a proxy for the rate of adaptation in the population. Curiously, the 
diversity dynamics were reproducible regardless of the rate itself; for 
example, both the low CMP condition, which induced the fastest 
rate of adaptation, and the ultralow TMP condition, which induced 
the slowest adaptation dynamics, exhibited high reproducibility 
between evolutionary replicates. This observation implies a surpris-
ingly deterministic dynamics at the level of lineage diversity, despite 
differences in the distributions of fitness effects across conditions in 
our experiment.

One of the most surprising features of these results is that there 
is some range of low TMP concentrations that reduce the rate of 
lineage diversity loss even beyond the rate under no drug at all. 
While it is difficult to determine the precise concentration at which 
this effect occurs, owing to the low magnitude of these concentra-
tions, we have reproduced it across replicate populations in the 
same experiment (Fig. 3a) as well as across populations in different 
evolution experiments (Extended Data Fig. 6a) to demonstrate that 
such conditions exist. Since the growth dynamics of these popula-
tions indicate that they experience a similar number of generations 
per passage as the other populations (Extended Data Fig. 2e, f), we 
hypothesize that the observed delay in adaptation to TMP is due to 
a reduction in selection coefficients on beneficial mutations, com-
pared to both higher concentrations of TMP and to the no drug 
condition. A previous study estimated the distribution of selection 
coefficients from spontaneous mutations in E. coli by measuring 
growth rates of single-gene knockouts as a proxy36. This indeed also 
showed that the distribution of selection coefficients under TMP 
was narrower than the distribution under no drug. Other previous 
studies have suggested that, at a low dosage, antibiotics might oper-
ate not as a weapon, but rather as signalling molecules that trig-
ger transcriptional activation of multiple genes, including genes 
involved in the biosynthesis of amino acids, ribosomal proteins, 
purines and pyrimidines21. If TMP, which is known to affect tran-
scription37, indeed induces a new metabolic state in bacterial cells 
at ultralow concentrations, it could potentially lead to a shift in the 
distribution of beneficial mutations. We expect that future work will 
elucidate the detailed mechanism underlying delayed adaptation in 
low concentrations of TMP.

An important problem in evolutionary biology is reliably quan-
tifying the reproducibility of evolutionary processes38,39. Adaptation 

in near-lethal drug concentrations often appears to be nearly deter-
ministic owing to the existence of a handful of strongly beneficial 
mutations, which repeatedly accumulate in similar orders across 
replicate populations40. However, it is more challenging to quantify 
the reproducibility of evolutionary dynamics when they are driven 
by many small-effect mutations at the whole-population level. Our 
chromosomal barcoding system in E. coli allowed us to address 
this problem directly by quantitatively comparing lineage dynam-
ics across independent replicate populations subjected to identi-
cal antibiotic regimes. We found not only that the rate of lineage 
diversity loss was highly reproducible for each selection condi-
tion (Fig. 3), but also that the dynamics were deterministic at the 
level of individual lineages in some cases (Fig. 4), with a few lin-
eages rising to high frequency in multiple independently evolving  
populations (Fig. 5).

Populations can adapt to new environments using two sources 
of variation: pre-existing mutations (that is, standing genetic 
variation) and de novo mutations arising after the environmental 
change41. Previous work has shown both the enrichment of pre-
existing mutations30,42 and the emergence of new resistance-con-
ferring mutations30,43 under sub-MIC concentrations of antibiotics. 
However, the relative contributions of these two sources of variation 
to evolutionary dynamics has remained unknown. Here we devel-
oped a quantitative approach to address this problem by measuring 
lineage composition dissimilarity34,35 between replicate populations 
(Fig. 4) and analysis of individual lineage trajectories (Fig. 6). These 
results suggest that lineages present at very low frequencies in the 
initial population, but nonetheless independently reaching high fre-
quency in the replicate populations, are repetitively selected because 
they carry pre-existing beneficial mutations. Thus, the extent of 
similarity in lineage composition between evolutionary replicates at 
a particular time point quantitatively reports on the contribution of 
standing genetic variation to the observed dynamics. As expected, 
the rapid adaptation under low CMP was accompanied by the low-
est lineage dissimilarity among selection regimes (Fig. 4), indicating 
a substantial contribution of pre-existing mutations. Conversely, 
pre-existing variation has a less important role under the ultralow 
TMP and no drug conditions (Fig. 6c), where the evolutionary 
dynamics was rather driven mostly by de novo mutations.

Overall, our results demonstrate substantial evolutionary insights 
gleaned from high-resolution lineage tracking using chromosomal 
barcodes in E. coli. Our experimental barcoding protocol based on 
the Tn7 transposon machinery is straightforward to implement and 
can be readily be reproduced in a variety of systems. We have fur-
thermore shown how to obtain a robust quantitative analysis of the 
resulting lineage data using ecological diversity indices and trajec-
tory clustering. Altogether, we envision that this tool will find wide 
application in addressing diverse questions in bacterial population 
and evolutionary dynamics.

Methods
Design of the chromosomal barcode integration system in E. coli. The design 
of the chromosomal integration system of the barcode library is based on the 
pGRG25 plasmid, which carries all the components of the Tn7 transposon 
site-specific recombination machinery25,44,45. We separated the Tn7 transposase 
machinery (tnsABCDE) from the Tn7 arms (Tn7L, Tn7R) onto two independent 
plasmids: the temperature-sensitive ‘helper’ plasmid (pSC101 temperature-
sensitive origin of replication) carrying the tnsABCD genes under the control of 
an arabinose-inducible pBAD promoter (Fig. 1a), and the ‘integration’ plasmid 
(R6K gamma pir + dependent origin of replication) with the Tn7 arms flanking 
the barcode-carrying cassette and spectinomycin resistance gene (Fig. 1b,c). 
The separation of the recombination machinery tnsABCD from the integration 
segment flanked by the Tn7 arms achieved two major goals. First, the introduction 
of the helper plasmid into the cells prior to the integration plasmid allowed us to 
precondition the cells for chromosomal recombination by inducing the expression 
of the transposase complex, which we expected to increase the integration 
efficiency. Second, the transient nature of the integration plasmid eliminated any 
possibility of barcodes lingering outside their designated chromosomal location 
owing to unsuccessfully cured plasmids (that is, plasmids no longer present in the 
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host cell). This is especially important for barcoding temperature-sensitive strains 
that cannot be grown at non-permissive temperatures.

