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Evolutionary reversibility—the ability to regain a lost function—is
an important problem both in evolutionary and synthetic biology,
where repairing natural or synthetic systems broken by evolution-
ary processes may be valuable. Here, we use a synthetic positive-
feedback (PF) gene circuit integrated into haploid Saccharomyces
cerevisiae cells to test if the population can restore lost PF func-
tion. In previous evolution experiments, mutations in a gene elim-
inated the fitness costs of PF activation. Since PF activation also
provides drug resistance, exposing such compromised or broken
mutants to both drug and inducer should create selection pressure
to regain drug resistance and possibly PF function. Indeed, evolv-
ing 7 PF mutant strains in the presence of drug revealed 3 adap-
tation scenarios through genomic, PF-external mutations that
elevate PF basal expression, possibly by affecting transcription,
translation, degradation, and other fundamental cellular pro-
cesses. Nonfunctional mutants gained drug resistance without
ever developing high expression, while quasifunctional and dys-
functional PF mutants developed high expression nongenetically,
which then diminished, although more slowly for dysfunctional
mutants where revertant clones arose. These results highlight
how intracellular context, such as the growth rate, can affect reg-
ulatory network dynamics and evolutionary dynamics, which has
important consequences for understanding the evolution of drug
resistance and developing future synthetic biology applications.
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Two ways for cells to survive stress and buy time until bene-
ficial genetic alterations arise are through sensing and

responding or through bet-hedging (1, 2). Gene regulatory net-
works evolve to provide cells with sufficient stress-protective
gene expression according to these strategies. While stress-
protective mutations improve the chance of survival, a tradeoff
often exists between the cost and benefit of such protective
mechanisms (3). For example, the expression of stress-protective
genes can have a net cost in the absence of stress or even in stress
if expression surpasses the levels necessary for survival (4–7).
Consequently, protective but costly gene function tends to di-
minish or vanish from the population in the absence of stress (5,
8–10). How it might reappear again (evolutionary “reversal”)
when the stress resumes (11, 12) is poorly understood, specifi-
cally for gene regulatory networks that lost their costly activity.
Indeed, loss-of-function mutations occur widely in laboratory
evolution experiments (5, 8, 13–16), suggesting this is a common
mode of adaptation to a new environment. However, few ex-
periments have tested how such lost functions could be restored.
Besides experimental studies of natural gene-network evolu-

tion under controlled conditions (5, 8, 17–21), synthetic gene
circuits can serve as well-characterized models of natural stress-
response modules in evolution experiments (9, 22, 23). Well-
controlled and tunable synthetic gene circuits that interact
minimally with the host genome (24–27) can aid the in-
terpretation of experimental outcomes. Considering future ap-
plications of synthetic biology (28, 29), it is important to explore
potential evolutionary strategies that can restore synthetic gene
circuit function if it happens to break over time (9, 30, 31),
without circuit reintroduction or repair by rational means or mu-
tagenesis (32). Directed evolution studies have improved enzymes

or metabolic pathways (33, 34), but only through mutagenesis in
single proteins, leaving it unclear whether noncoding or genomic
mutations could improve or restore gene-network performance.
Adaptation under function-restoring selection pressure allowing
host genome changes could reveal essential parameters and new
methods to design and improve engineered cell fitness and ro-
bustness in various growth conditions.
To understand how a network that lost its costly activity in the

absence of stress adapts and possibly regains function in the pres-
ence of stress, here we used previously evolved, broken versions of a
synthetic “positive feedback” (PF) gene circuit originally integrated
into the haploid Saccharomyces cerevisiae YPH500 genome (6).
Many different reverse tetracycline Transcriptional Activator
(rtTA) mutants arose in previous evolution experiments (9), ap-
parently eliminating costly rtTA function in the absence of antibi-
otic stress. We evolved 7 such broken PF mutants in both inducer
and antibiotic, where regaining rtTA function should be beneficial.
By examining the phenotypic and genetic changes through fluo-
rescence and fitness measurements, as well as sequencing, we ob-
served 3 different classes of evolutionary dynamics, depending on
whether ancestral mutants were quasifunctional, dysfunctional, or
nonfunctional. In quasifunctional mutants, slow growth from drug
exposure initially enriched the high-expressor subpopulation, but
then new drug-resistance mutations slightly elevated basal expres-
sion, eliminating the benefit of high expression and diminishing the
high-expressor fraction through a growth-dependent shift in dy-
namics. Nonfunctional mutants acquired new drug-resistance
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mutations that slightly elevated basal expression and never de-
veloped high expression. Finally, the dysfunctional mutant pop-
ulations evolved similarly to quasifunctional mutants, but more
slowly and gave rise to clones with repaired network function.
Overall, we found numerous extracircuit mutations, but no novel
coding-sequence mutations inside the gene circuit directly re-
lated to these expression changes. Detected genomic mutations
possibly affect important cellular processes, such as transcrip-
tion, translation, macromolecule degradation, and others. Our
findings provide insights into the evolutionary reactivation of
broken network modules, depending on their dynamics as well as
the costs and benefits after the stress recurs.

Results
Hyperinduction and Slow Growth Reveal 3 Classes of rtTA Mutations.
The original PF gene circuit (6) consists of a doxycycline (Dox)-
inducible rtTA transcriptional activator that identically up-
regulates both its own expression and the expression of the
Zeocin resistance gene, zeoR, fused to yEGFP (yEGFP::zeoR),
by binding to 2 tetO2 operator sites upstream of the rtTA and the
yEGFP::zeoR coding regions (Fig. 1A). The yEGFP::ZeoR bi-
functional fusion protein (35) precisely reports ZeoR levels and
protects cells by directly binding to Zeocin (36) to prevent its
intercalation into DNA, which causes DNA breaks and thus cell
cycle arrest or death (37). Previously, we evolved yeast pop-
ulations carrying the PF circuit (9) in 2 μg/mL of Dox inducer
without Zeocin antibiotic, a condition denoted “D2Z0,” where

the first number represents Dox concentration in micrograms
per milliliter, while the second number represents Zeocin con-
centration in milligrams per milliliter. Since the activation of the
PF stress-response module is costly in the absence of stress, the
rtTA protein apparently lost its function during these evolution
experiments through different coding-sequence mutations (9).
To test whether evolutionary repair of lost rtTA function was
possible, we further evolved 7 of these loss-of-function rtTA
mutants from the previous experiment (Fig. 1B) in the condition
D2Z2 (2 μg/mL Dox and 2 mg/mL Zeocin), which should acti-
vate the original PF gene circuit or any reverting mutants, en-
suring their survival in stress. We will refer to the 7 ancestral
mutations by their genotype: “Missense 1, 2, 3, and 4” correspond
to rtTA+189C→G, rtTA+562T→C, rtTA+275G→A, and rtTA+13G→T,
respectively; “Nonsense” corresponds to rtTA+442G→T; “Duplica-
tion” corresponds to rtTA+95, 30bp; and “Deletion” corresponds to
rtTA+651, 78bpΔ (SI Appendix, Table S1).
To understand the dynamics of the original PF gene circuit

(Fig. 1A) and its 7 rtTA mutants (Fig. 1B), we studied qualita-
tively a simple mathematical model of this genetic autor-
egulatory module (SI Appendix, Mathematical Modeling). In rate-
balance plots from these models (Fig. 1C), intersections between
rtTA synthesis (Fig. 1C, blue sigmoid) and loss (Fig. 1C, red
elbow) rate curves correspond to stable (Fig. 1C, full circles) and
unstable (Fig. 1C, open circles) rtTA gene expression states that im-
pose corresponding cellular yEGFP::zeoR protein levels. For exam-
ple, the original PF gene circuit (6) is monostable below a threshold

Fig. 1. The PF gene circuit lost bistability and costly rtTA function by multiple mutations. (A) In the original PF gene circuit, the inducer Dox binds and
activates the rtTA protein, which identically activates its own rtTA gene and yEGFP::zeoR. Since rtTA activity is costly, loss of rtTA function is evolutionarily
beneficial in D2Z0. (B) We selected 7 mutants that arose in D2Z0, each improving fitness by PF breakdown. Now we evolve each mutant in D2Z2 where
regaining rtTA function would be beneficial. DxZy denotes the concentrations of the inducer Dox and the antibiotic Zeocin in micrograms per milliliter and
milligrams per milliliter, respectively. (C) The original PF gene circuit undergoes a saddle-node bifurcation, changing from monostable to bistable dynamics
when Dox exceeds a threshold. The top graph shows yEGFP::zeoR levels versus Dox from a simple mathematical model (SI Appendix,Mathematical Modeling).
The blue and red curves on the bottom graphs represent inactive rtTA synthesis and loss rates; while filled and open circles denote stable and unstable steady
states, respectively. The active rtTA levels corresponding to the circles impose the yEGFP::zeoR levels on the top graph and on the right, where experimental
yEGFP::zeoR expression histograms versus Dox demonstrate the bifurcation.
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concentration of ∼0.05 μg/mL Dox, with a single intersection
corresponding to a single low rtTA expression state imposing
low yEGFP::zeoR expression. As Dox concentrations increase,
the elbow-shaped curve of Dox-free, inactive rtTA loss (from
combined dilution and degradation) moves rightward,
approaching the sigmoidal rtTA synthesis curve until they meet
and intersect 3 times. Thus, for Dox concentrations above the
threshold, a second stable high-expression state emerges, in-
dicating a transition from monostable to bistable dynamics
through a saddle-node bifurcation (Fig. 1C). Losing the high gene-
expression peak during long-term evolution in D2Z0 (9) could
indicate either that a mutant gene circuit became completely
noninducible, or that the sigmoidal rtTA synthesis rate curve
shifted somehow, elevating the bistability threshold beyond
D2Z0. Still, the elbow-shaped loss curve slides rightward as Dox
increases further, so it could still reach and intersect a right-
shifted sigmoid curve 3 times, causing a high-expression peak to
still emerge at sufficiently high Dox concentrations. To examine
the possibility of such weaker but still present rtTA function,
we looked for high expressors in flow cytometry histograms of
each mutant in D2Z0. Indeed, upon closer examination, we
noticed ∼1% high-expressing cells in Missense 1 and 2 pop-
ulations, but not any other mutants (SI Appendix, Figs. S3–S8).
Therefore, we deem the Missense 1 and 2 mutant gene circuits
to be quasifunctional rather than completely nonfunctional (SI
Appendix, Table S1).
To fully test which of the 7 loss-of-function PF mutants are still

quasifunctional, we next hyperinduced them with excess Dox.
We expected that hyperinduction would shift the elbow-shaped
curve of rtTA loss farther rightward and move quasifunctional
rtTA mutants into their bistable regime (Fig. 1C and SI Appen-
dix, Mathematical Modeling), thus generating high-expressor
subpopulations, while nonfunctional mutants would remain unim-
odal. To this end we grew clonal populations carrying each rtTA
mutation in D6Z0 (Fig. 2 A and B), a 3-fold higher (6 μg/mL)

