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ABSTRACT Selection of mutants in a microbial population depends on multiple cellular traits. In serial-dilution evolution experiments,
three key traits are the lag time when transitioning from starvation to growth, the exponential growth rate, and the yield (number of
cells per unit resource). Here, we investigate how these traits evolve in laboratory evolution experiments using a minimal model of
population dynamics, where the only interaction between cells is competition for a single limiting resource. We find that the fixation
probability of a beneficial mutation depends on a linear combination of its growth rate and lag time relative to its immediate ancestor,
even under clonal interference. The relative selective pressure on growth rate and lag time is set by the dilution factor; a larger dilution
factor favors the adaptation of growth rate over the adaptation of lag time. The model shows that yield, however, is under no direct
selection. We also show how the adaptation speeds of growth and lag depend on experimental parameters and the underlying supply
of mutations. Finally, we investigate the evolution of covariation between these traits across populations, which reveals that the
population growth rate and lag time can evolve a nonzero correlation even if mutations have uncorrelated effects on the two traits.
Altogether these results provide useful guidance to future experiments on microbial evolution.
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LABORATORY evolution experiments in microbes have
provided insight into many aspects of evolution (Elena

and Lenski 2003; Barrick and Lenski 2013; Desai 2013), such
as the speed of adaptation (Wiser et al. 2013), the nature of
epistasis (Kryazhimskiy et al. 2014), the distribution of selec-
tion coefficients from spontaneous mutations (Levy et al.
2015), mutation rates (Wielgoss et al. 2011), the spectrum
of adaptive genomic variants (Barrick et al. 2009), and the
preponderance of clonal interference (Lang et al. 2013). De-
spite this progress, links between the selection of mutations
and their effects on specific cellular traits have remained
poorly characterized. Growth traits, such as the lag time

when transitioning from starvation to growth, the exponen-
tial growth rate, and the yield (resource efficiency), are ideal
candidates for investigating this question. Their association
with growth means they have relatively direct connections to
selection and population dynamics. Furthermore, high-
throughput techniques can measure these traits for hundreds
of genotypes and environments (Levin-Reisman et al. 2010;
Warringer et al. 2011; Zackrisson et al. 2016; Ziv et al. 2017).
Numerous experiments have shown that single mutations
can be pleiotropic, affecting multiple growth traits simulta-
neously (Fitzsimmons et al. 2010; Adkar et al. 2017). More
recent experiments have even measured these traits at the
single-cell level, revealing substantial nongenetic heteroge-
neity (Levin-Reisman et al. 2010; Ziv et al. 2013, 2017). Sev-
eral evolution experiments have found widespread evidence
of adaptation in these traits (Vasi et al. 1994; Novak et al.
2006; Reding-Roman et al. 2017; Li et al. 2018). This data
altogether indicates that covariation in these traits is perva-
sive in microbial populations.
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There have been a few previous attempts to develop
quantitative models to describe evolution of these traits.
For example, Vasi et al. (1994) considered data after
2000 generations of evolution in Escherichia coli to estimate
how much adaptation was attributable to different growth
traits. Smith (2011) developed a mathematical model to
study how different traits would allow strains to either fix,
go extinct, or coexist. Wahl and Zhu (2015) studied the fix-
ation probability of mutations affecting different growth
traits separately (nonpleiotropic), especially to identify
which traits were most likely to acquire fixed mutations
and the importance of mutation occurrence time and dilution
factor. However, simple quantitative results that can be used
to interpret experimental data have remained lacking. More
recent work (Manhart et al. 2018; Manhart and Shakhnovich
2018) derived a quantitative relation between growth traits
and selection, showing that selection consists of additive
components on the lag and growth phases. However, this
did not address the consequences of this selection for evolu-
tion, especially the adaptation of trait covariation.

In this work, we investigate a minimal model of evolution-
ary dynamics in which cells interact only by competition for a
single limiting resource. We find that the fixation probability
of amutation is accuratelydeterminedbya linear combination
of its change in growth rate and change in lag time relative to
its immediate ancestor, rather than depending on the precise
combination of traits; the relative weight of these two com-
ponents is determined by the dilution factor. Yield, on the
other hand, is under nodirect selection. This is true even in the
presence of substantial clonal interference, where the mu-
tant’s immediate ancestor may have a large fitness difference
from the population mean. We provide quantitative predic-
tions for the speed of adaptation of growth rate and lag time
as well as their evolved covariation. Specifically, we find that
even in the absence of an intrinsic correlation between
growth and lag due to mutations, these traits can evolve a
nonzero correlation due to selection and variation in number
of fixed mutations.

Materials and Methods

Model of population dynamics

Weconsider amodel of asexualmicrobial cells in awell-mixed
batch culture, where the only interaction between different
strains is competition for a single limiting resource (Manhart
et al. 2018; Manhart and Shakhnovich 2018). Each strain k is
characterized by a lag time Lk, growth rate rk, and yield Yk
(see Figure 1A for a two-strain example). Here the yield is the
number of cells per unit resource (Vasi et al. 1994), so that
NkðtÞ=Yk is the amount of resources consumed by time t by
strain k, where NkðtÞ is the number of cells of strain k at time
t. We define R to be the initial amount of the limiting resource
and assume different strains interact only by competing for
the limiting resource; their growth traits are the same as
when they grow independently. When the population has

consumed all of the initial resource, the population reaches
stationary phase with constant size. The saturation time tc at
which this occurs is determined by

P
strain  kNkðtcÞ=Yk ¼ R;

which we can write in terms of the growth traits as

X

strain  k

N0xkerkðtc2LkÞ

Yk
¼ R; (1)

whereN0 is the total population size and xk is the frequency of
each strain k at the beginning of the growth cycle. In Equation
1, we assume the time tc is longer than each strain’s lag time
Lk. Note that some of our notation differs from relatedmodels
in previous work, some of which used g for growth rate and l
for lag time (Manhart et al. 2018), while others used l for
growth rate (Lin and Amir 2017). Although it is possible to
extend themodel to account for additional growth traits such
as a death rate or lag and growth on secondary resources,
here we focus on the minimal set of traits most often mea-
sured in microbial phenotyping experiments (Novak et al.
2006; Fitzsimmons et al. 2010; Levin-Reisman et al. 2010;
Warringer et al. 2011; Jasmin and Zeyl 2012; Ziv et al. 2013;
Zackrisson et al. 2016; Adkar et al. 2017).

We define the selection coefficient between each pair of
strains as the change in their log-ratio over the complete
growth cycle (Chevin 2011; Good et al. 2017):

sij ¼ ln
!Nfinal

i
Nfinal
j

"
2 ln

!Ninitial
i

Ninitial
j

"

            ¼ riðtc 2 LiÞ2 rjðtc 2 LjÞ;

(2)

where Ninitial
i is the population size of strain i at the beginning

of the growth cycle and Nfinal
i is the population size of strain i

at the end. After the population reaches stationary phase, it
is diluted by a factor ofD into a fresh mediumwith amount R
of the resource, and the cycle repeats (Figure 1A). We as-
sume the population remains in the stationary phase for a
sufficiently short time, such that we can ignore death and
other dynamics during this phase (Finkel 2006; Avrani et al.
2017).