The barcode-carrying cassette (Fig. 1c) is designed to minimize the number 
of library preparation steps required for Illumina deep-sequencing technology. 
The only variable region in the cassette is the barcode sequence of 15 random 
nucleotides. Thus, the barcode library has a maximum possible diversity of  
415 (about 109) unique barcodes. The barcodes are asymmetrically located  
9 nucleotides downstream of the 5′ end of the cassette. This short stretch of  
9 nucleotides is sufficient to locate the barcodes in the raw sequencing data files 
and to reduce the sequence redundancy in the Illumina flow cell. The cassette 
is flanked by the sequences complementary to the Illumina adapter primers 
used to anchor library specific indices recognized by the Illumina sequencing 
platforms (MiSeq, HiSeq or Nextseq) (Fig. 1c). The Integrated DNA Technology 
gBlocks service synthesized the barcode cassettes (allowing the incorporation 
of 15 consecutive and variable nucleotides), which we then cloned into the Tn7 
integration plasmid (Fig. 1b). We characterized the resulting library of barcodes 
by deep sequencing prior to integration into the genome (Extended Data Fig. 1). 
We found that the actual diversity of this initial barcode library was three orders of 
magnitude lower than the maximal theoretical diversity (1.3 × 106 unique barcodes) 
(Supplementary Table 1). Although the distribution of barcode frequencies was 
fairly narrow (Extended Data Fig. 1a), sampling from a relatively small number 
of unique barcodes could have been a factor that contributed to the frequency 
distribution bias observed in the plasmid integration library (see below). Thus, to 
reduce the bias, a different approach for generating the initial barcode diversity, 
such as primers with diversified positions synthesized using manual mixing, can be 
used in the future library preparations.

Design of the barcode-carrying cassette. The barcodes consist of 15 random 
nucleotides each, which we placed 9 nucleotides downstream of the 5′ end of the 
288-nucleotide-long cassette:

g   t  cg  c g  cc  g g  N  N N  NN  N N  NN  N N  NN  N N  ta  t c  tc  g g  ta  g t  gg  g a  ta  c g  ac  g a  ta  c c  ga  a g  ac  a g -
ct  c a  tg  t t  at  a t  cc  c g  cc  g t  ta  a c  ca  c c  at  c a  aa  c a  gg  a t  tt  t c  gc  c t  gc  t g  gg  g c  aa  a c  ca  g c  gt  g g  ac  c g  ct  t g  ct  g c -
aa  c t  ct  c t  ca  g g  gc  c a  gg  c g  gt  g a  ag  g g  ca at ca gc tg tt gc cc gt ct ca ctggtgaaaagaaaaaccaccctggcgcc-
caatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttccc

We placed the barcode-carrying cassette between sequences complementary  
to Illumina adaptor primers (forward overhang: 5′ TCGTCGGCAGCGTCAGAT 
GTGTATAAGAGACAG; reverse overhang: 5′ GTCTCGTGGGCTCGGAGATGT 
GTATAAGAGACAG) and, finally, flanked by sequences complementary to the 
integration site in the Tn7 integration plasmid:

g at at cg ga tc ct ag ta ag cc ac gt tt ta at ta at ca ga tc cc tc aa ta gc c ac aa ca ac tg gc gg gc aa ac ag 
 tc gt tg ct ga tt gg tc gt cg gc ag cg tc ag at gt gt at aa ga ga ca g tc gc gc cg g NN NN NN NN NN NN 
 NN Nt at ct cg gt ag tg gg at ac ga cg at ac cg aa ga ca gc tc at gt ta ta tc cc gc cg tt aa cc ac ca tc aa ac ag  
ga tt tt cg cc tg ct gg gg ca aa cc ag cg tg ga cc gcttgctgcaactctctcagggccaggcggtgaagggcaatcagc 
tgttgcccgtctcactggtgaaaagaaaaaccaccctggcgcccaatacgcaaaccgcctctccccgcgcgttggcc 
gattcattaatgcagctggcacgacaggtttcccctgtctcttatacacatctccgagcccacgagac 
gccactcgagttatttgccgactaccttggtgatctcgcctttcacgtag

Integrated DNA Technology (https://www.idtdna.com/pages/products/
genes-and-gene-fragments/gblocks-gene-fragments) synthesized the resulting 
492-nucleotide-long sequence as double-stranded gBlocks with randomly mixed 
bases (at the 15 consecutive positions indicated by N).

Generation of plasmid barcode library. We digested the empty Tn7 integration 
plasmids with NotI, purified them by ethanol precipitation, and then mixed the 
plasmids with gBlocks in a 1:3 molar ratio in the presence of NEBbuilder HiFi 
DNA (New England Biolabs) assembly mix, according to the manufacturer’s 
instructions. We used a control without NEBbuilder HiFi DNA assembly mix to 
determine the background level (Tn7 integration plasmid lacking the cassette). 
We concentrated the reactions by ethanol precipitation and transformed them 
into 100 μl of TransforMax EC100D pir + cells (Lucigen). We resuspended the 
transformed cells in 1 ml of SOC medium, regenerated them for 1 h at 37 °C with 
shaking followed by overnight incubation on the bench, and then plated the cells 
on 35 μg ml–1 kanamycin Luria-Bertani (LB) agar plates (100 μl of transformed 
cells per plate). We plated several microlitres of diluted cultures separately to 
determine the number of colony-forming cells. We incubated plates overnight at 
37 °C. Cells transformed with DNA but without the assembly mix produced no 
colonies. Transformation of DNA with the assembly mix generated a total of about 
2.4 × 106 colonies (Fig. 1d). We scraped all the colonies from the plates, pooled 
them together and thoroughly mixed them. Finally, we extracted plasmids from the 
pooled cells with a Qiagen midi kit.