Dox concentration than D2Z0 where they previously arose.
These hyperinducing conditions confirmed that Missense 1 and
2 were indeed quasifunctional, while the remaining 5 mutants—
Missense 3 and 4, Nonsense, Duplication, and Deletion—still
appeared uninducible and thus nonfunctional (SI Appendix, Table
S1). Excess Dox did not alter the growth rate of any clones, in-
dicating that hyperinduction is not toxic for any mutant. Thus,
any further mutations abolishing leftover rtTA function in Mis-
sense 1 and 2 would not be beneficial. The results did not change
upon hyperinducing the mutants in 8 μg/mL Dox (SI Appendix,
Fig. S1A). Hysteresis experiments also confirmed the upshift of
bistability range for Missense 1 and 2 compared to PF (SI Ap-
pendix, Fig. S2).
Mathematical models suggested another mechanism besides

hyperinduction that can cause stable high expression. Slow
growth reduces dilution of cell contents and thus tilts downward
the rtTA loss curve, besides shifting it rightward. This moves the
quasifunctional PF mutants into the bistable regime (SI Appen-
dix, Mathematical Modeling), similar to growth-mediated bist-
ability observed in other systems (38, 39). To experimentally test
this, we grew PF mutants as well as standard PF cells in D2Z0
with 7.5% ethanol that slowed the growth rate to a value similar
to that in D2Z2 (SI Appendix, Figs. S3–S8). Interestingly, ethanol
strongly enriched the high-expressor fraction of ancestral PF
cells, from 71 to 91% in D2Z0. As expected, slow growth due to
ethanol also enriched the high-expressor fractions of Missense 1
(more than 2-fold) and Missense 2 (about 9-fold). Most sur-
prisingly, ethanol caused a few high-expressor cells to appear
even in Missense 3, which failed to respond to hyperinduction in
D6Z0 or D8Z0. Therefore, we classify Missense 3 as a dys-
functional mutant (SI Appendix, Table S1), unlike the non-
functional mutants Nonsense and Deletion, which do not
become bistable even in slow growth. We obtained compara-
ble results using Cisplatin, which interferes with DNA (40)
like Zeocin (37). In contrast, G418 did not have this effect,

Fig. 2. Quasifunctional rtTA mutants revealed by hyperinduction. (A and B) Gene-expression histograms of quasifunctional, dysfunctional, and non-
functional PF mutants hyperinduced in D6Z0 (24 h). A high-expression peak in this condition indicates bistabiltiy. (C) Plots illustrating the dynamical effect of
hyperinduction on quasifunctional and nonfunctional PF mutants. Filled and open circles denote stable and unstable steady states, respectively.

25164 | www.pnas.org/cgi/doi/10.1073/pnas.1912257116 Kheir Gouda et al.

D
ow

nl
oa

de
d 

at
 E

TH
-B

ib
lio

th
ek

 o
n 

D
ec

em
be

r 1
2,

 2
01

9 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912257116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1912257116


presumably because protein synthesis inhibition (41) abolishes
gene circuit function (SI Appendix, Figs. S3–S8). Overall, these
data and the model indicate that slow growth due to stressors can
cause shifts in dynamics that generate high expressors in Mis-
sense 3 and can enrich the already present high expressor sub-
populations of Missense 1 and 2.

Evolution Does Not Revert Quasifunctional Mutants.Next, we set out
to test if evolution could revert the 2 quasifunctional mutants
(Missense 1 and 2) to regain stronger rtTA function. Thus, we
evolved 3 replicates each of Missense 1 and 2 in D2Z2 medium,
where regaining high rtTA activity would beneficially shift cells
into the drug-resistant state of high yEGFP::ZeoR expression.
For control purposes, we also propagated the same initial pop-
ulations in D2Z0.
We observed qualitatively similar evolutionary dynamics for

both Missense 1 and 2 (Fig. 3), which started with a minimal
(0.47% and 0.63%) subpopulation of high-expressor cells im-
mediately upon transfer from D2Z0 into D2Z2. Early on, pop-
ulation fitness levels dropped significantly in all D2Z2 cultures
compared to the control D2Z0 cultures (Fig. 3 C and D). Soon
afterward, drug exposure generated a substantial high-expressing
subpopulation for a few days (Fig. 3 A and B). Growth rates
started recovering in ∼4 d, as the high-expressor peak increased
(Fig. 3 C and D). From day 1 onward, we also observed a slight
upward fluorescence shift for low expressors, corresponding to
elevated basal yEGFP::ZeoR levels compared to D2Z0 controls
(Fig. 3 A and B). This slight upward expression shift is clearly
distinguishable from “induced” high expression and resembles
phenotypes arisen previously during evolution in Zeocin drug
(D0Z2) (9), where various extracircuit mutations, often coupled
with intracircuit synonymous and promoter mutations, elevated
the low, basal yEGFP::ZeoR expression. Concurrently, the high-

expressor population fraction reached a maximum around day 4
and then returned to the same low level as in D2Z0 within ∼8 d
(Fig. 3 A and B).
Considering that high expressors were rare in D2Z0, while in

D2Z2 their fraction initially increased and then later dropped
back to the D2Z0 level, at least 2 hypotheses are possible. First,
compensatory mutations in rtTA or elsewhere could improve
rtTA activator function, thereby increasing the high-expressor
fraction, and then later subsequent mutations could revert this
effect. To identify such compensatory mutations, we performed
whole-genome sequencing (WGS) on 1 replicate population
each for both mutants on days 1, 3, and 14. The original rtTA
mutations already present at the beginning of the experiment
were identified at 100% frequency at all time points for both
Missense 1 and 2. However, we identified no other intracircuit
mutations. Since certain variant types (e.g., deletions and du-
plications) in the PF gene circuit are difficult to detect by WGS
(24), we also performed Sanger sequencing of the PF region in
10 individual clones from each mutant at day 14 (SI Appendix,
Table S2). All Missense 1 clones carried a deletion of the first
tetO2 operator upstream of the yEGFP::zeoR coding region,
whereas the other tetO2 site stayed intact. All Missense 2 clones
carried only their original gene circuit mutation without any
tetO2 or other circuit modifications, despite their identical phe-
notypes to Missense 1. Therefore, there is no phenotypic signa-
ture directly and specifically attributable to the tetO2 operator
site deletion (SI Appendix, Table S3). Overall, the only de novo
intracircuit mutation we found did not explain the observed
gene-expression changes.
High expression requires rtTA function. How then could a

substantial high-expressor peak emerge and later diminish
without any changes in the rtTA coding sequence or its promoter?
Modeling and experiments suggested a second hypothesis: By

Fig. 3. Evolutionary dynamics of quasifunctional mutants. (A and B) Histogram of yEGFP::zeoR expression for Missense 1 and 2 replicates in D2Z0 (blue,
control) and D2Z2 (magenta) over the course of 14 d. (C and D) Population fitness of Missense 1 and 2 replicates in D2Z0 (blue) and D2Z2 (magenta) over the
course of 14 d. (E) Changes of PF dynamics due to slower growth and selection in Zeocin, and then, reversion to normal growth in D2Z2 after the emergence
of drug-resistance mutations. Filled and open circles denote stable and unstable steady states, respectively. (F) Gene-expression histograms of evolved
Missense 1 and 2 population replicates hyperinduced in D6Z0 at the end of experimental evolution. A high-expression peak in this condition indicates the
presence of quasifunctional mutants in the population.
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decelerating growth and reducing dilution, Zeocin tilts downward
and shifts rightward the red elbow curve of rtTA loss (Fig. 3E).
This causes a shift in dynamics (SI Appendix, Mathematical Mod-
eling) that enriches the rare high-expressing drug-resistant cells
that preexist in D2Z0 (SI Appendix, Figs. S3 and S4), which are
then further enriched by phenotypic selection. At the same time,
the low-expressing subpopulation will remain drug-sensitive, en-
abling any mutants that elevate basal expression to grow faster and
spread in the population. Once such fast-growing mutants arise,
their faster growth/dilution rate tilts upward and shifts leftward the
red elbow curve (Fig. 3E), causing a return of dynamics toward
monostability (SI Appendix, Mathematical Modeling). Concur-
rently, the benefits of high-expression also vanish, causing the
high-expressor fraction to diminish back to the D2Z0 levels. Im-
portantly, these events can occur without any mutations in the PF
gene circuit, as long as extracircuit mutations can raise basal
yEGFP::ZeoR expression to promote fast growth in Zeocin.
To identify such extracircuit mechanisms of yEGFP::zeoR-

dependent Zeocin resistance, we looked for genomic, extracircuit
mutations in the WGS data (Materials and Methods). In the
Missense 1 population at day 14 we found moderate-frequency
(∼15%), nonsynonymous mutations in 2 genes affecting protein
stability and transcription, PAH1 and SET3, including a 1-bp
frameshift deletion in the latter. Additional mutations in other
genes and intergenic regions exist at lower frequencies (SI Appendix
Table S3 and Dataset S1). In contrast to Missense 1, evolved Mis-
sense 2 populations carried multiple extracircuit mutations exceed-
ing 90% in frequency at day 14 (SI Appendix, Table S3 and Dataset
S2). Mutations in the genes PHB2, MDM32, and COX1 suggest
alteration in mitochondrial metabolism and function. We also ob-
served a synonymous mutation in the FG-nucleoporin NUP159
gene, which is involved in posttranscriptional regulation (42).
To test if elevated yEGFP::zeoR gene expression mediates

drug resistance without rtTA activity, we compared the growth of
Missense 1- and 2-evolved populations and clonal isolates to
their unevolved Missense 1 and 2 ancestors in Zeocin-only media
(D0Z2). Evolved Missense 1 and 2 populations and clonal iso-
lates grew significantly faster than the ancestral PF or unevolved
Missense 1 and 2 cells in D0Z2 (SI Appendix, Figs. S12 and S13),
indicating that the evolved Missense 1 and 2 populations were
Zeocin-resistant independently of rtTA.
If the rtTA coding sequence and PF gene circuit dynamics did

not change during evolution, hyperinduction should affect Mis-
sense 1 and 2 similarly to their ancestors. To test this, we hyperinduced
each final evolved Missense 1 and 2 replicate population in D6Z0.
Indeed, the evolved Missense 1 and 2 populations developed high
expression in D6Z0 (Fig. 3F) and in D8Z0 (SI Appendix, Fig. S1B)
as their ancestors did. Similarly, hyperinduction did not affect the
growth rates of the evolved populations. Overall, the Missense 1
and 2 evolution experiments indicate that slow growth and phe-
notypic selection initially enrich the high-expressor fraction non-
genetically, but then extracircuit mutations accelerate growth by
elevating basal stress-protective yEGFP::ZeoR expression, which
shifts the dynamics to diminish the high-expressor fractions back
to levels equivalent to D2Z0.