Overmany cycles of growth, aswould occur in a laboratory
evolution experiment (Lenski et al. 1991; Elena and Lenski
2003; Good et al. 2017), the population dynamics of this
system are characterized by the set of frequencies xk for all
strains aswell as thematrix of selection coefficients sij and the
total population size N0 at the beginning of each cycle. In
Supplemental Material, Supplemental Methods (sections I,
II, and III), we derive explicit equations for the deterministic
dynamics of these quantities over multiple cycles of growth
for an arbitrary number of strains. In the case of two strains,
such as a mutant and a wild type, the selection coefficient is
approximately

s $ g   ln  D2v; (3)

where g ¼ ðr2 2 r1Þ=r1 is the growth rate of the mutant rel-
ative to the wild type and v ¼ ðL2 2 L1Þr1 is the relative lag
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time. The approximation is valid as long as the growth rate
difference between the mutant and the wild type is small
(Supplemental Methods, section IV), which is true for most
single mutations (Chevereau et al. 2015; Levy et al. 2015).
This equation shows that the growth phase and the lag phase
make distinct additive contributions to the total selection co-
efficient, with the dilution factor D controlling their relative
magnitudes (Figure 1B). This is because a larger dilution
factor will increase the amount of time the population grows
exponentially, hence increasing selection on growth rate.
Neutral coexistence between multiple strains is therefore
possible if these two selection components balance ðs ¼ 0Þ;
although it requires an exact tuning of the growth traits with
the dilution factor (Supplemental Methods, section III)
(Manhart et al. 2018; Manhart and Shakhnovich 2018). With
a fixed dilution factor D, the population size N0 at the begin-
ning of each growth cycle changes according to (Supplemen-
tal Methods, section I)

N0 ¼ R!Y
D
; (4)

where !Y ¼ ð
P

strain  kxk=YkÞ
21 is the effective yield of the

whole population in the current growth cycle. In this manner
the ratio R=D sets the bottleneck size of the population, which
for serial dilution is approximately the effective popula-
tion size (Lenski et al. 1991), and therefore determines the
strength of genetic drift.

Model of evolutionary dynamics

We now consider the evolution of a population as new mu-
tations arise that alter growth traits.We start with awild-type
population having lag time L0 ¼ 100 and growth rate
r0 ¼ ðln2Þ=60 $ 0:012; which are roughly consistent with
E. coli parameters, where time is measured in minutes
(Lenski et al. 1991; Vasi et al. 1994); we set the wild-type
yield to be Y0 ¼ 1 without loss of generality. As in experi-
ments, we vary the dilution factor D and the amount of re-
sources R, which control the relative selection on growth vs.
lag (set by D, Equation 3) and the effective population size
(set by R=D; Equation 4). We also set the initial population
size of the first cycle to N0 ¼ RY0=D:

The population grows according to the dynamics in Figure
1A. Each cell division can generate a new mutation with
probability m ¼ 1026; note that this rate is only for mutations
altering growth traits, and therefore it is lower than the rate
of mutations anywhere in the genome. We generate a ran-
dom waiting time tk for each strain k until the next mutation
with instantaneous rate mrkNkðtÞ: When a mutation occurs,
the growth traits for themutant are drawn from a distribution
pmutðr2; L2; Y2jr1; L1; Y1Þ;where r1; L1; Y1 are the growth traits
for the background strain on which the new mutation occurs
and r2; L2; Y2 are the traits for the new mutant. Note that
since mutations only arise during the exponential growth
phase, beneficial or deleterious effects on lag time are not
realized until the next growth cycle (Li et al. 2018). After

the growth cycle ceases (once the resource is exhausted
according to Equation 1), we randomly choose cells, each
with probability 1=D; to form the population for the next
growth cycle.

We will assume mutational effects are not epista-
tic and scale with the trait values of the background
strain, so that pmutðr2; L2; Y2jr1; L1; Y1Þ ¼ pmutðg;v; dÞ; where
g ¼ ðr2 2 r1Þ=r1;v ¼ ðL2 2 L1Þr1; and d ¼ ðY2 2Y1Þ=Y1 (Sup-
plemental Methods, section V). Since our primary goal is to
scan the space of possible mutations, we focus on uniform
distributions of mutational effects where 20:02, g, 0:02;
20:05,v, 0:05; and 20:02, d, 0:02: In the Supplemen-
tal Methods, we extend our main results to the case of Gauss-
ian distributions (sectionV) aswell as an empirical distribution
of mutational effects based on single-gene deletions in E. coli
(section VI) (Campos et al. 2018).

Data availability

Dataandcodesareavailableuponrequest. FileS1contains the
Supplemental Methods. File S2 contains data of growth traits
presented in Figure S3. Supplemental material available at
figshare: https://doi.org/10.25386/genetics.12194754.

Figure 1 Model of selection on multiple microbial growth traits. (A)
Simplified model of microbial population growth characterized by three
traits: lag time L, growth rate r, and yield Y. The total initial population
size is N0 and the initial frequency of the mutant (strain 2) is x. After the
whole population reaches stationary phase (time tc ), the population is
diluted by a factor D into fresh media, and the cycle starts again. (B)
Phase diagram of selection on mutants in the space of their growth rate
g ¼ r2=r1 21 and lag time v ¼ ðL2 2 L1Þr1 relative to wild type. The slope
of the diagonal line is ln  D:
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Results

Fixation of mutations

We first consider the fixation statistics of new mutations in
our model. In Figure 2A we show the relative growth rates g
and the relative lag times v of fixed mutations against their
background strains, along with contours of constant selec-
tion coefficient s from Equation 3. As expected, fixed muta-
tions either increase growth rate ðg. 0Þ; decrease lag time
ðv, 0Þ; or both. In contrast, the yield of fixed mutations is
the same as the ancestor on average (Figure 2B); indeed, the
selection coefficient in Equation 3 does not depend on the
yields. If a mutation arises with significantly higher or lower
yield than the rest of the population, the bottleneck popula-
tion size N0 immediately adjusts to keep the overall fold-
change of the population during the growth cycle fixed to
the dilution factor D (Equation 4). Therefore mutations that
significantly change yield have no effect on the overall pop-
ulation dynamics.

Figure 2A also suggests that the density of fixed mutations
in the growth-lag trait space depends solely on their selection
coefficients, rather than the precise combination of traits, as

long as other parameters such as the dilution factor D, the
total amount of resource R, and the distribution of muta-
tional effects are held fixed. Mathematically, this means
that the fixation probability fðg;vÞ of a mutation with
growth effect g and lag effect v can be expressed as
fðg;vÞ ¼ fðg   ln  D2vÞ[fðsÞ: To test this, we discretize
the scatterplot of Figure 2A and compute the fixation prob-
abilities of mutations as functions of g and v (Supplemental
Methods, section VII). We then plot the resulting fixation
probabilities of mutations as functions of their selection
coefficients calculated by Equation 3 (Figure 2, C–F). We
test the dependence of the fixation probability on the selec-
tion coefficient over a range of population dynamics re-
gimes by varying the dilution factor D and the amount of
resources R.