Chromosomal integration of the barcode library into E. coli cells. This is a two-
step process, the first step being the transformation of the recipient E. coli MG1655 
cells with the Tn7 helper plasmid and induction of the transposase integration 
machinery. The second step is the transformation of the Tn7 integration plasmid 
library, which integrates the barcodes into the chromosome (Fig. 1d). We grew 
cells transformed with the Tn7 helper plasmid overnight until saturation in LB 
supplemented with 100 μg ml–1 ampicillin at 30 °C. We then diluted these cells 1:100 
and grew them under the same conditions for 45 min. We added 0.2% arabinose 
and diluted cells to an optical density at 600 nm of 0.5. We then harvested the 

cells, washed them three times with ice-cold water and transformed them with 
the Tn7 integration plasmid library using electroporation. We resuspended the 
transformed cells in 1 ml of SOC medium, regenerated them for 1 h at 30 °C with 
shaking followed by overnight incubation on the bench, and then plated them on 
100 μg ml–1 spectinomycin LB agar plates (100 μl of transformed cells per plate). We 
plated several microlitres of diluted culture separately to determine the number 
of colony-forming cells. We incubated plates overnight at 37 °C and produced 
~2 × 106 colonies in total. All randomly picked colonies (over 50) failed to grow on 
ampicillin, suggesting that overnight incubation at 37 °C is sufficient to cure the 
majority of cells of the Tn7 helper plasmids. Similarly, we observed no growth on 
kanamycin, showing that the Tn7 integration plasmids were no longer present. We 
further validated the chromosomal incorporation of the barcode-carrying cassettes 
by colony PCR with a pair of primers directed to the Tn7 integration site. All 
randomly picked colonies (over 50) were positive for the chromosomal integration. 
We scraped all the colonies from the plates, pooled them together, thoroughly 
mixed them, aliquoted them with 15% glycerol and stored them at −80 °C.

As shown in Extended Data Fig. 1a, chromosomal incorporation of the 
plasmid library reduced the number of unique barcodes and increased the 
barcode frequency bias. We believe that the major source of this perturbation 
is the extensive variation in the size of individual colonies on agar plates, which 
translates into differences of orders of magnitude in the number of individual cells. 
Indeed, each individual grown colony can consist of 106 to 109 individual cells46. In 
principle, we can substantially reduce such variation by shortening the incubation 
time of the chromosomal library on the agar plates from 16 h to only 6–7 h. This 
approach produces micro-colonies with much smaller variation in the colony sizes, 
as was previously demonstrated47.

Deep sequencing of the gBlocks library, the Tn7 integration plasmid library and  
the naive barcoded E. coli population. Sample preparation for deep sequencing  
involved four steps. First, we amplified the barcode-carrying cassettes with  
Illumina adaptor primers (forward adaptor: 5′ TCGTCGGCAGCGTCAGA 
TGTGTATAAGAGACAG; reverse adaptor: 5′ GTCTCGTGGGCTCGGAGAT 
GTGTATAAGAGACAG). We used gBlocks and the Tn7 integration plasmid 
library directly as DNA templates in the PCR reaction. In the case of the naive 
barcoded E. coli population, we performed the PCR reaction either directly on 
the cells or, alternatively, on the genomic DNA extracted from the barcoded 
population with Nucleospin Microbial DNA prep kit (Machary-Nagel), using 
the manufacturer’s instructions. The PCR reaction mix was prepared as follows: 
combine 1 μl (250 U) PrimeSTAR GXL DNA polymerase (TaKaRa), 1 μl 10 ng μl–1 
Adaptor_forward primer, 1 μl 10 ng μl–1 Adaptor_reverse primer, 10 μl 5× reaction 
buffer, 4 μl 2.5 mM dNTPs, 50 ng genomic DNA or 3 μl bacterial culture, and bring 
to 50 μl with water. The PCR amplification conditions were: one cycle of 94 oC for  
5 min, then 30 cycles each of 95 oC for 10 s, 55 oC for 15 s and 68 oC for 45 s, 
followed by one cycle of 68 oC for 5 min.

In the second step, we separated the PCR products on 1% agarose gel, then 
excised and purified it with a NucleoSpin Gel extraction kit (Machary-Nagel) 
following the manufacturer’s instructions. Third, we subjected the gel-purified 
product of the first PCR reaction to a second PCR reaction using a unique air of 
index primers (i5 and i7) from Nextera XT DNA library preparation kit (Illumina), 
as follows: 1 μl (250 U) PrimeSTAR GXL DNA polymerase (TaKaRa), 5 μl 
Nextera XT index1 i7 primer, 5 μl Nextera XT index2 i5 primer, 10 μl 5× reaction 
buffer, 4 μl 2.5 mM dNTPs, 55 ng DNA and bring to 50 μl with water. The PCR 
amplification conditions were: one cycle of 94 oC for 5 min, then 12 cycles  
each of 95 oC for 10 s, 55 oC for 15 s and 68 oC for 45 s, followed by one cycle  
of 68 oC for 5 min.

In the fourth and final step, we purified the product of the second PCR  
reaction with Agencourt AMPure XP PCR purification kit (Beckman Coulter).  
We performed sequencing on MiSeq or NextSeq platforms (Illumina).

Laboratory evolution. We subjected the naive barcoded E. coli population to 
laboratory evolution via serial passaging under five distinct growth conditions: 
low CMP (1–3 μg ml–1), ultralow CMP (0.1 μg ml–1), low TMP (0.1–1.2 μg ml–1), 
ultralow TMP (0.01–0.1 μg ml–1), and no drug (Extended Data Fig. 2a,b). We 
gradually increased the concentrations of the antibiotics throughout the evolution 
experiment to sustain a relatively constant level of cell density for the low CMP 
and low TMP conditions. To this end, upon completion of each growth cycle, we 
measured the cell density of the evolving populations by optical density (OD) at 
600 nm. Once the cell density of the populations grown under the low CMP and 
low TMP conditions increased beyond ~80% of that of the populations under the 
no drug condition, we increased the concentration of the corresponding antibiotic 
by ~30%–50% (Supplementary Fig. 3).

We grew cells at 37 °C in a 96-well microtitre plate (500 μl per well) in 
supplemented M9 medium (0.2% glucose, 1 mM MgSO4, 0.1% casamino acids, 
0.5 mg ml–1 thiamin). Between passages, we grew cultures for 8–9 h (during the day) 
or 10–12 h (during the night). We used saturated culture from a previous passage 
to inoculate a fresh plate by 1:100 dilution (5 μl of saturated culture into 500 μl of 
fresh medium). Under these conditions, cultures reached saturation within ~6 h of 
growth. Thus, during the alternating growth cycles of 8–9 h and 10–12 h, cultures 
spent at a stationary phase in the incubator under the growth conditions between 
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2–3 h and 4–6 h, respectively. Overall, we performed 70 passages. We measured the 
optical density of the cultures at 600 nm at the end of each passage (Supplementary 
Table 2). We convert the raw optical density measurements to an estimated number 
of cells (Extended Data Fig. 2c,d) as follows: we first multiply by 10 to correct for 
dilution of the measured culture, then multiply by 2 to standardize the optical 
density to the 1-cm path length, then multiply by cell density (that is, 108 cells per 
ml per unit of optical density), and finally multiply by 0.2 ml (that is, the  
volume of the well). We stored every second passage at −80 °C after addition  
of 15% glycerol.