Most Nonfunctional Mutants Never Regain rtTA Function.As the lack
of high expression in D6Z0 indicates, the 4 other initial PF
mutants (Missense 4, Nonsense, Duplication, and Deletion) had
mutations that disrupted rtTA protein function such that it be-
came completely uninducible, regardless of inducer amount (Fig.
2B and SI Appendix, Fig. S1A) or growth rate (SI Appendix, Figs.
S6 and S7). To test if evolution could restore rtTA function in
any of these nonfunctional mutants, we also evolved 3 replicates
of each in D2Z2 where regaining rtTA activity would generate a
beneficial high yEGFP::ZeoR expression peak.
Early in the evolution experiment (Fig. 4B and SI Appendix,

Fig. S9 A–F), the growth rate in D2Z2 of each nonfunctional

mutant population dropped significantly below the controls
evolving in D2Z0. The growth rates of the Missense 4, Nonsense,
and Duplication populations then recovered over ∼5 d, while the
growth rates of the Deletion populations recovered within 3 d,
approaching that of D2Z0 control cultures. Unlike quasifunc-
tional mutants, nonfunctional mutants never gave rise to a high-
expressor subpopulation (Fig. 4A and SI Appendix, Fig. S9 A–C).
The yEGFP::zeoR expression distributions remained unimodal
but shifted slightly upwards compared to the basal (D2Z0
control) expression in all experimental cultures. Conse-
quently, these evolving cell populations relied again on
yEGFP::zeoR expression to gain drug resistance and increase
their fitness, without repairing rtTA function. Indeed, Sanger
sequencing of 10 isolated clones from each mutant revealed no
additional mutations inside the gene circuit, except for the de-
letion of the first tetO2 site upstream of yEGFP::zeoR in 0 of 10
Missense 4 clones, 1 of 10 Nonsense clones, 8 of 10 Deletion
clones, and 2 of 10 Duplication clones (SI Appendix, Table S4).
All mutants retained the original rtTA mutation and no other
rtTA mutations were detected. As with Missense 1 and 2, there
was no phenotype associated specifically with the tetO2 deletion
(SI Appendix, Table S4).
To identify possible extracircuit mutations causing the slight

basal expression increase, we analyzed the WGS data. We found
mutations in or near genes controlling mRNA and protein levels
through degradation or synthesis, such as the poly-A tail short-
ening CCR4, the TFIID subunit TAF2, the ribosomal subunit
RPL41A, and others (Datasets S4–S7).
To examine rtTA nonfunctionality at the end of the evolution

experiment, we hyperinduced final evolved populations in D6Z0.
As expected, the yEGFP::ZeoR expression of nonfunctional
mutants remained unimodal and low in D6Z0 and in D8Z0 (Fig.
4C and SI Appendix, Figs. S1B and S9G), indicating that rtTA
and the gene circuit in these mutants remained nonfunctional at
the end of evolution in D2Z2, as anticipated.
As we did for Missense 1 and 2, we also examined rtTA-

independent Zeocin resistance of nonfunctional mutants by
growing evolved populations and isolated clones in D0Z2 media

Fig. 4. Example of evolutionary dynamics of nonfunctional mutants that
never regain rtTA function. (A) Histograms of yEGFP::zeoR expression of 3
replicates of Nonsense mutant in D2Z0 (blue, control) and D2Z2 (magenta)
over the course of 14 d. (B) Fitness and mean yEGFP::zeoR expression plots
for Nonsense mutant computed for each day of the experiment. (C) Gene-
expression histograms of evolved population replicates hyperinduced in
D6Z0 at the end of experimental evolution.
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for 24 h. The evolved Missense 4, Nonsense, and Duplication
populations and isolated clones grew significantly faster than
their unevolved ancestors (SI Appendix, Figs. S12 and S13). In-
terestingly, the unevolved Deletion mutant seemed to have some
preexisting yEGFP::ZeoR-dependent resistance to Zeocin (SI
Appendix, Figs. S12 and S13). This corroborates the faster De-
letion recovery and slightly higher yEGFP::ZeoR basal expres-
sion compared to all other nonfunctional mutants upon Zeocin
exposure, already at day 1 (SI Appendix, Fig. S10), and reinforces
general reliance on slightly elevated yEGFP::ZeoR expression
for drug resistance.

Dysfunctional Mutants Can Regain PF Gene Circuit Function. Sur-
prisingly, during evolution in D2Z2, all 3 replicates of the dys-
functional rtTA mutant (Missense 3) temporarily gave rise to a
significant high-expressor subpopulation that persisted for over a
week for each replicate. Ultimately, toward the end of the evo-
lution experiment, these high-expressor subpopulations dimin-
ished and the fluorescence shift of the low peak indicated a slight
increase in basal yEGFP::zeoR expression similar to all other
genotypes. The fitness trends of each Missense 3 replicate re-
sembled those of the other mutants: The initially low population
fitness levels recovered to normal (control) levels within ∼4 d
(Fig. 5 A and B).
Once again, despite the marked appearance and subsequent

gradual disappearance of the high-expressing peak in D2Z2, we
found no additional rtTA coding sequence mutations in Mis-
sense 3 populations. Sanger sequencing from day 14 detected
only 1 intracircuit mutation in some clones: The deletion of 1
tetO2 site upstream from yEGFP::zeoR, while the other tetO2
sites remained intact. Interestingly, all individual Missense 3
clones that acquired a tetO2 deletion had unimodal gene ex-
pression, whereas the clones that lacked this mutation were
bistable in D2Z2 at the end (SI Appendix, Table S5).
Mathematical modeling (SI Appendix, Mathematical Modeling)

suggested that gene circuit dysfunction in Missense 3 is due to a
drop in rtTA activator capacity (Fig. 5C), rather than reduced
inducer sensitivity as for Missense 1 and 2. This means that the
rtTA synthesis rate curve collapses downward (Fig. 5C) instead
of shifting rightward (Fig. 2C) in such dysfunctional mutants.

Importantly, this collapse implies that the elbow-shaped rtTA
loss curve will always be above the collapsed sigmoid during
normal growth, so the curves will miss intersecting each other
again regardless of the hyperinducing Dox level. Yet, a bistable
region can still be reached if slow growth/dilution tilts downward
and shifts rightward the rtTA loss curve, causing high-expressors
to emerge, despite Missense 3 being completely unresponsive to
hyperinduction. Indeed, adding ethanol or Cisplatin but not G418
to D2Z0 indicated that slow growth enables some high expression
in Missense 3 (SI Appendix, Fig. S5). Zeocin in D2Z2 enriches this
high-expressor fraction further by selection. Mutations elevating
the entire sigmoidal synthesis curve could then accelerate growth,
thus reestablishing and maintaining bistability (Fig. 5C), while also
stabilizing the high-expressor fraction (SI Appendix, Mathematial
Modeling). On the other hand, not all mutations elevate expression
sufficiently to maintain bistability as growth accelerates, causing
the high-expressor fraction to diminish in the evolving population,
which can be a mixture of such mutation types.
To identify these mutations predicted by the model, we ex-

amined WGS data for 2 replicate populations of Missense 3.
Relevant high-frequency mutations potentially related to tran-
scriptional regulation in replicate 1 (r1) included 1-bp frameshift
deletions in SIF2 and SSN3, as well as a nonsynonymous muta-
tion in SSN2. Missense 3 replicate 3 (r3), on the other hand,
carried multiple genomic mutations that spread in the entire
population by day 14 of the experimental evolution, including
missense mutations in mediator complex components SRB8 and
MED6, both of which are involved in RNA polymerase II-
dependent transcriptional regulation (43–45) and could elevate
both basal and maximal rtTA levels (the entire rtTA synthesis
curve) as the model suggested. In addition, a chaperonin subunit
CCT7 mutation suggests effects on general protein folding (46),
and mutations in the SAP185 and EXG1 coding regions suggest
altered cell cycle regulation (47, 48) (SI Appendix, Table S5 and
Dataset S3).
We also hyperinduced the final evolved replicate populations

from Missense 3 in D6Z0 to examine PF function at the end
of evolution. Surprisingly, 2 evolved Missense 3 replicates (r1
and r3) had bimodal distributions, indicating that gene circuits
in some clones became quasifunctional or fully functional.

Fig. 5. Evolutionary dynamics of the dysfunctional mutant Missense 3. (A) Histogram of yEGFP::zeoR expression of Missense 3 replicates in D2Z0 (blue,
control) and D2Z2 (magenta) over the course of 14 d. (B) Population fitness mean yEGFP::zeoR of Missense 3 cells in D2Z0 (blue) and D2Z2 (magenta) over the
course of 14 d. (C ) Evolutionary changes in gene circuit dynamics involve slow growth-induced bistability due to Zeocin, followed by extracircuit mutations
that can shift the entire rtTA synthesis curve upward, reestablishing bistability. Filled and open circles denote stable and unstable steady states, re-
spectively. (D) Gene-expression histograms of evolved population replicates hyperinduced in D6Z0 at the end of experimental evolution. A high-expression
peak in this condition indicates the presence of quasi- or fully functional revertant mutants in the population.
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Missense r2 had a unimodal distribution in D6Z0, indicating that
it remained insensitive to hyperinduction (Fig. 5D). We observed
the same in D8Z0 (SI Appendix, Fig. S1B).
Finally, as for other mutants, we assessed rtTA-dependence of

Zeocin resistance in evolved Missense 3 populations and clonal
isolates by culturing them in D0Z2. OD600 measurements of
original and evolved populations (SI Appendix, Figs. S12 and
S13) indicated that evolved Missense 3 replicate populations
grew significantly faster than their unevolved ancestor. In-
terestingly, isolated bimodal Missense 3 clones with mutation-
free gene circuits grew slower in D0Z2 than unimodal clones
with a tetO2 site deletion upstream from yEGFP::zeoR. This
further supports that the tetO2 site deletion contributes to rtTA-
independent, but yEGFP::zeoR-dependent drug resistance, whereas
bimodal Missense 3 clones rely on regained rtTA activity for
resistance.