For small populations, mutations generally arise and
either fix or go extinct one at a time, a regime known
as strong-selection weak-mutation (SSWM) (Gillespie
1984). In this case, we expect the fixation probability of a
beneficial mutation with selection coefficient s. 0 to be
(Wahl and Gerrish 2001; Wahl and Zhu 2015; Guo et al.
2019)

Figure 2 Selection coefficient determines fixation probability. (A) The relative growth rates g and the relative lag times v of fixed mutations against their
background strain. Dashed lines mark contours of constant selection coefficient with interval Ds ¼ 0:015 while the solid line marks s ¼ 0. (B) Same as A,
but for relative growth rate g and the relative yield d. The red dots mark the relative yield of fixed mutations averaged over binned values of the relative
growth rate g. In A and B, D ¼ 102 and R ¼ 107. (C, D, E, and F) Fixation probability of mutations against their selection coefficients for different
amounts of resource R and dilution factors D as indicated in the titles. The red dashed line shows the fixation probability predicted in the SSWM regime
(Equation 5), while the black line shows a numerical fit of the data points to Equation 6 with parameters A ¼ 0:0017 and B ¼ 0:0421 in D, A ¼ 0:1145
and B ¼ 0:0801 in E, and A ¼ 0:2121 and B ¼ 0:2192 in F. In all panels mutations randomly arise from a uniform distribution pmut with
20:02,g,0:02; 20:05,v, 0:05; and 20:02, d,0:02:
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fSSWMðsÞ ¼
2  ln  D
D21

s: (5)

This is similar to the standard Wright–Fisher fixation proba-
bility of 2s (Crow and Kimura 1970), but with a different
prefactor due to averaging over the different times in the
exponential growth phase at which the mutation can arise
(Supplemental Methods, section VIII). Indeed, we see this
predicted dependence matches the simulation results for
the small population size of N0 % R=D ¼ 103 (Figure 2C).

For larger populations, multiple beneficial mutations will
be simultaneouslypresent in thepopulationand interferewith
each other, an effect known as clonal interference (Gerrish
and Lenski 1998; Desai and Fisher 2007; Schiffels et al. 2011;
Good et al. 2012; Fisher 2013; Good and Desai 2014). Our
simulations show that, as for the SSWM case, the fixation
probability depends only on the selection coefficient (Equa-
tion 3) relative to the mutation’s immediate ancestor and not
on the individual combination of mutant traits (Figure 2,
D–F), with all other population parameters held constant.
Previous work has determined the dependence of the fix-
ation probability on the selection coefficient under clonal
interference using various approximations (Gerrish and Lenski
1998; Schiffels et al. 2011; Good et al. 2012; Fisher 2013).
Here, we focus on an empirical relation based on (Gerrish
and Lenski 1998)

fCIðsÞ ¼ Ase2B=s; (6)

where A and B are two constants that depend on other pa-
rameters of the population (D, R, and the distribution of mu-
tational effects); we treat these as empirical parameters to fit
to the simulation results, although Gerrish and Lenski (1998)
predicted A ¼ 2  ln  D=ðD2 1Þ; i.e., the same constant as in
the SSWM case (Equation 5). The e2B=s factor in Equation 6
comes from the probability that no superior beneficial muta-
tions appears before the current mutation fixes. Since the
time to fixation scales as 1=s; we expect the average number
of superior mutations to be proportional to 1=s (for small s).
This approximation holds only for selection coefficients that
are not too small and therefore are expected to fix without
additional beneficial mutations on the same background;
Equation 6 breaks down for weaker beneficial mutations that
typically fix by hitchhiking on stronger mutations (Schiffels
et al. 2011). Nevertheless, Equation 6matches our simulation
results well for a wide range of selection coefficients achieved
in our simulations and larger population sizesN0 % R=D. 104

(Figure 2, D–F). Furthermore, the constant A we fit to
the simulation data are indeed close to the predicted
value of 2  ln  D=ðD21Þ; except in the most extreme case
of N0 % R=D ¼ 106 (Figure 2F).

Altogether, Figure 2 shows that mutations with different
effects on cell growth (for example, a mutant that increases
the growth rate and amutant that decreases the lag time) can
nevertheless have approximately the same fixation probabil-
ity as long as their overall effects on selection are the same

according to Equation 3. To test the robustness of this result,
we verify it for several additional distributions of mutational
effects pmutðg;v; dÞ in the Supplemental Methods: a Gaussian
distribution of mutational effects, including the presence of
correlated mutational effects (Figure S1); a wider distribu-
tion of mutational effects with large selection coefficients
(Figure S2); and an empirical distribution of mutational ef-
fects estimated from single-gene deletions in E. coli (Figure
S3). In Figure S4A, we further test robustness by using the
neutral phenotype (orthogonal to the selection coefficient) to
quantify the range of g and v trait combinations that never-
theless have the same selection coefficient and fixation
probability, and in Figure S4B we show that the selection
coefficient on growth alone is insufficient to determine fixa-
tion probability.

While the dependence of fixation probability on the selec-
tion coefficient is a classic result of population genetics (Hartl
and Clark 1997), the existence of a simple relationship here is
nontrivial since, strictly speaking, selection in this model is
not only frequency-dependent (Manhart et al. 2018) (i.e.,
selection between two strains depends on their frequen-
cies) but also includes higher-order effects (Manhart and
Shakhnovich 2018) (i.e., selection between strain 1 and
strain 2 is affected by the presence of strain 3). Therefore,
in principle, the fixation probability of a mutant may depend
on the specific state of the population in which it is present,
while the selection coefficient in Equation 3 only describes
selection on the mutant in competition with its immediate
ancestor. However, we see that, at least for the parameters
considered in our simulations, these effects are negligible in
determining the eventual fate of a mutation.

Adaptation of growth traits

As Figure 3A shows, many mutations arise and fix over the
timescale of our simulations, which lead to predictable trends
in the quantitative traits of the population.We first determine
the relative fitness of the evolved population at each time
point against the ancestral strain by simulating competition
between an equal number of evolved and ancestral cells for
one cycle, analogous to common experimental measure-
ments (Lenski et al. 1991; Elena and Lenski 2003). The
resulting fitness trajectories are shown in Figure 3B. To see
how different traits contribute to the fitness increase, we also
calculate the average population traits at the beginning of
each cycle; for instance, the average population growth rate
at growth cycle n is rpopðnÞ ¼

P
strain  krkxkðnÞ: As expected

from Equation 3, the average growth rate increases (Figure
3C) and the average lag time decreases (Figure 3D) for all
simulations. In contrast, the average yield evolves without
apparent trend (Figure 3E), since Equation 3 indicates no
direct selection on yield. We note that, while the cells do
not evolve toward lower or higher resource efficiency on
average, they do evolve to consume resources more quickly,
since the rate of resource consumption (rk=Yk for each cell of
strain k) depends on both the yield as well as the growth rate.
Therefore the saturation time of each growth cycle evolves to
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be shorter, consistent with recent work from Baake et al.
(2019).

Figure 3 suggests relatively constant speeds of adaptation
for the relative fitness, the average growth rate, and the av-
erage lag time. For example, we can calculate the adaptation
speed of the average growth rate as the averaged change in
the average growth rate per cycle:

Wgrowth ¼
#
rpopðnþ 1Þ2 rpopðnÞ

$
; (7)

where the bracket denotes an average over replicate popula-
tions and cycle number. In the Supplemental Methods (sec-
tions IX and X), we calculate the adaptation speeds of these
traits in the SSWM regime to be

Wgrowth ¼ s2
gr0ðln  DÞ

%
mRY0   ln  D

D2 1

&
;

Wlag ¼ 2
s2
v

r0

%
mRY0   ln  D

D2 1

&
;

Wfitness ¼
Wgrowth

r0
ln  D2Wlagr0;

(8)

where sg and sv are the standard deviations of the un-
derlying distributions of g and v for single mutations
ðpmutðg;v; dÞÞ; r0 is the ancestral growth rate, and Y0 is the
ancestral yield (we assume the yield does not change on
average according to Figure 3E). Furthermore, the ratio of
the growth adaptation rate and the lag adaptation rate is
independent of the amount of resource and mutation rate
in the SSWM regime:

Wgrowth

Wlag
¼ 2 r20

s2
g

s2
v
ln  D: (9)

Equation 8 predicts that the adaptation speeds of the average
growth rate, the average lag time, and the relative fitness
should all increase with the amount of resources R and de-
crease with the dilution factor D (for large D); although this
prediction assumes the SSWM regime (relatively small
N0 % R=D), it nevertheless holds across a wide range of R-
and D-values (Figure 4, A–C), except for R ¼ 108 where the
speed of fitness increase is nonmonotonic withD (Figure 4C).
The predicted adaptation speeds in Equation 8 also quantita-
tively match the simulated trajectories in the SSWM case
(Figure 4, D–F); even outside of the SSWM regime, the rel-
ative rate in Equation 9 remains a good prediction at early
times (Figure S5).