We also repeated the evolution experiment with all drug concentrations  
held constant: low CMP at 1 μg ml–1, ultralow CMP at 0.1 μg ml–1, low TMP at 
0.1 μg ml–1, ultralow TMP at 0.01 μg ml–1 as well a condition with no drug. As  
before we propagated 14 identical cultures per condition. We grew cells at 37 °C in 
a 96-well microtitre plate (500 μl per well) in supplemented M9 medium  
(0.2% glucose, 1 mM MgSO4, 0.1% casamino acids, 0.5 mg ml–1 thiamin). For these 
experiments, we performed serial passaging of the cultures consistently every 12 h. 
To this end, we used the saturated culture from a previous passage to inoculate a 
fresh plate by 1:100 dilution (5 μl of saturated culture into 500 μl of fresh medium). 
Overall, we performed 30 passages and stored every second passage at −80 °C after 
addition of 15% glycerol.

Growth measurements of the evolving barcoded E. coli populations. We 
estimated resistance of the evolving populations by calculating the change in IC50 
of CMP or TMP, following the methodology in ref. 48. We sampled cells from three 
populations each under the low CMP, ultralow CMP and no drug conditions at 
passages 0, 8, 10, 12, 20, 30 and 70. We diluted these samples 1:100 into growth 
medium supplemented with 0 μg ml–1, 1 μg ml–1, 2 μg ml–1, 4 μg ml–1, 8 μg ml–1 or 
16 μg ml–1 of CMP, and followed their growth by optical density measurements  
at 600 nm (Supplementary Fig. 4a, Supplementary Table 3). We calculated the  
area under these growth curves over the time of growth (Supplementary Fig. 4b)  
and normalized the area values so that they equalled 1 at zero antibiotic 
(Supplementary Fig. 4c). We determined the IC50 by calculating the concentration 
of antibiotic at which growth (defined as normalized area under the growth curve) 
was reduced by 50% relative to zero antibiotic (Supplementary Fig. 4c). We inferred 
the IC50 concentration by interpolating the area versus drug concentration curves. 
We similarly obtained IC50 values for three populations each for the low TMP, 
ultralow TMP and no drug conditions at the same time points, but with TMP 
concentrations 0 μg ml–1, 0.5 μg ml–1, 1 μg ml–1, 2 μg ml–1, 5 μg ml–1, 10 μg ml–1 and 
20 μg ml–1 (Supplementary Table 3).

Deep sequencing of the evolving barcoded E. coli populations. We sequenced 
barcodes at 16 time points over the evolution experiment for the same 15 
independent populations used for the growth measurements. We first amplified 
these 240 bacterial cultures with Illumina adaptor primers (15 μl of defrosted cells 
from each culture). We performed the second PCR in two groups, each with 96 
unique Nextera XT primers. We then pooled together 96 PCR reactions from each 
group, spiked them with 30% of PhiX DNA, and sequenced them on a Nextseq 
High Output 75 platform. The sequencing protocol commenced with nine dark 
cycles to account for the sequence redundancy preceding the barcode area. For one 
sample (ultralow CMP, replicate 2, passage 54) all PCR reactions failed, and thus 
we excluded this sample from all further analysis.

Analysis of sequencing data. First, we exclude sequencing samples that report 
fewer than 106 reads; this affects six time points from the evolving populations 
(Supplementary Table 1). All remaining samples have between 1.3 × 106 and 
1.4 × 107 reads. Next, we exclude all reads with minimum base quality score less 
than 10 (Phred scale), which affects 0.02%–0.16% of reads (Supplementary  
Table 1). To identify barcodes, we first align each read to the reference sequence for 
the barcode cassette. We allow up to three mismatches or one indel with respect 
to the reference; we also require that the read overlap the barcode by at least 10 
nucleotides. With these criteria we identify barcodes on more than 95% of reads in 
all but 17 samples from the original experiment (Supplementary Table 1). For each 
read with a valid alignment, we extract a barcode as the sequence aligning to the 
variable region in the reference.

To correct for sequencing errors in the raw barcodes, we use the bartender 
package49 on default settings to cluster together barcodes with similar sequences. In 
general, this method assumes that a low-frequency barcode differing at only one or 
two bases from a high-frequency barcode is the result of a sequencing error, so that 
the low-frequency barcode is merged into the high-frequency one. This produces a 
set of putative true barcodes for the sample.

To ensure that we identify true barcodes consistently across samples, we first 
pool raw barcodes and perform clustering on these pooled samples. We pool 
barcodes both across time points for each population (to build trajectories of 
barcodes over time in each population) as well as across populations for each 
time point (to compare barcodes between populations). After clustering, we 
disaggregate the true barcodes from the pooled data back into the individual 
samples, where we normalize them by the total number of reads in that sample. 
This yields a set of lineage frequencies {xk(t)} (where the index k runs over all 
barcodes) for each population at each time point t.

Quantifying lineage diversity. The simplest way to quantify the diversity of 
barcoded lineages in a population is to count the number of unique barcodes 
observed at a particular time point (Fig. 3a). However, if lineages differ widely in 
frequency, then this measure may not be very informative and will suffer from 
substantial sampling bias (since very low-frequency barcodes will be under-
sampled). A more general approach is to define the effective number of lineages 
using the diversity index qD from ecology34. We construct this definition in analogy 
with the case where all lineages are at equal frequency, so that the number of 
lineages is simply the reciprocal of this frequency:

number of lineages ¼ 1
frequency of each lineage

ð3Þ

When lineages are not at equal frequencies, we replace the frequency in the 
denominator by a mean frequency over all lineages. Define the generalized mean 
(also known as the power mean) of a quantity hk, with normalized weights pk P

k pk ¼ 1
! "

I
 and parameter q:

hkjpk; qh i ¼
X

k

pkh
q"1
k

 !1=ðq"1Þ

ð4Þ

The parameter q controls how strongly the mean depends on very small or very 
large values of hk: lower values of q allow relatively more weight from low values 
of hk, while higher values of q more strongly weight high values of hk. When q = 2, 
equation (4) reduces to the ordinary arithmetic mean; when q = 1, it is equivalent to 
the geometric mean; and when q = 0, it is the harmonic mean.