Sorting Dysfunctional Mutants Yields Clones with Regained rtTA
Function. So far, a likely common explanation for the observed
evolutionary dynamics is the appearance and spread of extra-
circuit mutations that accelerate growth of the drug-sensitive, low-
expressor subpopulation by elevating yEGFP::zeoR basal ex-
pression, thereby returning the dynamics toward the unimodal
low-expression regime. If this is the case, then separating the
high- and low expressors around day 4 should result in different
evolutionary dynamics. Since drug selects against ancestral low-
expressor cells, the increased selection pressure should cause
drug-resistance mutations to spread quickly among low-sorted
cells, preventing them from generating a substantial high-
expressing peak. On the other hand, high-sorted cells would be
insensitive to Zeocin and mutations could spread among them

only after they generate a low-expressing peak by phenotypic
switching. Therefore, high-sorted cells should take longer to
become unimodal than low-sorted cells. Also, as discussed above,
some quasi- or fully functional PF revertant clones may exist. If
any revertant strains arose, we may be able to isolate them among
the high-sorted cells because high expression is the hallmark of PF
functionality.
To test these hypotheses, we separated the low-expressor and

high-expressor subpopulations by fluorescence-activated cell
sorting (FACS) at the end of day 4 of the original evolution
experiment and cultured these high- and low-sorted subpopula-
tions separately in the D2Z2 condition for 12 d (Fig. 6). As
predicted, Missense 1 and 2 low-sorted subpopulations remained
in the low-expression state throughout this experiment, in-
dicating rapid takeover by genomic mutations conferring drug
resistance. Accordingly, the corresponding high-sorted subpop-
ulations generated bimodal distributions that became unimodal
only after a few days as expected.
As opposed to Missense 1 and 2, Missense 3 low-sorted

subpopulations transiently gave rise to new high-expressor sub-
populations (Fig. 6 A–C), indicating either that basal expression-
elevating mutants spread much more slowly than in Missense 1
and 2, or that revertant strains arose. For low-sorted Missense 3
replicates r2 and r3, the high-expressor peak gradually diminished
within ∼9 d. In contrast, low-sorted Missense 3 r1 remained stably
bimodal from day 5 throughout the end of this 12-d postsort
experiment (Fig. 6 C and F).
High-sorted subpopulations from all 3 Missense 3 replicates

gave rise to low-expressor cells within 1 d after flow sorting.
Eventually, the high-expressor peak diminished in all high-sorted
subpopulations, except as above, for Missense 3 r1, which

Fig. 6. Postsort evolutionary dynamics of low-sorted and high-sorted subpopulations. (A–C) Histograms of yEGFP::zeoR expression for Missense 1, Missense 2,
and Missense 3 low-sorted (black) and high-expressor (green) subpopulations. (D–F) Population fitness and mean yEGFP::zeoR expression of Missense 1,
Missense 2, and Missense 3 low-sorted (black) and high-sorted (green) subpopulations over the course of 12 d.
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remained stably bimodal, biased toward the high-expression state
for the last 7 d postsort (Fig. 6 A–C). Therefore, some Missense
3 r1 clones must be revertant strains with stable high expression.
To identify PF circuit genetic changes underlying these phe-

notypes, we Sanger-sequenced the yEGFP::zeoR and rtTA re-
gions of 5 such individual revertant clones. Once again, the PF
sequence in revertant clones was genetically identical to the
original Missense 3 mutant. WGS (Dataset S3) revealed 1 mu-
tation in the SSN2 gene that spread in the high-sorted Missense 3
r1 population over time (reaching 62.2% on day 12 postsort),
suggesting that it confers a survival benefit and is associated with
the stable high-expression peak in this population. This mutation
was also present at lower frequencies (5.6% and 6.6%) in the
respective unsorted and low-sorted populations, further sup-
porting its association with functional reversion. The SSN2 gene
encodes an RNA polymerase II mediator complex subunit es-
sential for transcriptional regulation, resembling the general
transcriptional-regulatory function of mutations in Missense 2 and
3 r3 (SI Appendix, Tables S3 and S5). However, the dynamic
consequences of such gene-expression increases depend on the
original mutation (i.e., whether it shrinks or right-shifts the
sigmoidal rtTA-synthesis function).
If fully functional revertant strains arose from Missense 3, they

should be clearly bimodal in D2Z0, without Zeocin. Thus, to
further characterize revertant strains, we studied the yEGFP::zeoR
fluorescence distribution in 5 individual Missense 3 r1 clones at
the end of the postsort experiment (on day 12) in D2Z2, D0Z2,
D2Z0, and D0Z0 for 4 d. Based on these experiments, Missense
3 r1 revertant clones fell into 2 phenotypic categories: Some had
approximately equal peak heights in D2Z2 and D2Z0, whereas
other clonal populations consisted almost exclusively of high
expressors (Fig. 7 A and B and SI Appendix, Fig. S11) like the
ancestral PF. Remarkably, the mutations conferred stable high
expression even without Zeocin. Additionally, maximum ex-
pression shifted leftward, causing the peaks to approach each
other compared to the ancestral PF, as predicted by sigmoid
elevation in the SI Appendix model (SI Appendix, Mathematical
Modeling). Remarkably, the distributions were very similar in
D2Z2 and D2Z0, indicating that the revertant strains were drug
resistant at all expression levels (SI Appendix, Fig. S14), so
Zeocin did not select for high expression.

Discussion
Loss-of-function is widely observed in experimental evolution
studies (5, 8, 13–16), presumably because of the large supply of
mutations having these effects. While it is always difficult to
extrapolate from the laboratory to natural environments, these
observations suggest that loss-of-function may be a common
mode of adaptation to a new environment. This raises the
question of how populations could regain such lost biological
functions when the environment changes back to a prior state
where that function conferred a selective advantage. This ques-
tion also has great practical significance for synthetic biology,
where we may be able to use evolution to resurrect evolutionarily
broken synthetic biological systems in medical, environmental, or
extraterrestrial applications where direct human intervention is
difficult or possibly ineffective.
To this end, we investigated evolutionary reversibility by

evolving 7 yeast strains with broken PF gene circuits, each with a
different rtTA mutation, in conditions where regaining gene
circuit function would be beneficial. The results revealed various
classes of evolutionary dynamics for quasifunctional, dysfunc-
tional, or nonfunctional mutants (Fig. 7C). Revertant clones arose
only in dysfunctional mutant populations through extracircuit
mutations. After evolving the broken PF mutants, we found no
compensatory coding-sequence mutations inside the gene circuits
in any populations. Instead, many new extracircuit mutations in-
creased yEGFP::ZeoR levels, thereby improving drug resistance,

without restoring broken PF function, indicating that evolution
adopts alternate paths if they are available (49, 50). Restricting
such alternate paths, e.g., by using higher drug concentrations or
by preventing extracircuit genomic mutations (51) may facilitate
functional reversions in future experiments. Importantly, some
extracircuit mutations did reenable PF gene circuit function by
elevating rtTA expression, indicating that evolutionary reversion is
possible without any new mutations in rtTA or even the gene
circuit. This is broadly consistent with another recent study that
evolved Escherichia coli with loss-of-function mutations in a

Fig. 7. Phenotypic characterization of revertant clones. (A) Clone 1
from day 12 of high-sorted Missense 3 r1 populations is a representative of
revertant clones with approximately equal gene-expression peaks in D2Z2
and D2Z0. (B) Clone 2 from day 12 of high-sorted Missense 3 r1 populations
is a representative of Missense 3 clones with predominantly high expressors.
Histograms were recorded after maintaining each population over 4 d in
each indicated condition. (C) Muller plot cartoons illustrating schematically
time-dependent phenotypic and genotypic frequencies (evolutionary dy-
namics) during pre- and postsort experimental evolution for quasifunctional,
nonfunctional, and dysfunctional PF mutants. Different colors indicate dif-
ferent genotypes. Different shades of the same color indicate different
phenotypes associated with the same genotype in bistable populations, the
lighter shade corresponding to high expression. The plots ignore pheno-
typically equivalent competing genotypes for simplicity. For the dysfunc-
tional mutant Missense 3 the plots illustrate only the revertant clone.
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particular enzyme, showing some direct revertant mutations in the
functional locus but also indirect adaptations elsewhere in the
genome (52).
We discovered interesting interactions between intracellular

gene circuit dynamics, population dynamics, and evolutionary
dynamics (53). Specifically, slow growth rate was not only a
fitness parameter, but also a potential enabler of dynamic shifts
leading to beneficial early phenotypic and later genetic
changes. This is reminiscent of the emerging concept of growth
rate as a global regulator of the cell’s transcriptional state (54,
55). The potential implications are remarkable, since a slow-
growing dysfunctional mutant can rapidly develop a large high-
expression peak, appearing to be reverted. However, these
early expression shifts are not truly evolutionary reversions,
they simply result from gaining access to a bistable regime that
existed for the entire time but was inaccessible through hyper-
induction. Indeed, other conditions that decelerate growth simi-
larly to Zeocin, ethanol, and Cisplatin could also boost bistability
for such mutants. To combat drug resistance, it will be important to
understand how often similar growth-related dynamic shifts (38, 39,
54) can happen in natural networks of bacteria, yeasts, and mam-
malian cells. Furthermore, the antibiotic’s mechanism of action
matters for survival and evolution. As the mathematical model
suggested, stressors that reduce growth without directly interfering
with protein synthesis enabled access to a bistable regime. On the
other hand, antibiotics such as G418 that directly inhibit transla-
tion (43) might prevent protein expression-dependent dynamical
shifts, and consequently the emergence of high-expressors. Future
studies evaluating the effect of different antibiotic mechanisms of
action on gene-network dynamics and evolution will be important
and informative.
Sanger sequencing revealed only 1 intracircuit mutation

across all different tested mutants: A 42-bp deletion eliminat-
ing the first tetO2 operator site upstream of the yEGFP::zeoR
coding region. The other tetO2 site upstream from yEGFP::zeoR
and the 2 tetO2 sites upstream from rtTA remained intact,
leaving positive feedback unaltered while still enabling
yEGFP::zeoR activation by rtTA. We could not link the observed
phenotypes and the identified tetO2 site deletion specifically,
except for Missense 3, where 1 tetO2 site was absent only in
monostable populations, while bistable clones had intact gene
circuits. Notably, tetO2 site deletions occurred in nonfunctional
mutants and also in cells previously evolved in D0Z2 (9), sug-
gesting that these deletions contribute to elevating basal
yEGFP::zeoR expression independently of rtTA. Establishing
the functional and dynamic effects of single versus double tetO2
sites in front of yEGFP::zeoR requires further investigation.
Extracircuit mutations in various genes, such as SRB8, MED6,
CCT7, NUP159, and others suggest alterations in the transcrip-
tion and protein-folding processes, which will require further
studies.
Upon sorting and separately culturing low- and high-expressor

subpopulations from evolving populations with quasifunctional
and dysfunctional mutants, only the latter contained revertant
clones that reestablished and maintained bistability. Hence, we
successfully generated fully revertant clones capable of stably
reactivating the mutant PF circuit. Interestingly, the reversion
could be linked to an extracircuit mutation in the SSN2 gene,
pointing to functional alterations in the RNA polymerase
II-mediator complex controlling transcriptional regulation,
and consequently conferring drug resistance through rtTA and
yEGFP::zeoR protein levels. Compared to the ancestral PF and
the original Missense 3 gene circuit, the revertant strains were
Zeocin-resistant (SI Appendix, Fig. S10) yet high expression was
not costly, indicating that breaking and then recovering the
gene circuit function resulted in PF cell lines with functional gene
circuits that are more robust to evolution and environmental
perturbations.