Evolved covariation between growth traits

We now turn to investigating how the covariation between
traits evolves. We have generally assumed that individual
mutations have uncorrelated effects on different traits.
Campos et al. (2018) recently systematically measured the
growth curves of the single-gene deletions in E. coli. We com-
pute the relative growth rate, lag time, and yield changes for
the single-gene deletions compared with the wild type and
find that the resulting empirical distribution of relative
growth traits changes shows very small correlations between
these traits (Figure S3, B and C), consistent with our assump-
tions. We note that these measurements, however, are sub-
ject to significant noise (Supplemental Methods, section VI),
and therefore any conclusions ultimately require verification
by further experiments.

Even in the absence of mutational correlations, selection
may induce a correlation between these traits in evolved
populations. In Figure 5A, we schematically depict how the
raw variation of traits frommutations is distorted by selection
and fixation of multiple mutations. Specifically, for a single
fixed mutation, selection induces a positive (i.e., antagonis-
tic) correlation between the relative growth rate change and

Figure 3 Dynamics of evolving populations. (A) Frequencies of new mu-
tations as functions of the number n of growth cycles. Example trajecto-
ries of (B) the fitness of the evolved population relative to the ancestral
population, (C) the evolved average growth rate, (D) the evolved average
lag time, and (E) the evolved average yield. In all panels the dilution factor
is D ¼ 102; the amount of resource at the beginning of each cycle is
R ¼ 107; and mutations randomly arise from a uniform distribution
pmut with 20:02,g,0:02; 20:05,v, 0:05; and 20:02, d, 0:02:
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the relative lag time change. Figure 2A shows this for single
fixed mutations, while Figure 5, B and C shows this positive
correlation between the average growth rate and the average
lag time across populations that have accumulated the same
number of fixed mutations. For populations in the SSWM
regimewith the same number of fixedmutations, the Pearson
correlation coefficient between the average growth rate and
the average lag time across populations is approximately
equal to the covariation of the relative growth rate change
g and the relative lag time change v for a single fixed
mutation:

rfixed $ hgvifixed 2 hgifixedhvifixedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi!
hg2ifixed2 hgi2fixed

"!
hv2ifixed 2 hvi2fixed

"r ; (10)

where h'ifixed is an average over the distribution of single
fixed mutations (Supplemental Methods, section IX). We
can explicitly calculate this quantity in the SSWM regime,
which confirms that it is positive for uncorrelated mutational
effects with uniform or Gaussian distributions (Supplemental
Methods, section XI).

However, in evolution experiments we typically observe
populations at a particular snapshot in time, such that the

populationsmay have a variable number offixedmutations
but the same number of total mutations that arose and
either fixed or went extinct (since the number of total
arising mutations is very large, we neglect its fluctuation
across populations). Interestingly, the variation in number
of fixed mutations at a snapshot in time causes the distri-
bution of growth rates and lag times across populations to
stretch into a negative correlation; this is an example of
Simpson’s paradox from statistics (Simpson 1951). Figure
5A shows this effect schematically, while Figure 5, D and E
show explicit results from simulations. An intuitive way to
understand the evolved negative correlation is to approx-
imate the effects of all fixed mutations as deterministic, so
that each fixed mutation increases the average growth
rate and decreases the average lag time by the same
amount. Therefore, populations with a higher average
growth rate must have a larger number of fixed mutations
and thus also a shorter average lag time, leading to a neg-
ative correlation between the average growth rates and
the average lag times. In the Supplemental Methods (sec-
tion XI), we calculate this evolved Pearson correlation co-
efficient across populations in the SSWM regime to be
approximately

Figure 4 Speed of adaptation. The average per-cycle adaptation speed of (A) the average growth rate, (B) the average lag time, and (C) the fitness
relative to the ancestral population as functions of the dilution factor D and total amount of resources R. The adaptation speeds are averaged over
growth cycles and independent populations. (D) The average growth rate, (E) the average lag time, and (F) the fitness relative to the ancestral population
as functions of the number n of growth cycles. The dilution factor is D ¼ 104 and the total resource is R ¼ 107; so the population is in the SSWM regime.
The blue solid lines are simulation results, while the dashed lines show the mathematical predictions in Equation 8. All panels show averages over
500 independent simulated populations, with mutations randomly arising from a uniform distribution pmut with 20:02,g, 0:02; 20:05,v,0:05;
and 20:02, d,0:02:
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p : (11)

That is, the correlation of traits across populations with
multiple mutations is still a function of the distribution of
single fixed mutations, but it is not equal to the correlation of
single fixed mutations (Equation 10). In the Supplemental
Methods (section XI), we explicitly calculate revo in the
SSWM regime for uncorrelated uniform and Gaussian distri-
butions of mutational effects, which shows that it is negative.
Furthermore, we prove that it must always be negative for
any symmetric and uncorrelated distribution pmutðg;vÞ (Sup-
plemental Methods, section IX).

The predicted correlations in Equations 10 and 11 quan-
titatively match the simulations well in the SSWM regime
(Figure 5, C and E). While they are less accurate outside of
the SSWM regime, they nevertheless still produce the correct
sign of the evolved correlation within the parameter regimes
of our simulations (Figure S6, A–C). However, the signs of the
correlations can indeed change depending on the underlying
distribution of mutational effects pmutðg;v; dÞ: For example,
in the Supplemental Methods, we explore the effects of vary-
ing the mean mutational effects (Figure S6D)—e.g., whether
an average mutation has positive, negative, or zero effect on
the growth rate—as well as the intrinsic mutational correla-
tion between the relative growth rate change and the relative
lag time change (Figure S6E).

Discussion

We have investigated a model of microbial evolution under
serial dilution,which isbothacommonprotocol for laboratory
evolution experiments (Luckinbill 1978; Lenski et al. 1991;
Elena and Lenski 2003; Levy et al. 2015; Kram et al. 2017) as
well as a rough model of evolution in natural environments
with feast–famine cycles. While there has been extensive
work to model population and evolutionary dynamics in
these conditions (Gerrish and Lenski 1998; Wahl and
Gerrish 2001; Desai 2013; Baake et al. 2019; Guo et al.
2019), these models have largely neglected the physiological
links connecting mutations to selection. However, models
that explicitly incorporate these features are necessary to in-
terpret experimental evidence that mutations readily gener-
ate variation in multiple cellular traits, and that this variation
is important to adaptation (Vasi et al. 1994; Novak et al.
2006; Reding-Roman et al. 2017; Li et al. 2018). Wahl and
Zhu (2015) determined the relative fixation probabilities of
mutations on different traits and the effects of mutation oc-
currence time and dilution factor, but the role of pleiotropy
and evolutionary dynamics over many mutations were not
considered.