We therefore define the effective number of lineages as the reciprocal  
of the generalized mean frequency over all lineages, weighting each frequency  
by itself34,35:

qD ¼ 1
xk jxk ;qh i

¼
P

lineage k
xqk

 !1=ð1#qÞ ð5Þ

The diversity index is mathematically equivalent to the exponential of the Renyi 
entropy in physics50. Special values of the parameter q correspond to common 
ecological measures of diversity:

q ¼ 0 : qD ¼ number of lineages with nonzero frequency species richnessð Þ ð6Þ

q ¼ 1 : qD ¼ exp "
X

lineage k
xk log xk

! "
Shannon diversityð Þ ð7Þ

q ¼ 2 : qD ¼
P

lineage k x
2
k

! ""1

ðreciprocalmean frequency; also known as Simpson concentrationÞ
ð8Þ

q ¼ 1 : qD ¼ 1
maxlineage kxk

ð9Þ

We note that the effective number of lineages according to equation (5) equals the 
actual number of lineages for any q if all lineages have equal frequency. Figure 3 
shows the diversity indices for q = 0, q = 1 and q = ∞ for each population over the 
course of the evolution experiment.

Quantifying dissimilarity of lineage composition between populations. We can 
also use diversity indices to quantitatively compare the lineage compositions of 
two or more populations. Let M be the number of populations we are comparing 
(M ≥ 2), and let xk

(p) be the frequency of lineage k in population p = (1,2,…,M) at 
a particular time point. If we pool together all M populations, the frequency of 
lineage k is:

!xk ¼ 1
M

P
population p

x pð Þ
k ð10Þ

The total diversity of the pooled population (gamma diversity) is34,35:
qDpooled ¼ 1

!xk j!xk ;qh i

¼
P
k
!xqk

! "1=ð1#qÞ ð11Þ

We can decompose this total diversity into two factors:
qDpooled ¼ qDmean

qMeff ð12Þ

The first factor on the right-hand side of equation (12) is the mean diversity across 
all populations (alpha diversity):
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qDmean ¼ 1

1
qDðpÞ

j 1M;q
D E

¼ 1
M

P
population p

qDðpÞ! "1$q

 ! 1
1$q

ð13Þ

where qD(p) is the diversity of population p alone (equation (5)). The second 
factor on the right-hand side of equation (12) is the effective number of distinct 
populations (beta diversity):

qMeff ¼
qDpooled
qDmean

¼
P

lineage k
!xqk

1
M

P
population p

P
lineage k

xðpÞk½ %q

 !1=ð1&qÞ ð14Þ

This quantity has a minimum value of 1 if the populations have identical lineages 
at identical frequencies, and a maximum value of M if none of the populations have 
any lineages in common. To simplify the interpretation of this quantity across  
cases where we may be comparing different numbers of populations, we shift and 
rescale qMeff to obtain a measure of dissimilarity between populations that ranges 
from 0 to 1:

qMeff ! 1
M ! 1

ð15Þ

We plot this normalized quantity in all figures (Fig. 4, Extended Data Fig. 7, 
Extended Data Fig. 10 and Supplementary Figs. 5, 6, 10 and 21).

In the case of q = 0, 0Meff simply measures how many lineages with nonzero 
frequency are in common between the populations under comparison. Let B(p) 
be the set of lineages with nonzero frequencies in population p, and let |B(p)| 
denote the number of lineages in this set. Then the effective number of distinct 
populations is:

0Meff ¼
∪ population pB pð Þj j

1
M

P
population p

BðpÞj j ð16Þ

For two populations (M =2), we can rewrite this as:

0Meff ¼
B 1ð Þ ∪B 2ð Þj j

1
2 B 1ð Þj jþ B 2ð Þj jð Þ

¼ 2% 1

1
2

B 1ð Þj j
B 1ð Þ\B 2ð Þj jþ

B 2ð Þj j
B 1ð Þ\B 2ð Þj j

! " ð17Þ

where we have invoked the inclusion-exclusion principle for sets 
B 1ð Þ ∪B 2ð Þ!! !! ¼ B 1ð Þ!! !!þ B 2ð Þ!! !!% B 1ð Þ \ B 2ð Þ!! !!
I

. That is, 0Meff equals two minus the 
harmonic mean of the fractions of overlapping lineages between the populations. 
For example, qMeff = 1.8 means that the two populations have 20% of their lineages 
in common.

In the case of q = 1, the effective number of lineages is the Shannon diversity 
(equation (7)). Therefore the effective number of distinct populations is equivalent 
to the exponential of the Jensen–Shannon divergence between the populations:

1Meff ¼ exp 1
M

P
population p

P
lineage k x

pð Þ
k log

x pð Þ
k
!xk

! "# $
ð18Þ

This is also equivalent to the weighted sum of the Kullback–Leibler divergences 
between each population and the pooled population.

In the case of q = ∞, the effective number of distinct populations depends only 
on the most abundant lineage in the pooled population and across all populations. 
That is,

1Dpooled ¼ 1
max

lineage k
!xk ð19Þ

and
1Dmean ¼ 1

max
population p

max
lineage k

x pð Þ
k

ð20Þ

and so

1Meff ¼
max

population p
max

lineage k
x pð Þ
k

max
lineage k

!xk
ð21Þ

Clustering lineage frequency trajectories. For each population from the original 
experiment, we exclude barcoded lineages that have zero detected frequency at 
more time points than a minimum number calculated as:

0:5ðtotal number of time points þ 11Þb c ð22Þ

where ⌊ ⌋ is the floor function that rounds the argument down to the nearest 
integer. This ensures that all pairs of remaining lineages have at least ten time 
points at which they both have nonzero frequency. This leaves between 177 and 

969 lineages for each population. For the evolution experiment with constant drug 
conditions, we take the top 500 lineages ranked by mean frequency over time. In 
both cases we cluster the frequency trajectories {xk(t)} for these lineages using the 
hierarchical clustering routine in SciPy51. The distance metric between two lineages 
k1 and k2 is:

Δ xk1 tð Þ; xk2 tð Þð Þ ¼ 1$ ρ log xk1 tð Þ; log xk2 tð ÞÞð Þ ð23Þ

where ρ log xk1 tð Þ; log xk2 tð ÞÞð Þ
I

 is the Pearson correlation coefficient between the 
logarithms of both frequency trajectories (excluding time points where either 
frequency is zero); Supplementary Fig. 11 shows matrices of all pairwise trajectory 
correlations, while Supplementary Fig. 12 shows this data in histogram form. 
Supplementary Fig. 17 shows the same data but for the evolution experiment 
with constant drug conditions. We use the ‘average’ linkage method (equivalent 
to the unweighted pair group method with arithmetic mean, or UPGMA), 
which calculates the distance between two clusters as the arithmetic mean of the 
distances between all trajectories in both clusters. Other linkage methods produce 
qualitatively similar results. The hierarchical clustering results in dendrograms as 
shown in Supplementary Figs. 11 and 17. Finally, we form flat clusters by setting 
thresholds on the dendrograms, which we manually choose for each population; 
these thresholds are shown on the dendrograms in Supplementary Fig. 11 and 
range from 0.15 to 0.65, which roughly means that the minimum correlations 
between trajectories within clusters ranges from 0.35 to 0.85. For the evolution 
experiment with constant drug conditions, we set these thresholds to be 0.06 
(minimum correlation 0.94) for all populations (Supplementary Fig. 17),  
since the smaller dynamic range of the trajectories creates a greater risk of  
over-clustering.

Simulations. We performed all simulations with SodaPop52 using a multiplicative 
fitness function. We first accounted for the evolutionary dynamics during the 
barcode library preparation. We evolved 107 cells, all initially clonal, for 30 
generations, which corresponds to the approximate number of generations accrued 
during preparation of the barcode library on the E. coli chromosomes (Fig. 1d). We 
set the rate of arising mutations to μ = 10−5 per genome per generation, reflecting 
estimates of beneficial mutation rates in bacteria53,54. We assumed that mutations 
arising during this period were neutral during library preparation but contained 
a cryptic selection coefficient effect s that is only realized during evolution under 
drug conditions. We randomly drew these cryptic selection coefficients from 
an exponential distribution. At the end of the simulated library preparation, we 
randomized the cell indices and sequentially assigned barcodes to the cells, using 
the experimentally measured distribution of chromosomal barcode frequencies 
(Extended Data Fig. 1a). From these initial populations, we then simulated the 
evolution experiment itself for 400 generations.

While we tested a range of parameter values for these simulations, here we 
focus on just two cases that qualitatively reproduce the range of phenomena we 
observe in the experiments, along with a control condition of purely neutral 
population dynamics. We call the first case ‘pre-existing dominated’, since the 
evolutionary dynamics are primarily driven by beneficial mutations already 
present at the beginning of the evolution experiment, rather than de novo 
mutations acquired during the experiment. In this case, we use s = 0.05 as the 
mean selection coefficient for pre-existing mutations arising during library 
preparation. De novo mutations occur during the evolution experiment at rate 
μ = 2.5 × 10−4 and are chosen to be deleterious with probability 0.9 and beneficial 
with probability 0.1; for either type of mutation, we draw the selection coefficient 
from an exponential distribution with mean s = ±0.05. The second case is 
‘de novo dominated’, since de novo mutations during the evolution experiment 
mainly drive the dynamics. In this case, we use s = 0.01 as the mean selection 
coefficient for pre-existing mutations, while de novo mutations occur at the 
rate μ = 10−5 and are strictly beneficial with an exponential distribution of mean 
s = 0.01. For both of these conditions as well as the neutral control case, we 
simulated two replicate populations.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All raw barcode sequencing data used in this study is deposited in the National 
Center for Biotechnology Information Sequence Read Archive under BioProject 
accession numbers PRJNA592527 (initial barcode libraries), PRJNA592371 (time 
points from evolution experiment under increasing drug concentrations), and 
PRJNA592529 (time points from evolution experiment under constant drug 
concentrations). All other raw data is included in Supplementary Tables 1–4.