Fusing an antibiotic resistance cassette to genes of interest would
likely be useful to restore the function of other activator-based
gene circuits. The regulators of gene circuits employing only re-
pressors (such as the toggle switch) would be less likely to degrade
by evolution in eukaryotes where steric repressors tend to be less
toxic than activators, so the evolutionary pressure to mutate them
would be lower. Nonetheless, fusing an antibiotic resistance gene to
target genes and applying drug selection should allow regaining of
function even for repressor-based gene circuits if they break down.
Moreover, auxotrophic positive- and negative-selection markers
(such as URA3) could be similarly employed as handles for evo-
lutionary restoration, with the advantage that selection could be
applied both for low and high expression in yeast.
As opposed to our method, directed evolution studies in the

past optimized enzymes and metabolic pathways (33, 34) to
avoid the difficulties of rational troubleshooting and screening.
Such studies focused on individual proteins, mutagenizing coding
sequences and screening for optimal variants. In particular, a
study titled “Directed evolution of a genetic circuit” in fact
mutagenized the coding sequence of a single transcription factor
and then screened for optimal variants without actually per-
forming network evolution (33), that is, allowing the entire
network and host genome to change naturally. Other studies
investigated evolutionary degradation of gene circuits but did not
seek to recover or improve gene circuit function by experimental
evolution (9, 30).
To conclude, our results highlight the versatility of drug-

resistance mechanisms, including dynamical consequences of
slow growth, and exemplify how yeast and possibly mammalian
(23) gene circuit evolution can reveal interesting dynamical and
biological behaviors, such as host-genomic mutations repairing
lost gene circuit function.

Materials and Methods
We used previously evolved (9) YPH500 haploid S. cerevisiae clones (α, ura3‐52,
lys2‐801, ade2‐101, trp1Δ63, his3Δ200, leu2Δ1; Stratagene) with 7 differ-
ent rtTA-mutant PF synthetic gene circuits (6) stably integrated into
chromosome XV near the HIS3 locus (SI Appendix, Table S1). Cells were
grown in SD‐his‐trp + 2% galactose media at 30 °C, shaking at 300 rpm.

To phenotypically characterize the 7 mutants, we performed hysteresis
and hyperinduction experiments as well as slow growth rate experiments
using 40 μg/mL Cisplatin, 40 μg/mL G418 or 7.5% ethanol.

To conduct the experimental evolution, 105 cells were resuspended into
1 mL of D2Z0 (2 μg/mL Dox) and D2Z2 (2 μg/mL Dox, 2 mg/mL Zeocin) condi-
tions (3 replicates each) every ∼24 h. Fluorescence (BD Accuri) and cell counts
(Nexcelom) were measured daily. The experiment lasted for 14 d. Missense 1,
2, and 3 populations were FACS-sorted (BD FACSAria III) at day 4. Collected
low- and high-expressor subpopulations were cultured separately in D2Z2
for 12 d. Flow-cytometry (BD Accuri) and cell counts (Nexcelom) were per-
formed daily on the sorted samples.

To assess the fitness of evolved populations in Zeocin, we collected OD600
readings in D0Z2 over 24 h. We genetically characterized evolution endpoint
populations and clonal isolates through WGS and Sanger sequencing, re-
spectively. Evolved clonal isolates were phenotyped in D2Z2. Revertant clonal
isolates were phenotyped in D0Z0, D2Z0, and D0Z2, in addition to D2Z2.

Detailed protocols are included in the SI Appendix, Supporting Materials
and Methods.

Data Availability. Data and Matlab code associated with the figures (56) and
raw sequencing data (57) can be found at https://openwetware.org/wiki/
CHIP:Data.
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1. Supporting Materials and Methods 
 

Yeast strains  

We used previously evolved [1] YPH500 haploid Saccharomyces cerevisiae clones (α, ura3‐52, 

lys2‐801, ade2‐101, trp1Δ63, his3Δ200, leu2Δ1; Stratagene) with wild-type and seven rtTA-

mutant PF synthetic gene circuits [2] stably integrated into chromosome XV near the HIS3 locus 

(Table S1). A 2% weight of galactose Synthetic Dropout (SD) culture medium with appropriate 

supplements (-his, -trp) was used to maintain auxotrophic selection (all reagents from Sigma). 

Cells were grown in SD‐his‐trp + 2% galactose plus Doxycycline and Zeocin as indicated at 

30°C, shaking at 300 rpm (LabNet 311DS shaking incubator). 

Experimental evolution  

Previously [1], mutant strains were isolated and stored in 27% glycerol (Thermo Fisher 

Scientific) at -80C. Seven mutant strains were picked from the -80C stock, streaked onto SD -

his -trp 2% glucose plates (all reagents from Sigma) and incubated at 30⁰C for 2 days. One 

isolated colony from each plate was cultured in liquid SD -his -trp 2% galactose media at 30⁰C & 

300rpm for 24 hours. For each strain, 105 cells were resuspended into 1mL of D2Z0 (2 µg/mL 

Doxycycline) and D2Z2 (2 µg/mL Doxycycline (Thermo Fisher Scientific), 2mg/mL Zeocin 

(Thermo Fisher Scientific)) conditions (3 replicates each) every ~24h. Fluorescence (BD 

AccuriTM) and cell counts (Nexcelom) were measured daily. The experiment lasted for 14 days.  

Cell Sorting 

Missense 1, 2 and 3 populations were FACS-sorted at day 4 using the BD FACSAriaTM III. 

Sorting parameters were set on the BD FACSDivaTM 8.0 software. High-sorted cells were 

collected from the highest 5-10% of the high-expressor subpopulations. Collected low- and high-

expressor subpopulations were cultured separately in D2Z2 for 12 days. Flow-cytometry (BD 

AccuriTM) and cell counts (Nexcelom) were performed daily on the sorted samples. 

Flow-cytometry 

The BD FACSAriaTM III at the Stony Brook Flow-cytometry facility was used for cell sorting. 

The BD Accuri™ C6 flow-cytometer was used to collect data for hyperinduction, experimental 

evolution for sorted and unsorted populations.  
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The BD FACSCalibur™ at the Stony Brook Flow-cytometry facility was used to collect data for 

slow growth rate and phenotyping experiments. 

Estimation of population fitness 

We counted cells daily using the Nexcelom Bioscience Cellometer Vision cell counter. The daily 

(T=24h) resuspension of a low number of cells (105) ensures that cells remain in the 

exponential growth phase throughout these experiments. Therefore, based on Nexcelom cell 

counts before each resuspension, we can use the exponential growth equation to estimate the 

population growth rate, 𝑟 : 𝑟 = 1
𝑇 ln (

𝑁(𝑡)
𝑁0

) . 

Hyperinduction and slow growth rate experiments 

To classify quasifunctional, dysfunctional and nonfunctional rtTA mutants, we cultured them in 6 

µg/mL (D6Z0) or 8 µg/mL (D8Z0) Doxycycline (Thermo Fisher Scientific) added to SD-his-trp for 

24h. Flow-cytometry (BD AccuriTM) was performed to measure gene expression levels.  

To assess the effect of slow growth rate on mutant and ancestral PF circuit dynamics, we 

cultured mutant (Missense 1, 2, 3, Nonsense and Deletion) and ancestral PF strains in 2 µg/mL 

Doxycycline (D2Z0) +7.5% 200 proof ethanol (Pharmco) for 4 days. Cells were resuspended at 

a 105 cells/mL density every day. We measured cell counts daily and protein expression by flow-

cytometry on days 1, 2 and 4 (BD FACSCaliburTM). Additionally, we conducted the same 

experiment using Cisplatin (Selleckchem) and G418 (Gemini Bio-products), each at a 

concentration of 40µg/mL.  

Zeocin only growth curve monitoring 

Original mutants and evolved replicates were cultured in the D0Z2 (2mg/mL Zeocin (Thermo 

Fisher Scientific)) condition at a concentration of 105 cells/mL. Growth curves were monitored 

through OD600 measurements (every 20 minutes for 24 hours) using the Tecan Infinite® 200 

PRO plate reader. The following strains were monitored in D0Z2:  

- Original (unevolved) ancestor strains of each mutant. 

- Replicate 3 (WGS replicate) of evolved populations of each mutant, from day 14 of 

experimental evolution, except for Missense 3 where all replicates were tested. 

- Sequenced and phenotyped clonal isolates (shown in Tables S3-S5) for each mutant. 

In addition, for control and comparison purposes, we monitored the growth of ancestral PF in 
D0Z0, D2Z2 and D0Z2. 
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DNA isolation 

DNA was extracted from isolated single clones for Sanger sequencing or from evolved 

populations for WGS using the MasterPure™ Yeast DNA Purification Kit (Lucigen) as per 

manufacturer’s instructions.  

Sanger sequencing  

Sanger sequencing was performed on 10 isolated evolved clones from each unsorted mutant 

population at day 14 and 5 isolated clones from the sorted revertant Missense 3 replicate at day 

12. For primers, see SI Appendix, Table S2. Samples were sequenced at the DNA Sequencing 

Facility at Stony Brook University using the BigDye Terminator v3.1 sequencing kit, BigDye 

XTerminator Purification kit and the 3730 DNA Analyzer (all from Applied Biosystems). Results 

were analyzed using the SnapGene software sequence alignment tool.  

Whole genome sequencing (WGS) analysis  

WGS was performed on Missense 1 r3, Missense 2 r3 and Missense 3 r1 and r3 at days 1, 3 

and 14 for unsorted populations and days 1, 5 and 12 for the sorted populations. WGS was also 

performed on r3 of each of the other mutants on day 14 only. Samples were sent to Novogene 

Co., Ltd. where library preparation was performed using the NEBNext® Ultra II kit (New England 

Biolabs) and sequencing was performed by Illumina HiSeq-4000 at a 165x coverage. 