In this paper,wehave studiedamodelwheremutations can
affect three quantitative growth traits—the lag time, the ex-
ponential growth rate, and the yield (Figure 1A)—since these
three traits are widely measured for microbial populations. In
particular, we have derived a simple expression (Equation 3)

Figure 5 Evolved patterns of covariation among growth traits. (A) Schematic of how selection and fixation of multiple mutations shape the observed
distribution of traits. The sign of the Pearson correlation coefficient between the average growth rate and lag time depends on whether we consider an
ensemble of populations with the same number of fixed mutations or the same number of total mutation events. (B) Distribution of average growth rate
and lag time for 1000 independent populations with the same number of fixed mutations. Each color corresponds to a different number of fixed
mutations ðnf Þ indicated in the legend. (C) Pearson correlation coefficient of growth rate and lag time for distributions in B, as a function of the number
of fixed mutations. The dashed line is the prediction from Equation 10. (D) Same as B, except each color corresponds to a set of populations at a
snapshot in time with the same number of total mutation events. Each color corresponds to a different number of total mutations events ðntÞ indicated
in the legend. (E) Same as C, but for the set of populations shown in D. The dashed line is the prediction from Equation 11. In C and E, the error bars
represent 95% confidence intervals. In B–E, we simulate the SSWM regime by introducing random mutations one by one and determining their fixation
from Equation 5 with D ¼ 103:
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for the selection coefficient of a mutation in terms of its ef-
fects on growth and lag and a single environmental parame-
ter, the dilution factor D. While previous work showed that
this particular form of the selection coefficient determines the
fixation probability of a single mutation in the SSWM regime
(Manhart et al. 2018), here we show that this holds even in
the presence of clonal interference (Figure 2, C–F), which
appears to be widespread in laboratory evolution experi-
ments (Lang et al. 2011, 2013; Good et al. 2017). Our result
is therefore valuable for interpreting the abundant experi-
mental data onmutant growth traits. We have also calculated
the adaptation rates of growth traits per cycle in the SSWM
regime, which turn out to increase with the amount of re-
source R and decrease with the dilution factor D. These re-
sults are confirmed by numerical simulations and remain
good predictions even outside of the SSWM regime. Further-
more, some of these results are independent of the specific
form of the selection coefficient (Equation 3), namely the fact
that the fixation probability depends only on the selection
coefficient (with other population parameters besides the
mutant traits being held fixed) even in the clonal interference
regime, and the expressions for the correlation coefficients of
traits between populations (Equations 10 and 11).

An important difference with the previous work on this
model is that here we used a fixed dilution factor D, which
requires that the bottleneck population size N0 fluctuates as
the population evolves. In contrast, previous work used a
fixed N0 and variable D (Manhart et al. 2018; Manhart and
Shakhnovich 2018). We observed two important differences
between these regimes. First, in the case of fixed N0 and vari-
able D, the fold-change of the population during a single
growth cycle, which is approximately R!Y=N0 (Manhart
et al. 2018), determines the relative selection between
growth and lag, since it determines how long the population
undergoes exponential growth. Therefore one can experi-
mentally tune this relative selection by varying either the
total amount of resources R or the fixed bottleneck size N0.
However, when the dilution factor D is fixed, the population
fold-change is always constrained to exactly equal D, and
thereforeD alone determines the relative selection on growth
and lag (Equation 3). The second difference is that, with fixed
N0 and variable D, the selection coefficient depends explicitly
on the effective yield !Y and is therefore frequency-dependent
(Supplemental Methods, section II), which enables the pos-
sibility of stable coexistence between two strains (Manhart
et al. 2018; Manhart and Shakhnovich 2018). However, for
the fixed D case, the frequency dependence of !Y is exactly
canceled by N0 (Equation 4). Therefore, there is only neutral
coexistence in this case, requiring the growth and lag traits of
the strains to follow an exact constraint set by D (Supplemen-
tal Methods, section III).

Amajor result of ourmodel is a prediction on the evolution
of covariation between growth traits. In particular, we have
shown that correlations between traits can emerge from
selection and accumulation of multiple mutations even with-
out an intrinsic correlation between traits from individual

mutations (Figure 5 and Figure S6). We have also shown that
selection alone produces no correlation between growth and
yield, in the absence of correlated mutational effects (Figure
2B and Figure 3E). This is important for interpreting evolved
patterns of traits in terms of selective or physiological trade-
offs. Specifically, it emphasizes that the evolved covariation
between traits conflates both the underlying supply of varia-
tion from mutations as well as the action of selection and
other aspects of population dynamics (e.g., genetic drift, spa-
tial structure, recombination), and therefore it is difficult to
make clear inferences about either aspect purely from the
outcome of evolution alone. For example, simply observing
a negative correlation between two traits from evolved pop-
ulations is insufficient to infer whether that correlation is due
to a physiological constraint on mutations (e.g., mutations
cannot improve both traits simultaneously) or due to a selec-
tive constraint (e.g., selection favors specialization in one
trait or another).

These questions, of course, have been the foundation of
quantitative trait genetics (Lynch and Walsh 1998). Histori-
cally, this field has emphasized polymorphic populations with
abundant recombination as are applicable to plant and ani-
mal breeding. However, this regime is quite different from
microbial populations, which, at least under laboratory con-
ditions, are often asexual and dominated by linkage between
competing mutations (Lang et al. 2011, 2013; Good et al.
2017). We therefore need a quantitative description of both
between-population as well as within-population covariation
of traits ofmicrobial populations in this regime. In the present
study, we focus on between-population covariation in growth
traits, but recent work by Gomez et al. (2019) provides in-
sight into the case of within-population covariation. They
showed that a tradeoff across individuals within a population
evolves between two quantitative traits under positive, addi-
tive selection; this suggests that while growth rate and lag
time will be negatively correlated across populations (Figure
5, D and E), they should be positively correlated within
populations.

Microbial growth traits should indeed be an ideal setting
for this approachdue to abundantdata, but conclusions on the
nature of trait covariation have remained elusive. Physiolog-
ical models have predicted a negative correlation between
growth rate and lag time across genotypes (Baranyi and
Roberts 1994; Himeoka and Kaneko 2017), while models
of single-cell variation in lag times also suggest there should
be a negative correlation at the whole-population level
(Baranyi 1998). However, experimental evidence has been
mixed, with some studies finding a negative correlation (Ziv
et al. 2013, 2017), while others found no correlation (Levin-
Reisman et al. 2010; Warringer et al. 2011; Adkar et al.
2017). Studies of growth–yield correlations have long been
motivated by r/K selection theory, which suggests there
should be tradeoffs between growth rate and yield (Reznick
et al. 2002). For instance, metabolic models make this pre-
diction (Pfeiffer et al. 2001; MacLean 2007; Meyer et al.
2015). However, experimental evidence has again been
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mixed, with some data showing a tradeoff (Jasmin and Zeyl
2012; Jasmin et al. 2012; Bachmann et al. 2013), while
others show no correlation (Velicer and Lenski 1999;
Novak et al. 2006; Fitzsimmons et al. 2010; Reding-Roman
et al. 2017) or even a positive correlation (Luckinbill 1978;
Warringer et al. 2011). Some of this ambiguity may have
to do with dependence on the environmental conditions
(Reding-Roman et al. 2017) or the precise definition of yield.
We define yield as the proportionality constant of population
size to resource (Equation 1) and neglect any growth rate de-
pendence on resource concentration. Under these conditions,
we predict no direct selection on yield, which means that the
only way to generate a correlation of yield with growth rate is
if the two traits are constrained at the physiological level, so
thatmutational effects are correlated. In such cases yield could
evolve but only as a spandrel (Gould and Lewontin 1979; Amir
2017). Ultimately, we believe more precise single-cell mea-
surements of these traits, both across large unselected mutant
libraries as well as evolved strains, are necessary to definitively
test these issues (Campos et al. 2018).
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I. DETERMINISTIC POPULATION DYNAMICS OVER SERIAL DILUTIONS