Code availability
All custom scripts used to analyse the data are available on request.
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Extended Data Fig. 1 | Initial barcode libraries. (A) Distributions of barcode frequencies at different stages of library preparation. For a given frequency 
on the horizontal axis, the vertical axis shows the number of unique detected barcodes with that frequency. “Raw library” (blue): NextSeq Illumina 
sequencing of the barcode library as synthesized by IDT (prior to plasmid library creation). “Plasmid library” (red): MiSeq Illumina sequencing of barcodes 
incorporated into the Tn7 integration plasmid library. “Chromosomal library” (orange): NextSeq Illumina sequencing of the barcode library integrated 
into E. coli chromosomes and generated by PCR performed on chromosomal DNA pooled from four independent extractions. (B) Shannon entropy 
of nucleotides at each position in the 15 nt barcode for the same libraries in panel (A). The horizontal black line marks the entropy (ln 4≈1.386) of a 
maximally-random library where all nucleotides are equally abundant at each position. (C) Comparison of individual barcode frequencies in the raw library 
and in the plasmid library. Points are partially transparent to show their density; the dashed black line marks the line of identity. We also show the Pearson 
correlation coefficient R and estimated p-value for the frequencies (p-values are numerically indistinguishable from zero). (D) Same as (C) but comparing 
the plasmid library and the chromosomal library.
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Extended Data Fig. 2 | Drug concentrations and population growth over evolution experiment. (A) Trajectories of low and ultra-low chloramphenicol 
(CMP) concentrations over time of the evolution experiment. (B) Same as (A) but for trimethoprim (TMP) conditions. (C) Approximate number of cells 
at the end of each passage for low and ultra-low CMP conditions, along with the populations evolved without drug. Lines are averages over all 14 replicate 
populations for each condition. (D) Same as (C) but for TMP conditions. (E) Same as (C) but showing the fold-change of population size during each 
passage on the vertical axis. (F) Same as (E) but for TMP conditions. Periodic oscillations in cell numbers and yields result from the fact that cultures 
were propagated in two intermittent growth regimes: 9 hours during the day, followed by 12 hours during the night (see Methods). Supplementary Table 2 
contains raw OD data for each population at the end of each passage.
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Extended Data Fig. 3 | Evolution of resistance and growth traits. (A) At several time points during the evolution experiment, we measured the 
chloramphenicol (CMP) IC50 of the barcoded populations evolved in low and ultra-low CMP as well as those evolving without drug. (B) Same as (A) but 
for trimethoprim (TMP). (C) Growth rate, measured in the absence of drug, of barcoded populations evolved in low and ultra-low CMP as well as without 
drug. Points represent the mean and error bars represent standard deviation over replicate measurements. (D) Same as (C) but for populations evolved in 
low and ultra-low TMP. Supplementary Table 3 contains raw growth curve data for the evolved populations at these different drug concentrations.
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Extended Data Fig. 4 | Trajectories of barcoded lineage frequencies. Each row corresponds to a different antibiotic regimen, while each column corresponds 
to a different replicate. Individual panels show the frequency trajectories for barcoded lineages in single populations over time of the experiment; we only 
show lineages with mean frequency over time greater than 10-4. For the top 20 lineages in each population (ranked by mean frequency over time), we assign 
a unique color to each lineage that is consistent across panels, i.e., the same color represents the same barcode across panels (Supplementary Table 4). All 
lower-frequency lineages are gray and partially transparent to show their density. The dashed black line represents the frequency of reads without identified 
barcodes. Dots above each plot mark times at which the drug concentration for that population changed (Extended Data Fig. 2A,B).
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Extended Data Fig. 5 | Trajectories of barcoded lineage frequencies under constant conditions. Same as Extended Data 4 but for evolution experiments 
with constant drug concentrations (see Methods).
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Extended Data Fig. 6 | Dynamics of lineage diversity over time under constant conditions. Same as Fig. 3 but for evolution experiments with constant 
drug concentrations (see Methods).
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Extended Data Fig. 7 | Dynamics of lineage dissimilarity among populations over time under constant conditions. Same as Fig. 4 but for evolution 
experiments with constant drug concentrations (see Methods).
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Extended Data Fig. 8 | Trajectories with pre-existing and de novo beneficial mutations under constant conditions. Same as Fig. 6B,C but for evolution 
experiments with constant drug concentrations (see Methods).
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Extended Data Fig. 9 | Comparison of simulations with different sources of variation. We simulated evolutionary dynamics of a barcoded population (see 
Methods) with different supplies of mutations. We plot trajectories of barcoded lineage frequencies over time for simulated populations with (A) neither 
pre-existing nor de novo mutations (neutral dynamics), (B) pre-existing mutations only (mean s=0.1), (C) de novo mutations only (mean s=0.05), and (D) 
both pre-existing mutations (mean s=0.01) and de novo mutations (mixed exponential distribution with 90% deleterious and 10% beneficial). In the top 
row, each color indicates the relative frequency of a particular lineage at every time point. For simplicity, we show only lineages with a minimum frequency 
of 10-4 (the gray area covers the frequency of all remaining lineages). In the bottom row, we show the frequency trajectories as lines on a log scale; lineages 
with a minimum frequency of 5×10-4 are colored while all other lineages above 10-4 are gray. Lineage frequencies represent the estimated frequency from 
subsampling 10% of the full simulated population.
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Extended Data Fig. 10 | Simulated dynamics of lineage diversity. We simulated evolutionary dynamics of the barcoded population for two replicates 
of each condition: “neutral” (no mutations), “pre-existing dominated,” and “de novo dominated” (see Methods). (A) For each population, we calculated 
the effective number of barcoded lineages using the diversity index qD (Eq. 1; see also Methods) for three different values of q, which controls the weight 
of low- versus high-frequency lineages: 0D (number of unique barcodes, left), 1D (Shannon diversity, center), and ∞D (reciprocal of the maximum lineage 
frequency, right). (B) We also calculated the dissimilarity of lineages (Eq. 2; see also Methods) among all replicate populations in each condition, using 
q=0 (left), q=1 (center), and q=∞ (right). All diversity and dissimilarity values are based on perfect sampling of the population.
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Supplementary Figures 
 