To analyze the sequencing data, we used the S288C genome (RefSeq accession numbers 

NC_001133.9, NC_001134.8, NC_001135.5, NC_001136.10, NC_001137.3, NC_001138.5, 

NC_001139.9, NC_001140.6, NC_001141.2, NC_001142.9, NC_001143.9, NC_001144.5, 

NC_001145.3, NC_001146.8, NC_001147.6, NC_001148.4, NC_001224.1) as a reference with 

the PF circuit inserted computationally on chromosome 15 between the MRM1 and HIS3 genes. 

We processed the reads and this modified reference genome using the breseq 0.33.1 pipeline 

on default settings for polymorphism prediction [3]. The pipeline produced lists of inferred 

variants (including SNPs, insertions, and deletions) and their estimated frequencies in the 

population for each sequencing sample. Subsequently, inferred variants were filtered down 

according to the following three criteria: (i). Variant cannot appear in samples from different 

populations (e.g., Missense 1 and Missense 3). (ii).Variant must appear in multiple samples if it 

appears in a population with multiple samples. (iii).Variant must appear >10% in at least one 

sample. 



4 
 

Here we highlight mutations as potentially causal if they increase in frequency over time or if 

they are absent at the beginning but are detected in high frequencies (>50%) at the end of the 

evolution experiment. All detected variants are reported (Datasets S1-S7). 

Phenotyping of isolated clones 

To understand the effect of the tetO2 deletion detected upstream of yEGFP::zeoR by Sanger 

sequencing on PF dynamics, one clone from each PF genotype found (presence of tetO2 or 

deletion of tetO2) was cultured in D2Z2 for 24h. Flow-cytometry was performed to obtain a 

protein expression distribution (BD FACSCaliburTM).  

To compare PF to the revertant Missense 3 r1 mutant (revertant), PF and the five Sanger-

sequenced revertant clones were cultured in D0Z0, D2Z0, D2Z2 and D0Z2 for 4 days. Flow-

cytometry was performed to obtain a protein expression distribution on each day (BD 

FACSCaliburTM).  

Quantitative modeling and software 

Flow cytometry data were gated based on forward and side scatter using FCS Express and then 

exported for subsequent analysis. All experimental data were analyzed and plotted in MATLAB 

R2016b. WGS data were analyzed using the breseq 0.33.1 software. Ordinary differential 

equation (ODE) models were developed, then their steady states were analyzed on paper and 

by custom-written scripts using the function roots in MATLAB R2018a. See the SI model for 

details. 

Yeast sample storage for further analysis 

Each day, unsorted and sorted samples from the experimental evolution and were stored in 

27% glycerol at -80C for further studies. Sanger sequenced clones and whole genome 

sequenced clones were also stored in 27% glycerol. 
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2. Supporting Tables and Datasets 
 

Mutant Position 
in rtTA  

Position in 
S288C+PF 
chr15  

Nucleotide 
effect 

Amino acid 
effect 

Phenotypic 
effect  

Evolved 
population: 
Gonzalez et al., 
2015  

Missense 1 189 729,794 C→G His→Gln Quasifunctional D2Z0-12hr-r2 

Missense 2 562 730,167 T→C Phe→Leu Quasifunctional D2Z0-24hr-r2 

Missense 3 275 729,880 G→A Ser→Asn Dysfunctional D2Z0-24hr-r3 

Missense 4 13 729,618 G→T Asp→Tyr Nonfunctional D2Z0-24hr-r3 

Nonsense 442 730,047 G→T Glu→Stop Nonfunctional D2Z0-24hr-r2 

Deletion 651 730,256 78bp 
deletion 

26 amino 
acid deletion 

Nonfunctional D2Z0-24hr-r3 

Duplication 95 729,700 30bp 
duplication 

10 amino 
acid 
duplication 

Nonfunctional D2Z0-24hr-r1 

 

Table S1. Genotypes of the 7 mutants before the evolution experiment. 
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Primer name Sequence 
TRP-f   ATGTCTGTTATTAATTTCACAGGTAGTTC 
rtTA-seq-int-r-cg CGACTTGATGCTCTTGTTCTTCCAATACGCAACC 
rtTA-seq-int-f-cg GCCAACAAGGTTTTTCACTAGAGAATGCATTATATG 
Tetreg-AflII-f GCGCCTTAAGGCGCCACTTCTAAATAAGCGAATTTC 
rtTABamHI2-f  GCGCGGATCCATGTCTAGATTAGATAAAAGTAAAG 
FFF-XhoI-r GCGCCTCGAGTTAACCTGGCAACATATCTAAATCAAAGTCATC 
Backbone-r CGCGTTGGCCGATTCATTAATGC 
His-f ATGACAGAGCAGAAAGCCCTAGTAAAGC 
ZeoR-XhoI-r GCGCCTCGAGTCAGTCCTGCTCCTC 

 

Table S2. Sanger sequencing primers for the PF gene circuit region. 
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Mutant 
ancestor 

Genomic mutations Frequency 
of 
genomic 
mutations 
at day 14 

tetO2 
deletion 
freq. in 
10 
clones 

Single clone phenotypes in D2Z2 (24h) 

Missense 1 
r3 

Phospholipid 
biosynthesis 

PAH1 
T479P (ACG→CCG) 
(Thr→Pro) 

14.3% 10/10 

 

Histone-
binding 

SET3 
coding (440/2256 nt) 
Δ1 bp 

14.5% 

SET3 
G147S (GGC→AGC) 
(Gly→Ser) 

14.4% 

Missense 2 
r3 

Mitochondrial 
metabolism 

Phb2  
Y138N (TAC→AAC)  
(Tyr→Asn)  

100% 0/10 

 

Mdm32 
S142C (AGC→TGC)  
(Ser→Cys) 

100% 

COX1 
Intragenic 
(+762/‐125)  
Δ1bp 

100% 

Transcriptional 
regulation 

NUP159 
A615A (GCA→GCC)  
Synonymous Ala 

100% 

 

Table S3. Genotyping and phenotyping of individual clones evolved from quasifunctional 
mutants Missense 1 and Missense 2. Genomic mutations reported here arose during the 14-day 
evolution experiment.  
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Table S4. Genotyping and phenotyping of individual clones evolved from nonfunctional mutants 
Missense 4, Nonsense, Deletion and Duplication. Mutations reported here arose during the 14-
day evolution experiment. 

 

 

 

 

Mutant  ancestor tetO2 deletion freq. 
in 10 clones 

Single clone phenotypes in D2Z2 (24h) 

Missense 4 r3 0/10 

 
Nonsense r3 1/10 

 
Deletion r3 8/10 

 
Duplication r3 2/10 
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Mutant 
ancestor 

Genomic mutations Frequency 
of genomic 
mutations 
at day 14 

tetO2 
deletion 
freq. in 
10 
clones 

Single clone phenotypes in D2Z2 (24h) 

Missense 3 
r1 

Chromatin 
regulation 

SIF2 
coding (144/1608 nt) 
Δ1 bp 

32.6% 
 

4/10 

 

Transcriptional 
regulation 

SSN2 
V239D (GTT→GAT) 
Val→Asp 

5.6% 

Transcriptional 
regulation 

SSN3 
coding (47/1668 nt) 
Δ1 bp 

34.4% 

Missense 3 
r2 

 
 
 

Not sequenced by WGS 

10/10 

 
Missense 3 
r3 

Transcriptional 
regulation 

SRB8 
P116R (CCT→CGT) 
(Pro →Arg) 

100% 0/10 

 

MED6 
Y100F (TAT→TTT) 
(Tyr→Phe) 

100% 

Protein folding CCT7 
R469S (AGA→AGT) 

100% 

Cell Cycle SAP185 
coding (423/3177 nt) 
Δ1bp 

100% 

ECM38 →/→ EXG1 
intergenic 
(+634/‐270) 
(T→A) 

100% 

 

Table S5. Genotyping and phenotyping of individual clones evolved from dysfunctional mutant 
Missense 3. Genomic mutations reported here arose during the 14-day evolution experiment.  
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List of Whole Genome Sequencing Datasets: 

Dataset S1. WGS variants for Missense 1, replicate 3. 

Dataset S2. WGS variants for Missense 2, replicate 3. 

Dataset S3. WGS variants for Missense 3, replicates 1 and 3. 

Dataset S4. WGS variants for Missense 4, replicate 3. 

Dataset S5. WGS variants for Nonsense, replicate 3. 

Dataset S6. WGS variants for Deletion, replicate 3. 

Dataset S7. WGS variants for Duplication, replicate 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

3. Supporting Figures 

  

Figure S1. (A) Hyper-induction of original mutants in D8Z0 prior to the evolution experiment. (B) 
Hyper-induction of evolved mutants in D8Z0 following the evolution experiment. 

 

A 

B 
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Figure S2. Hysteresis experiments showing the difference in Dox dose response of Missense 1 
and 2 gene circuits versus the ancestral PF gene circuit within 1 day (to minimize the chance of 
mutations). Defining bistability based on high expressors after transfer, we obtain the ranges to 
be [0.05 – 8] μg/mL for ancestral PF, and [2 - 24] μg/mL for Missense 1 and 2. 

Ancestral PF 

Missense 1 

Missense 2 



13 
 

Figure S3. Effect of slow growth rate due to ethanol and Cisplatin on Missense 1 distributions in 
D2Z0 at day 4. (A) Gene expression distributions. (B) Histogram statistics.  

A 

B 

 

Missense 1 D2Z0 g=0.284 

Subpop. # of events Percentage Geometric mean 
High GFP 2033 1.85% 198.97 
Low GFP 107754 98.14% 3.42 

Missense 1 D2Z0 + 7.5% EtOH g=0.098 

Subpop. # of events Percentage Geometric mean 
High GFP 4437 4.06% 185.85 
Low GFP 104935 95.92% 1.89 

Missense 1 D2Z0 + Cisplatin (40ug/mL) g=0.093 
Subpop. # of events Percentage Geometric mean 

High GFP 3563 3.24% 137.89 
Low GFP 106427 96.76% 2.88 

Missense 1 D2Z0 + G418 (40ug/mL) g=0.093 

Subpop. # of events Percentage Geometric mean 
High GFP 4 0.00% 171.54 
Low GFP 109986 100.00% 3.05 
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Figure S4. Effect of slow growth rate due to ethanol and Cisplatin on Missense 2 distributions in 
D2Z0 at day 4. (A) Gene expression distributions. (B) Histogram statistics. 