At the beginning of the nth growth cycle, let the total population size be N
0

(n) and frequency of each strain k be
x
k

(n). To determine the strain frequencies {x
k

(n+ 1)} and the initial population size N
0

(n+ 1) for cycle n+ 1, we
first note that the selection coe�cients relate the frequencies between consecutive cycles according to

s
ij

(n) = ln

✓
x
i

(n+ 1)

x
j

(n+ 1)

◆
� ln
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x
i

(n)

x
j
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◆
, (S1)

which follows from the definition in Eq. 2 and the condition that dilution preserves frequencies, i.e., the frequencies
at the end of cycle n equal the frequencies at the beginning of cycle n+ 1 (neglecting stochastic e↵ects of sampling).
We can rearrange Eq. S1 to determine the frequencies in cycle n+1 as functions of the frequencies in cycle n and the
selection coe�cients:

x
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. (S2)

The population size N
0

(n+1) for the beginning of cycle n+1 is the population size at the end of the nth cycle diluted
by D. The total population size at the end of the nth cycle is
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where we have inserted the quantity in parentheses on the right-hand side of the first line because it equals 1 according
to the saturation equation (Eq. 1), and we invoke Eq. S2 to obtain the last line. Therefore the initial population size
in cycle n+ 1 equals this quantity diluted by D:

N
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(n+ 1) =
R

D
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strain `

x
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(n+ 1)

Y
`

!�1

. (S4)

Equation S4 shows that the ratio R/D controls the overall magnitude of the bottleneck population size N
0

(n), and
hence the e↵ective population size for evolutionary dynamics. Furthermore, Eq. S4 indicates that for n � 1, the
e↵ective population yield and initial population size are constrained such that
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(n)
= D, (S5)

where we define the e↵ective population yield as

Ȳ (n) =
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II. EQUATIONS FOR SELECTION COEFFICIENTS

Equation 1 in the main text defines the time t
c

at which the population exhausts the resource and growth stops;
Eq. 2 then defines the selection coe�cients s

ij

in terms of t
c

. To determine how all s
ij

depend explicitly on the
parameters of the model, we first rewrite Eq. 2 to get t

c

in terms of each s
ij

:
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We then substitute this for t
c

in Eq. 1 and rearrange to obtain an implicit nonlinear equation for the selection
coe�cients s

ij

:
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where �r
ij

= r
i

�r
j

is the di↵erence in growth rates and �L
ij

= L
i

�L
j

is the di↵erence in lag times. We can obtain
an approximate analytical solution in the limit of weak selection |s

ij

| ⌧ 1, as shown in previous work [1, 2]:
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are the components of selection on the lag phase, on the growth phase, and on the coupling between lag and growth,
and where r̄ =

P
strain k

r
k

x
k

¯

Y

Yk
is the e↵ective population growth rate.

III. FREQUENCY-DEPENDENT SELECTION AND COEXISTENCE

In general the selection coe�cients are frequency-dependent, meaning they depend not only on the traits of the
individual strains (lag times {L

k

}, growth rate {r
k

}, and yields {Y
k

}) but also on their frequencies {x
k

} at the
beginning of the growth cycle. To find the condition for coexistence of all the strains, we set s

ij

= 0 for all pairs of
strains i and j in Eq. S8 to obtain
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RȲ

◆
��L

ij

r
j

, (S10)



3

using the definition for the e↵ective population yield Ȳ in Eq. S6. Furthermore, since RȲ (n)/N
0

(n) = D for n � 1
(Eq. S5), the dependence on the frequencies {x

k

} drops out and we obtain

r
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= lnD. (S11)

Geometrically, this means that the lag times {L
k

} and the reciprocal growth rates {1/r
k

} for all strains must lie on
a straight line, with slope � lnD (implying a tradeo↵ between lag and growth) [2]. If this condition is satisfied by all
strains, then the population dynamics are neutral at all frequencies {x

k

}. Conversely, if Eq. S11 is not satisfied, the
selection coe�cients must be nonzero and because Eq. S11 is independent of the frequencies, the selection coe�cient
can never change sign. Furthermore, previous work showed that the variation in selection coe�cients over the range
of frequencies tends to be small [1]. Therefore we can approximate the selection on a strain as its selection coe�cient
at a low mutant frequency, which we do in the next section.

IV. APPROXIMATE SELECTION COEFFICIENT FOR TWO STRAINS

In the two-strain case, we can rewrite the selection coe�cient equation (Eq. S8) as
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where s = s
21

is the selection coe�cient of the mutant over the wild-type, � = (r
2

� r
1

)/r
1

is the relative mutant
growth rate, ! = (L

2

� L
1

)r
1

is the relative mutant lag time, and x = x
2

is the mutant frequency. We approximate
the selection coe�cient by considering the case of mutant being very rare (x ! 0), which is the relevant case for the
calculation of the fixation probability [3]. In this case we can exactly solve Eq. S12 to obtain

lim
x!0
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N
0

◆
� !(1 + �). (S13)

We invoke the relation RY
1

/N
0

= D over serial dilutions (Eq. S5) and drop higher-order terms in � and ! to finally
obtain (Eq. 3)

s ⇡ � lnD � !. (S14)

Alternatively, if we assume the selection coe�cient s is small in magnitude, we can expand Eq. S12 in s, which yields
an identical solution to leading order in � and ! [1, 2].

V. DISTRIBUTIONS OF MUTATIONAL EFFECTS

When a mutation arises on a background strain with traits r
1

, L
1

and Y
1

, we randomly generate the new traits r
2

,
L
2

, and Y
2

from a distribution. We assume the changes in traits scale with the values of the background strain’s traits,
so that the distribution of mutational e↵ects only depends on the relative changes � = (r

2

� r
1

)/r
1

, ! = (L
2

�L
1

)r
1

,
and � = (Y

2

� Y
1

)/Y
1

. We ignore epistasis so that mutational e↵ects are additive. In the main text we use a uniform
distribution for simplicity:
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(S15)

We use �
max

= 0.02, !
max

= 0.05, and �
max

= 0.02. In Fig. S6d we generalize this uniform distribution by shifting
the mean of � and ! to nonzero values, so that � and ! satisfy ��

max

+ µ
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< � < �
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+ µ
�

and �!
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+ µ
!
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!