 
Supplementary Figure 1: Reproducibility of barcode frequency measurements.  We 
compared measured barcode frequencies between four independent sequencing runs on the initial 
chromosomal library: (A) replicates 1 and 2, (B) replicates 2 and 3, and (C) replicates 3 and 4.   
Points are partially transparent to show their density; the dashed black line marks the line of 
identity.  We also show the Pearson correlation coefficient ! and estimated "-value for the 
frequencies ("-values are numerically indistinguishable from zero). 
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Supplementary Figure 2: Growth curves of the initial population.  Growth curves of the initial 
barcoded population in the presence of (A) 0-16 µg/ml of chloramphenicol (CMP) or (B) 0-20 
µg/ml of trimethoprim (TMP).  We defined the MIC for each drug as the lowest concentration of 
antibiotic at which we observed no growth (see Methods).  Supplementary Table 3 contains raw 
growth curve data for the initial population at these different drug concentrations. 
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Supplementary Figure 3: Calibration of drug concentration based on population growth.  
Fold-change in cell density as a function of chloramphenicol (CMP) concentration for barcoded 
populations at four time points of the evolution experiment. 
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Supplementary Figure 4: Example of IC50 calculation.  (A) Growth curves of cells from a 
barcoded population evolving in low chloramphenicol (CMP) at generation 48 (passage 8), 
measured with different concentrations of CMP.  (B) For each growth curve in (A), we calculated 
the area under it and plotted the area as a function of CMP concentration.  (C) We similarly 
calculated growth curve areas for generations 48, 60, 72, 180, and 420 and normalized each by the 
area of the growth curve with zero CMP at the same time point.  The IC50 is then defined as the 
antibiotic concentration leading to 50% of growth relative to growth at zero CMP. 
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Supplementary Figure 5: Lineage diversity within and between initial libraries.  (A) For each 
initial barcode library (same as in Extended Data Fig. 1, except with the four independent samples 
of the chromosomal library shown both separate and pooled), we calculate the effective number 
of barcoded lineages using the diversity index #$  (Eq. 1; see also Methods) for three different 
values %, which controls the weight of low- versus high-frequency lineages: #&  (number of unique 
barcodes, left), #'  (Shannon diversity, center), and #(   (reciprocal of the maximum lineage 
frequency, right).  (B) Dissimilarity of lineages (Eq. 2; see also Methods) between all pairs of 
initial libraries from (A).  Columns are the same as in (A): left, % = 0; center, % = 1; and right, 
% = ∞. 
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Supplementary Figure 6: 
Dissimilarity of lineages between 
populations.  Each panel shows the 
dissimilarity of lineages (Eq. 2; see 
also Methods) between all pairs of 
populations at a particular time 
point: (A) % = 0, (B) % = 1, (C) 
% = ∞. 
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Supplementary Figure 7: Comparison of lineage frequencies between populations.  Each row 
and each column correspond to a different population (labeled on the vertical and horizontal axes 
of each panel).  Individual panels show comparisons of barcoded lineage frequencies at the end of 
the experiment between a pair of populations.  The dashed black lines mark the line of identity; 
each panel also shows the Pearson correlation coefficient ! and estimated "-value for the 
frequencies (some "-values are numerically indistinguishable from zero). 
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Supplementary Figure 8: Comparison of top lineage trajectories between populations.  Each 
row and each column correspond to a different population (labeled on the horizontal and vertical 
axes of each panel).  Individual panels show the traces of the top three (by average frequency) 
barcoded lineages over time between each pair of populations.  The dashed black lines mark the 
line of identity; each panel also shows the Pearson correlation coefficient ! and estimated "-value 
for the frequencies.  Colors of lineage trajectories are consistent across panels and match Fig. 2 
and Extended Data Fig. 4 (Supplementary Table 4). 
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Supplementary Figure 9: Comparison of lineage frequencies before and after evolution.  
Each row corresponds to a different antibiotic regimen, while each column corresponds to a 
different replicate.  Individual panels compare the initial frequencies of all barcoded lineages with 
their final frequencies at the end of the evolution experiment in each population.  The dashed black 
line marks the line of identity, while the vertical gray line marks the average initial frequency of a 
barcoded lineage; this is the null expectation for the initial frequency of the lineage that ultimately 
fixes. 
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Supplementary Figure 10: Divergence of lineage dissimilarity over evolution.  For each 
population at each time point, we calculate the dissimilarity of lineages (Eq. 2; see also Methods) 
with the initial population for % = 0 (left), % = 1 (center), and % = ∞ (right).  Dots above each 
plot mark times at which the drug concentrations changed (Extended Data Fig. 2A,B). 
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Supplementary Figure 11: Summary of trajectory clustering.  Each row corresponds to a 
different antibiotic regimen, while each column corresponds to a different replicate.  Individual 
panels show the matrix of Pearson correlation coefficients between all pairs of trajectories used 
for hierarchical clustering and the resulting dendrogram for each population (see Methods).   The 
horizontal dashed lines in the dendrograms mark the thresholds for forming flat clusters.  Colors 
of dendrogram leaves match the corresponding trajectories in Supplementary Fig. 13. 
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Supplementary Figure 12: Distributions of trajectory correlations.  Each row corresponds to 
a different antibiotic regimen, while each column corresponds to a different replicate.  Individual 
panels show histograms of Pearson correlation coefficients between all pairs of lineage trajectories 
used for hierarchical clustering in each population (see Methods).  The vertical dashed lines mark 
the thresholds for forming flat clusters. 
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Supplementary Figure 13: Clusters of lineage trajectories.  Each row corresponds to a single 
population; the first 10 columns correspond to the top 10 clusters in decreasing order of cluster 
size (number of trajectories) in each population, while the last column shows trajectories from all 
other clusters in that population.  Individual panels show sets of lineage trajectories that clustered 
together in our analysis.  Trajectories are partially transparent to show their density; dots above 
each plot mark times at which the drug concentration for that population changed (Extended Data 
Fig. 2A,B).  The color of each trajectory cluster matches its corresponding leaves in the 
dendrogram in Supplementary Fig. 11.   We label clusters with apparent pre-existing beneficial 
mutations or with apparent de novo beneficial mutations. 
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Supplementary Figure 14: Hamming distances among sequences within trajectory clusters.  
Each row corresponds to a single population; the first 10 columns correspond to the top 10 clusters 
in decreasing order of cluster size (number of trajectories) in each population, while the last column 
shows trajectories from all other clusters in that population.  Individual panels show histograms of 
Hamming distances between all pairs of barcode sequences whose trajectories clustered together 
in our analysis.  The vertical dashed lines marks the expected Hamming distance between two 
random 15 nt barcode sequences (11.25).  Empty histograms correspond to clusters with only one 
trajectory.  The color of each trajectory cluster matches its corresponding leaves in the dendrogram 
in Supplementary Fig. 11.   We label clusters with apparent pre-existing beneficial mutations or 
with apparent de novo beneficial mutations. 
 



17 
 

 
Supplementary Figure 15: Comparison of initial frequencies of trajectories in different types 
of clusters.  For each trajectory cluster classified as having pre-existing or de novo beneficial 
mutations (Supplementary Fig. 13), we calculated the variance of initial frequencies of 
trajectories in that cluster. 
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Supplementary Figure 16: Dynamics of barcoded lineage frequencies over evolution 
experiment under constant conditions.  Same as Fig. 2 but for evolution experiments with 
constant drug concentrations (see Methods). 
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Supplementary Figure 17: Summary of trajectory clustering under constant conditions.  
Same as Supplementary Fig. 11 but for evolution experiments with constant drug concentrations 
(see Methods). 
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Supplementary Figure 18: Clusters of lineage trajectories under constant conditions.  Same 
as Supplementary Fig. 13 but showing the top 20 clusters for evolution experiments with constant 
drug concentrations (see Methods). 
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Supplementary Figure 19: Simulated trajectories from pre-existing versus de novo 
mutations.  (A, B) For two simulated populations in the “pre-existing dominated” case (see 
Methods), we show barcoded lineage trajectories with pre-existing beneficial mutations.  (C, D) 
For two simulated populations in the “de novo dominated” case (see Methods), we show barcoded 
lineage trajectories that acquire beneficial mutations de novo.  For simplicity, we show the lineages 
that rise to a minimum frequency of 10-.. 
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Supplementary Figure 20: Effect of subsampling on estimated diversity. (A) For a simulated 
population in the “pre-existing dominated” case (see Methods), we calculated the effective 
number of barcoded lineages using the diversity index #$  (Eq. 1; see also Methods) as in 
Extended Data Fig. 10A, but comparing both the true diversity of the whole population (solid 
lines) and the estimated diversity based on subsampling 10% of the population (points, with mean 
and standard error based on three trials).  (B) Same as (A) but for a simulated population in the 
“de novo dominated” case (see Methods). 
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Supplementary Figure 21: Effect of subsampling on estimated dissimilarity of lineages.  (A) 
For two simulated populations in the “pre-existing dominated” case (see Methods), we calculated 
the dissimilarity of lineages (Eq. 2; see also Methods) between populations as in Extended Data 
Fig. 10B, but comparing both the true dissimilarity of the whole populations (solid lines) and the 
estimated dissimilarities based on subsampling 10% of the populations (points, with mean and 
standard error based on three trials).  (B) Same as (A) but for simulated populations in the “de 
novo dominated” case (see Methods). 
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