A 

B 

 

Missense 2 D2Z0 g=0.269 

Subpop. # of events Percentage Geometric mean 
High GFP 1204 1.10% 131.32 
Low GFP 108599 98.90% 2.67 

Missense 2 D2Z0 + 7.5% EtOH g=0.052 

Subpop. # of events Percentage Geometric mean 

High GFP 2503 9.97% 217.84 
Low GFP 22578 89.94% 2.09 

Missense 2 D2Z0 + Cisplatin (40ug/mL) g=0.127 
Subpop. # of events Percentage Geometric mean 

High GFP 803 0.73% 261.61 
Low GFP 108746 99.27 3.30 

Missense 2 D2Z0 + G418 (40ug/mL) g=0.138 
Subpop. # of events Percentage Geometric mean 

High GFP 8 0.01% 181.26 
Low GFP 109880 99.99% 2.74 
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Figure S5. Effect of slow growth rate due to ethanol and Cisplatin on Missense 3 distributions in 
D2Z0 at day 4. (A) Gene expression distributions. (B) Histogram statistics.  

A 

B 

 

Missense 3 D2Z0 g=0.266 

Subpop. # of events Percentage Geometric mean 

High GFP 0 0.00% N/A 

Low GFP 109892 100.00% 2.65 
Missense 3 D2Z0 + 7.5% EtOH g=0.048 

Subpop. # of events Percentage Geometric mean 

High GFP 74 0.07% 157.30 

Low GFP 108200 99.93% 1.77 
Missense 3 D2Z0 + Cisplatin (40ug/mL) g=0.079 

Subpop. # of events Percentage Geometric mean  

High GFP 52 0.09% 222.44 
Low GFP 57908 99.91% 6.31 

Missense 3 D2Z0 + G418 (40ug/mL) g=0.115 

Subpop. # of events Percentage Geometric mean 

High GFP 0 0.00% N/A 

Low GFP 109958 100.00% 2.89 
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Figure S6. Effect of slow growth rate due to ethanol and Cisplatin on Nonsense distributions in 
D2Z0 at day 4. (A) Gene expression distributions. (B) Histogram statistics. 

A 

B 
 

Nonsense D2Z0 g=0.278 

Subpop. # of events Percentage Geometric mean 

High GFP 0 0.00% N/A 

Low GFP 109786 100.00% 2.80 
Nonsense D2Z0 + 7.5% EtOH g=0.071 

Subpop. # of events Percentage Geometric mean 

High GFP 4 0.00% 54.00 

Low GFP 98914 100.00% 1.85 
Nonsense D2Z0 + Cisplatin (40ug/mL) g=0.185 

Subpop. # of events Percentage Geometric mean 

High GFP 0 0.00% N/A 
High GFP 106642 100.00% 3.37 

Nonsense D2Z0 + G418 (40ug/mL) g=0.184 

Subpop. # of events Percentage Geometric mean 

High GFP 0 0.00% N/A 

Low GFP 102878 100.00% 3.28 
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Figure S7. Effect of slow growth rate due to ethanol and Cisplatin on Deletion distributions in 
D2Z0 at day 4. (A) Gene expression distributions. (B) Histogram statistics  

A 

B 

 

Deletion D2Z0 g=0.287 

Subpop. # of events Percentage Geometric mean 

High GFP 0 0.00% N/A 

Low GFP 109290 100.00% 3.06 

Deletion D2Z0 + 7.5% EtOH g=0.130 

Subpop. # of events Percentage Geometric mean 

High GFP 0 0.00% N/A 

Low GFP 109887 100.00% 2.35 

Deletion D2Z0 + Cisplatin (40ug/mL) g=0.084 

Subpop. # of events Percentage Geometric mean 

High GFP 0 0.00% N/A 

Low GFP 109765 100.00% 3.35 

Deletion D2Z0 + G418 (40ug/mL) g=0.084 

Subpop. # of events Percentage Geometric mean 

High GFP 0 0.00% N/A 

Low GFP 109951 100.00% 2.66 
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Figure S8. Effect of slow growth rate due to ethanol and Cisplatin on ancestral PF distributions 
in D2Z0 at day 4. (A) Gene expression distributions. (B) Histogram statistics. 

A 

B 

 

PF D2Z0 g=0.146 

Subpop. # of events Percentage Geometric mean 

High GFP 77456 71.02% 359.03 

Low GFP 31588 28.96% 2.49 

PF D2Z0 + 7.5% EtOH g=0.046 

Subpop. # of events Percentage Geometric mean 

High GFP 29216 90.70% 584.10 

Low GFP 2986 9.27% 2.02 

PF D2Z0 + Cisplatin (40ug/mL) g=0.107 

Subpop. # of events Percentage Geometric mean 

High GFP 92993 84.55% 324.14 

Low GFP 16988 15.45% 3.64 

PF D2Z0 + G418 (40ug/mL) g=0.061 

Subpop. # of events Percentage Geometric mean 

High GFP 38674 35.15% 290.11 

Mid GFP 23931 21.75% 30.46 

Low GFP 48024 43.64% 3.34 
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Figure S9. Evolutionary dynamics of nonfunctional mutants Missense 4, Deletion and Duplication 
that never regain rtTA function. 

R1 R2 R3 
D2Z0 D2Z2 

R1 R2 R3 
D2Z0 D2Z2 

R1 R2 R3 
D2Z0 D2Z2 

A 

B 

C 

G 

D 

E 

F 
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(A-C) Histograms of yEGFP::zeoR expression of 3 replicates of Missense 4, Deletion and Duplication 
mutants, respectively, in D2Z0 (blue) and D2Z2 (magenta) over the course of 14 days. These mutants do 
never exhibit any bimodality while evolving in D2Z2, but they develop a slightly higher basal 
yEGFP::zeoR mean in D2Z2 compared to the mean expression in D2Z0. 
(D-F) Fitness (Left) and mean yEGFP::zeoR expression (Right) plots for Missense 4, Deletion and 
Duplication mutants, respectively, computed for each day during the experiment. Early in the experiment, 
we observe a drop in fitness of D2Z2 cultures compared to D2Z0 cultures. Cells cultured in D2Z2 recover 
within ~4 days and reach a fitness level comparable to the D2Z0 cultures. Additionally, D2Z2 cultures 
maintain a higher GFP expression mean compared to D2Z0 cultures for all presented mutants. 
(G) Gene expression histograms of evolved population replicates hyperinduced in D6Z0 after the end of 
experimental evolution. 
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Figure S10. Phenotyping of original non-functional mutants. As opposed to the rest of non-
functional mutants, plots show that the Deletion mutant does not undergo an upward shift in 
expression in the presence of Zeocin, indicating that it initially had yEGFP::ZeoR expression 
levels sufficient for cell survival in the presence of antibiotic.



22 
 

 

Figure S11. Gene expression distributions of three individual clones from revertant Missense 3 
replicate r1 in D0Z0, D2Z0, D2Z2 and D0Z2 at day 4. 

A 

B 

C 

Log GFP Log GFP 

Log GFP Log GFP 

Log GFP Log GFP 
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Figure S12. Growth curves of original (ancestral) mutant populations and evolved mutant 
population and isolated clones. Sequenced replicate 3 of all evolved mutants is represented 
except for Missense 3 where replicates 1, 2 and 3 are represented. 
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Figure S13. Exponential growth rates of original (ancestral PF) mutant populations and evolved 
mutant population and isolated clones estimated from growth curves in Figure S12. Sequenced 
replicate 3 of all evolved mutants is plotted except for Missense 3, for which replicates 1, 2 and 
3 are plotted. 
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Figure S14. Growth curves of Revertant Missense 3 strains in D0Z2 
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4. Mathematical modeling 
 
The goal of mathematical modeling is to qualitatively understand: (i) Wild-type PF gene 
circuit dynamics, e.g., why does it have two gene expression peaks above a threshold 
inducer concentration, and why does the position of the high peak stay relatively constant 
at high induction?; (ii) How did the wild-type PF gene circuit brake down in D2Z0, giving 
rise to quasifunctional, nonfunctional and dysfunctional mutants?; (iii) How 
quasifunctional and dysfunctional mutants regained high expression transiently in D2Z2, 
without any intra-circuit mutations, despite the rarity or complete absence of high 
expressors in D2Z0; (iv) How the quasifunctional and some but not all dysfunctional 
mutants evolved to lose high expression without intra-circuit coding sequence mutations, 
as described in the main text. The model is not intended to match experimental data. 
Instead, it illustrates qualitatively how various topological relationships between synthesis 
and loss curves can give robustly rise to the wild-type PF and mutant behaviors.  
 
3.1. Deterministic (ODE) model for the wild-type PF gene circuit 
 
To describe the wild-type, original PF gene circuit, we consider the following set of 
ordinary differential equations (ODEs) from [2], according to the drawing on the right: 
 
 

� �

� �

( )

dw aF x bwy gw l
dt
dx bwy gx
dt
dy fC bwy g h y
dt
dz aF x gz l
dt

 � � �

 �

 � � �

 � �

     

 
where w is inactive rtTA, x is active rtTA, y is intracellular ATc/Dox and z is yEGFP::ZeoR. 
 
We assume that the promoter response function to active rtTA protein, x, is a Hill function: 
 

( )
n

n n

xF x l
xT

 �
�

, where θ and n are Hill parameters, and l is a promoter leakage term. 

 
Since total rtTA and yEGFP::ZeoR obey identical equations, their levels are identical in 
the model: z=x+w. Next, we focus on inactive (inducer-free) rtTA, w, and consider the 
other variables to be at steady state. 
 
In the system of ODEs that describes the PF gene circuit there is no feedback from z to 
any other variables. Therefore, the first three equations can be analyzed separately. 
 

d

z
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Considering the remaining two variables (other than w) at steady state we have 
 

� �
0
0 ( )

dw aF x bwy gw l
dt

bwy gx
fC bwy g h y

 � � �

 �
 � � �

 

 
Which, after substituting w and y, yields 
 

� �
2 ( )dw g g h xaF x gx l
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g h
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 � � �
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�
 

�

 

 
Focusing only on the first equation at steady state, the solutions will give cell states: 
 

2 ( ) 0
n

n n

dw x g g h xa gx l
dt x b fC gxT

�
 � � �  

� �
 

 
We can convert this steady-state equation into the following polynomial equation and then 
seek real, nonnegative solutions in Matlab: 
 

2 2 1

2 2

[ ( )] [ ]
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n n n
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� � � � � �  
 

 
Alternatively, we can also pursue a graphical solution, writing the above equation as a 
balance between synthesis ( )LF x  and loss ( )RF x  rates of inducer-free, inactive rtTA, w: 
 

2 [ ( )]( ) ( )
n

L Rn n

x g bgx bfC g g h xF x a l F x
x b gx fCT

� � �
 �   

� �
 

 
Notice that the loss term has a singularity at x=Cf/g ! 
 