, where µ
�

and µ
!

are the respective means.
We also consider a Gaussian distribution (Fig. S1 and Fig. S6e), with a potentially nonzero Pearson correlation
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VI. EMPIRICAL DISTRIBUTION OF MUTATIONAL EFFECTS IN E. COLI

To empirically estimate the distribution of �, !, and � arising from spontaneous mutations, we use data from the
Keio collection of single-gene knockouts in E. coli [4] as a proxy. Campos et al. [5] measured a population growth curve
for each strain in this collection in minimal media with glucose (for example, see Fig. S3a). For each of these mutant
growth curves, we infer the growth rate r by fitting the data in the exponential growth phase and then calculate the
lag time as L = t� ln(N(t)/N(0))/r, where t is an arbitrary time in the exponential growth phase and N(t) is a proxy
for population size (optical density at 600 nm). We also calculate the ratio between the final OD in the stationary
phase and the average cell size for each strain; this should be proportional to the total number of cells, and hence
also proportional to the yield for a fixed amount of resources. We then determine the mutation’s growth rate change
� = (r � r

wt

)/r
wt

, lag time change ! = (L� L
wt

)r
wt

, and yield change � = (Y � Y
wt

)/Y
wt

relative to the wild-type,
which has growth rate r

wt

, lag time L
wt

, and yield Y
wt

averaged over replicates. To correct for plate-dependent e↵ects
on these measurements, we follow a prescription determined by the original authors of this data set [5]: we shift all
traits in a plate-dependent manner such that the median value of the trait on each plate matches the median value
of the trait across all wild-type replicates. Combining this data for all single-gene knockout mutants, we obtain an
empirical version of the distribution p

mut

(�,!, �) (Fig. S3b,c). For the evolutionary simulations, we restrict |�| < 0.2
and |!| < 0.2 to avoid very large growth rates and negative lag times.

These growth traits are a↵ected by uncertainties due to instrument noise, biological variation across initial inocula,
stochastic variation of the growth dynamics, and environmental variation. To estimate the magnitude of this uncer-
tainty, we use 240 growth curves of wild-type replicates from this same data set. Figure S3d,e shows the distributions
of growth rates, lag times, and yield proxies of these wild-type replicates along with all mutant strains. The standard
deviations of growth rates, lag times, and yield proxies across wild-type replicates are, respectively, 0.0007 min�1, 46
min, and 0.0177 OD/µm3; for the mutants, they are 0.001 min�1, 62 min, and 0.0279 OD/µm3. This suggests that
many mutant traits are not statistically distinguishable from the wild-type, since they fall within the variation of the
wild-type replicates. We can also translate these numbers into rough estimates of minimum values of |�|, |!|, and |�|
by normalizing by the mean wild-type growth rate (0.009 min�1) and mean wild-type yield proxy (0.2363 OD/µm3).
This indicates that minimum distinguishable |�|, |!|, and |�| are approximately 0.08, 0.4 and 0.08, respectively.

VII. ESTIMATING OF THE FIXATION PROBABILITY FROM SIMULATIONS

To calculate the fixation probabilities as functions of � and !, we first discretize the space of relative growth rates
� and relative lag times ! (e.g., Fig. 2a). In each bin we calculate the fixation probability as the ratio between the
total number of fixed mutations and the total number of mutations that arose in that bin, across 1000 independent
populations. We run each simulation for 5000 growth cycles. To ensure the results are independent of the initial
conditions, we collect fixation statistics based only on the last 2500 cycles; the results remain the same if we instead
only use the last 1250 cycles.

For the uniform distribution of mutational e↵ects (Eq. S15), we use bin sizes of 0.004 for � and 0.01 for ! (Fig. 2).
For the Gaussian distribution (Eq. S16), we use bins of 0.02 for both � and ! (Fig. S1). Because the ranges of �
and ! of fixed mutations in the Gaussian case are broader than they are in the uniform case, the resulting fixation
probabilities are noisier. However, we do not see any systematic e↵ect on the fixation probability from varying the
correlation coe�cient between � and ! (Fig. S1).

In Fig. S4a, we further verify the robustness of the fixation probability dependence on the selection coe�cient
s = � lnD � ! by coloring each point according to its neutral phenotype t = �/ lnD + ! (orthogonal to the selection
coe�cient s); this quantifies the range of trait combinations that nevertheless have the same selection coe�cient and
fixation probability. We also plot the fixation probability against the partial selection coe�cient s = � lnD (component
of selection on growth alone) in Fig. S4b, which shows that this component of selection alone is insu�cient to determine
fixation probability.

VIII. FIXATION PROBABILITY UNDER SERIAL DILUTION IN THE SSWM REGIME

Here we calculate the fixation probability of a mutation in the strong-selection weak-mutation (SSWM) regime —
where mutations arise and either fix or go extinct one at a time — accounting for serial dilution dynamics (Eq. 5) [6, 7].
The wild-type population has lag time L

1

and growth rate r
1

, while the mutant has lag time L
2

and growth rate r
2

;
the relative growth rate and lag time are therefore � = (r

2

�r
1

)/r
1

and ! = (L
2

�L
1

)r
1

, respectively. A single mutant
present at the beginning of the growth cycle has fixation probability 2s ⇡ 2(� lnD � !) (Eq. 3), since the dynamics
of the mutant and wild-type across growth cycles is mathematically equivalent to a Wright-Fisher process [1, 8].
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However, in general mutants will arise sometime in the middle of the growth cycle since they are tied to cell division
events. In that case, the fixation probability of a mutation acquires a correction due to the time it arises during that
first growth cycle.

Let the total time of the growth cycle be t
c

; we assume the saturation time for the first cycle in which the mutant
appears is dictated entirely by the wild-type, so that t

c

= L
1

+ r�1

1

lnD. Suppose the mutant arises at time t such

that L
1

< t < L
1

+ r�1

1

lnD. Therefore the number of mutant cells at the end of this first cycle is er2(L1

+r

�1

1

lnD�t).
The average number of mutant cells at the beginning of the next cycle is simply the number at the end of the previous
cycle divided by the dilution factor D. The fixation probability of each of these mutants at the beginning of the next
cycle is then given by 2(� lnD � !). Assuming 2(� lnD � !) is small, the total fixation probability of the original
mutant arising at time t is

�
SSWM

(�,!|t) = 2(� lnD � !)
er2(L1

+r

�1

1

lnD�t)

D

= 2(� lnD � !)D�e�r

2

(t�L

1

).

(S17)

The fixation probability of a mutant therefore decreases exponentially as it occurs later in the growth cycle, since it
takes less advantage of that first cycle. Note that if t = L

1

, i.e., the mutation arises immediately at the beginning
of growth, then the fixation probability should be exactly 2(� lnD � !) but is o↵ by a factor of D� due to the
approximations during the first cycle; however, this contributes only terms higher-order in �.

We now average this quantity over all times during the growth cycle. The probability density p
arise

(t) of a mu-
tation arising at time t is the rate at which the wild-type population produces mutants per unit time, µr

1

N(t) =
µr

1

N
0

er1(t�L

1

), divided by the total number of mutants in the growth cycle:

p
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µr

1

N
0

er1(t�L

1

)

R
L

1

+r

�1
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lnD

L

1

dt µr
1

N
0

er1(t�L

1

)

=
r
1

er1(t�L

1

)

D � 1
.

(S18)

Therefore the average fixation probability is

�
SSWM

(�,!) =

Z
L

1

+r

�1

1

lnD

L

1

dt �
SSWM

(�,!|t)p
arise

(t)

= 2(� lnD � !)
D� � 1

�(D � 1)

⇡ 2 lnD

D � 1
(� lnD � !)