If g(g+f) is much smaller than the other terms, we can simplify and have approximately: 
 

*( ) ( )
n

L Rn n

xF x a l gx F x
xT

 � |  
�

. 
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Essentially, the solutions are given by the intersection of a Hill-type, sigmoidal synthesis 
rate function LF  with an elbow-shaped loss rate function RF  that is a positive-sloped line 

*( )RF x , except when approaching the singularity at x=Cf/g from below. Any values above 
the singularity are non-physical. 
 
The results are robust to parameters (modified from [2]). Changing one parameter may 
require other parameter changes to ensure the synthesis and loss rate curves intersect 
or miss each other as described below. A set of parameters closely reproducing wild-type 
PF dynamics (e.g., a saddle-node bifurcation at Dox=0.05 μg/mL) is the following: a=20; 
b=5; g=0.25; f=2; h=2.5; l=0.01; n=4; θ=0.75. In the next sections, we use slightly different 
parameters (as in the main text), to facilitate visualization. Parameter units can be found 
in [2]. The effects of the original seven mutations and then the new mutations can be 
modeled by parameter changes equivalent to the ones described below.  
 
Analyzing the full equation (without making approximations, assuming n > 2), we obtain 
the following cases for the solutions (steady states) given by the intersections of red and 
blue curves. The Matlab scripts uploaded as Supporting Files produce these results. 
 
Case 1. The line y=gx misses LF  from below. This case is discussed just for completeness; 
it does not correspond to PF behavior. It occurs when l is large (here, a=20; b=5; g=0.25; 
f=2; h=2.5; l=0.5; n=4; θ=5). The system is monostable, irrespective of Doxycycline. Only 
one physical solution exists, which could be low or high, given approximately by: 
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The left plot below shows the dose-responses of the biochemical species w (free rtTA), x 
(active rtTA), y (intracellular inducer) and z (reporter) on the left. The right plot shows the 
rate functions FR(x) and FL(x) from above. The thick black triangle on the first (left) plot 
marks the Doxycycline (C) concentration for the plot on the right. This case illustrates a 
capability of the generalized system to be monostable high; this is not wild-type PF 
behavior. Note that total rtTA, or the sum of free rtTA, w and inducer-bound rtTA, x equals 
yEGFP, as expected due to the identical PF promoters: z = x+w. 
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Case 2. The line y=gx intersects the Hill function three times. This is the actual wild-type 
PF system. The number of solutions (steady states) is 1 to 3 depending on Doxycycline 
(C), as described below. The thick black triangle on the left plot marks the Doxycycline 
(C) concentration for the other plot. Denoting the three intersection points of the line y=gx 
with the Hill-type function FL(x) by x1, x2, and x3, respectively, the following subcases exist. 
 
Subcase 2A. At low Doxycycline concentrations, the system is monostable low (one 
intersection). This is the PF system at low induction, below the bimodality threshold, as 
shown below.  
 

� �
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Subcase 2B. At medium to high Doxycycline concentrations, the system is bistable (three 
intersections). This is the PF system above the bimodality threshold. The system seems 
to remain bimodal for arbitrarily high Doxycycline concentrations. 
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Here, to roughly capture standard PF behavior we used a=20; b=5; g=0.25; f=2; h=2.5; 
l=0.05; n=4; and θ=5. The behavior is shown on the plots below. 
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The system undergoes a saddle-node bifurcation at Cf = gx2, where a new stable and an 
unstable node emerge. The system is bistable for any Cf > gx2, thus two peaks exist even 
at very high Dox. The saddle-node bifurcation occurs as the loss rate function FR(x) first 
touches, then crosses the Hill-type synthesis rate function FL(x) from above. 
 
Case 3. The line y=gx misses the Hill function from above. This occurs when a is small, 
and g is large, for example. This is not standard wild-type PF behavior, it is listed here 
only for completeness. The system is monostable low, irrespective of Doxycycline 
concentration. Only one low-expressing physical solution exists, given approximately by 
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To obtain this behavior, we had: a=20; b=5; g=0.5; f=2; h=2.5; l=0.05; n=4; θ=25. 
 

 
 
 
3.2. Mathematical model for the nonfunctional PF mutants 
 
Next, we ask how the PF gene circuit can be broken in nonfunctional mutants. These 
mutants are monostable low, regardless of Doxycycline. 
 
One way, of course, is to completely defunctionalize rtTA, for example by flattening the 
Hill (sigmoidal) synthesis rate function. This means that the promoters do not respond to 
rtTA, as for the Deletion and Duplication mutants. These mutants cannot become 
bistable under any curcumstances. 
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The parameters used here were: a=1; b=5; g=0.25; f=2; h=2.5; l=0.05; n=0; θ=5. 
 
3.3. Mathematical model for the quasifunctional PF mutants 
 
Next, we seek to explain the properties and behavior of “quasifunctional” mutants that 
generate a high peak due to hyperinduction with Doxycycline. One way to obtain such 
“quasifunctional” mutants is by increasing the Hill threshold θ compared to the original 
PF – for example, from 5 to 25. This can certainly happen in Missense mutants if they 
alter the protein’s binding properties to DNA. Now the magenta line y=gx will still 
intersect the Hill function 3 times. However, due to the singularity, in D2Z0 there is only 
a single intersection of the Hill function with the red elbow curve FR(x), hence the quasi-
monostable low behavior in D2Z0. Note that the tiny experimentally observed high-
expression peak can arise if the FR(x) and FL(x) curves barely intersect or even if they 
just approach each other if noise enables cells to access the high expression state. 
 

 
 
The quasifunctional parameter set is: a=20; b=5; g=0.25; f=2; h=2.5; l=0.05; n=4; and 
θ=25.  
 
Below we see how bistability is recovered by hyperinduction (Dox=6μg/mL, D6Z0), 
which shifts the red elbow curve’s singularity rightward, allowing the red curve to 
intersect the blue curve 3 times. 
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Besides hyperinduction, slow growth can also cause bistability or move the cells deeper 
into the bistable regime. The following plots illustrate the effect of slow growth rate (due 
to ethanol, Zeocin, or other factors) on the dynamics. The plots indicate that slow growth 
rate can convert a quasifunctional, otherwise quasi-monostable system into a bistable 
system, enabling high expression. 
 

 
 
These plots imply that ethanol, Zeocin, Cisplatin or other stressors can enrich 
“quasifunctional” mutants in high expressors compared to pure D2Z0. So, the emergence 
of the high peak is due to a dynamic shift, besides phenotypic selection. 
 
Why does the high peak diminish without any intra-circuit mutations for “quasifunctional” 
mutants? It is again due to a growth-related reverse dynamic shift. The bistable 
populations still have a low peak initially, which is hit by the drug. If any cells acquire an 
extra-circuit mutation that stops Zeocin from harming those low-expressor cells, their 
growth will accelerate, returning the whole population to the quasi-monostable low state, 
but now in D2Z2, as opposed to D2Z0. See the plots above. 
 
3.4. Mathematical model for the dysfunctional PF mutant 
 
Finally, we seek to explain the properties and behaviors of the dysfunctional mutant 
Missense 3. This mutant is not hyperinducible, but still develops bistability due to slow 
growth. One way for this to happen is if the Hill-type sigmoidal synthesis rate function 
shrinks (e.g., its highest level shifts down, closer to the basal level) until the magenta 
and red lines miss it from above, so Missense 3 will be unimodal in D2Z0 and will not 
respond to any hyperinduction with Doxycycline. The parameters are: a=2; b=5; g=0.25; 
f=2; h=2.5; l=0.05; n=4; θ=5. 
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When growth decelerates due to some stressor, the red and magenta lines become less 
steep and can intersect the blue line 3 times, as shown below. This implies that slow 
growth, jointly with selection can give rise to a high expressor population, as shown 
below. The parameters are: a=2; b=5; g=0.05; f=2; h=2.5; l=0.5; n=4; θ=5. 
 

 
 
If subsequent drug-resistance mutations only speed up growth without lifting the FL(x) 
curve sufficiently, then the system should switch back to monostability. Indeed, we see 
that tendency in the population. However, some clones do fully revert and maintain 
bistability. How is that possible? If extra-circuit, genomic mutations increase gene 
expression in general (i.e., they shift the entire FL(x) function upward) then this ensures 
3 intersections that will be robust to growth acceleration. The following plots illustrate 
the effects of a 10-fold promoter leakage increase, from 0.05 to 0.5 while growth stays 
normal. The parameters are: a=2; b=5; g=0.25; f=2; h=2.5; l=0.05; n=4; θ=5. 
 

 
 
This means that the ancestral dysfunctional mutant cannot have high expression, no 
matter how high the concentration of inducer. Yet, the dysfunctional system is not fully 
broken; it still has a bistable regime and it can still achieve bistability. The new mutants 
can maintain high expression if they can elevate the sigmoidal synthesis curve 
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sufficiently. Notice that the steady states in the revertant are closer than in the ancestor, 
corresponding to the gene expression peaks approaching each other, as observed. 
 
Another case. For the sake of completeness, we also mention another possibility for a 
mutant to be dysfunctional, that is, uninducible by hyper-induction, but still inducible by 
slow growth. This can happen if the Hill threshold parameter θ increases by a large 
amount, causing line y=gx to always miss the FL(x) rate curve from above, regardless of 
Doxycycline. We could achieve this by increasing θ from 5 to 50, which shifts the FL(x) 
function rightward (compare the following plots with the wild-type PF plots above). The 
altered parameter set is: a=20; b=5; g=0.25; f=2; h=2.5; l=0.05; n=4; and θ=50. 
 

 
 
Just like the other dysfunctional mutants, such mutants could still exhibit high 
expression, despite being uninducible at any Doxycycline level. Slow growth, due to 
ethanol or Zeocin added to D2Z0 will tilt the red and magenta lines downwards, 
enabling them to intersect the blue FL(x) Hill-type synthesis rate function, as illustrated in 
the following plots. When growth speeds up again, but without the mutations affecting 
FL(x), bistability should be lost again. The parameter set here was a=20; b=5; g=0.05; 
f=2; h=2.5; l=0.05; n=4; and θ=50. 
 

 
 
The only way to regain bistability for such mutants would be for the mutations to lower 
the FL(x) threshold by a large amount. This would require rtTA or PF promoter 
mutations. We do not think that the observed mutations are consistent with this 
behavior, so we consider it irrelevant to this evolution experiment. 
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