✓
1 + �

lnD

2

◆
,

(S19)

where on the last line we have kept terms only to second order in �. The leading-order component is the SSWM
fixation probability used in the main text (Eq. 5), where lnD/(D � 1) is the overall correction factor due to the
distribution of mutation occurrence times during the growth cycle. Equation S19 furthermore shows that mutations
a↵ecting growth rate have an additional benefit over mutations a↵ecting just lag time, since they gain an advantage
even in the first cycle (lag time mutations do not have an e↵ect until the next growth cycle) [7, 9]. We note that
this calculation is merely an estimate of this e↵ect, since we neglect other corrections second-order in � and !, but it
nevertheless shows that this e↵ect is at most of order O(s2).

IX. DISTRIBUTION OF FIXED MUTATIONAL EFFECTS IN THE SSWM REGIME

In the SSWM regime, the probability of fixing a mutation with e↵ects � and ! conditioned on the event of some
mutation fixing is

P
fixed

(�,!) =
1

Z
p
mut

(�,!)�
SSWM

(� lnD � !), (S20)
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where p
mut

(�,!) is the probability of a mutation with e↵ects � and ! arising, and the probability of the mutation
fixing is (Eq. 5)

�
SSWM

(s) =
2 lnD

D � 1
s⇥(s), (S21)

where ⇥(s) is the Heaviside theta function. We approximate the selection coe�cient of the mutation as s = � lnD�!
(Eq. 3 or Eq. S14). The normalization factor is Z, the probability that a randomly chosen mutation fixes:

Z =

Z
d�

Z
d! p

mut

(�,!)�
SSWM

(� lnD � !). (S22)

To calculate moments of the growth rate e↵ect � and lag time e↵ect ! of fixed mutations, we must take averages over
this distribution. That is, we can calculate the mean value of a function f(�,!) as

hf(�,!)i
fixed

=

Z
d�

Z
d! P

fixed

(�,!)f(�,!). (S23)

A. Uniform distribution of mutations

We first consider the case where mutational e↵ects have a uniform distribution (Eq. S15). The normalization factor
is
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(S24)

Therefore the moments of � and ! are (carrying out integrals in a manner similar to Eq. S24)
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ln2 D + 3!2

max

if �
max

lnD < !
max

.
(S25b)

h�2i
fixed

=

8
>><

>>:

15�4

max

ln4 D + !4

max

10(ln2 D)(3�2

max

ln2 D + !2

max

)
if �

max

lnD > !
max

,

1

5
�2

max

✓
3� 4!2

max

�2

max

ln2 D + 3!2

max

◆
if �

max

lnD < !
max

,

(S25c)

h!2i
fixed

=

8
>><

>>:

1

15
!2

max

✓
5 +

4!2

max

3�2

max

ln2 D + !2

max

◆
if �

max

lnD > !
max

,

�4

max

ln4 D + 15!4

max

10
�
�2

max

ln2 D + 3!2

max

� if �
max

lnD < !
max

,
(S25d)

h�!i
fixed

=

8
>><

>>:

� !2

max

(5�2

max

ln2 D � !2

max

)

5(lnD)(3�2

max

ln2 D + !2

max

)
if �

max

lnD > !
max

,

�1

5
�2

max

(lnD)

✓
8!2

max

�2

max

ln2 D + 3!2

max

� 1

◆
if �

max

lnD < !
max

.

(S25e)

We can also calculate the variances and covariances:

h�2i
fixed

� h�i2
fixed

=

8
>>><

>>>:

5�6

max

ln6 D + 15�4

max

!2

max

ln4 D + 3�2

max

!4

max

ln2 D + !6

max

10(ln2 D)
�
3�2

max

ln2 D + !2

max

�
2

if �
max

lnD > !
max

,

3
�
�6

max

ln4 D � 2�4

max

!2

max

ln2 D + 5�2

max

!4

max

�

5
�
�2

max

ln2 D + 3!2

max

�
2

if �
max

lnD < !
max

,

(S26a)

h!2i
fixed

� h!i2
fixed

=

8
>>><

>>>:

3
�
5�4

max

!2

max

ln4 D � 2�2

max

!4

max

ln2 D + !6

max

�

5
�
3�2

max

ln2 D + !2

max

�
2

if �
max

lnD > !
max

,

1

5
�2

max

(lnD)

✓
1� 8!2

max

�2

max

ln2 D + 3!2

max

◆
� 4!6

max�
�2

max

ln2 D + 3!2

max

�
2

if �
max

lnD < !
max

,

(S26b)

h�!i
fixed

� h�i
fixed

h!i
fixed

=

8
>>>><

>>>>:

!2

max

�
5�4

max

ln4 D � 2�2
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!2

max

ln2 D + !4
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�
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�
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ln2 D + !2
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�
2

if �
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lnD > !
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,

4�2
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!4
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�
�2
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ln2 D + 3!2
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�
2

+
!2
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�
!2

max

� 5�2

max

ln2 D
�

5(lnD)
�
3�2

max

ln2 D + !2

max

� if �
max

lnD < !
max

.

(S26c)
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B. Gaussian distribution of mutations

We now repeat the calculation for a Gaussian distribution of mutational e↵ects (Eq. S16). The normalization factor
is

Z =

Z 1

�1
d�

Z 1

�1
d!

✓
1

2⇡�
�

�
!

exp

✓
� �2

2�2

�

� !2

2�2

!

◆◆✓
2 lnD

D � 1

◆
(� lnD � !)⇥(� lnD � !)

=

Z 1

�1
d�

Z
� lnD

�1
d!

✓
1

2⇡�
�

�
!

exp

✓
� �2

2�2

�

� !2

2�2

!

◆◆✓
2 lnD

D � 1

◆
(� lnD � !)

=
2 lnD

D � 1

s
�2

�

ln2 D + �2

!

2⇡
.

(S27)

Therefore the moments of � and ! are (carrying out integrals in a manner similar to Eq. S27)

h�i
fixed

=
�2

�

lnD

2

s
2⇡

�2

�

ln2 D + �2

!

, (S28a)

h!i
fixed

= ��2

!

2

s
2⇡

�2

�

ln2 D + �2

!

, (S28b)

h�2i
fixed

= �2

�

 
2� �2

!

�2

�

ln2 D + �2

!

!
, (S28c)

h!2i
fixed

= �2

!

 
1 +

�2

!

�2

�

ln2 D + �2

!

!
, (S28d)

h�!i
fixed

= �
�2

�

�2

!

lnD

�2

�

ln2 D + �2

!

. (S28e)

The variances and covariances are

h�2i
fixed

� h�i2
fixed

= �2

�

 
1�

(⇡ � 2)�2

�

ln2 D)

2(�2

�

ln2 D + �2

!

)

!
, (S29a)

h!2i
fixed

� h!i2
fixed

= �2

!

 
1� (⇡ � 2)�2

!

2(�2

�

ln2 D + �2

!

)

!
, (S29b)

h�!i
fixed

� h�i
fixed

h!i
fixed

=
(⇡ � 2)�2

�

�2

!

lnD

2(�2

�

ln2 D + �2

!

)
. (S29c)

C. A general proof on the sign of h�!i
fixed

The quantity h�!i
fixed

is negative for both the uniform (Eq. S25e) and Gaussian (Eq. S28e) cases shown above. We
now present a general argument (shared by Yipei Guo) that it must be negative for any distribution of mutational
e↵ects p

mut

(�,!) such that � and ! are independent (p
mut

(�,!) = p
mut,growth

(�)p
mut,lag

(!)) and the distribution is
symmetric around zero (p

mut,growth

(�) = p
mut,growth

(��) and p
mut,lag

(!) = p
mut,lag

(�!)). We want to find the sign
of the following integral:

I =

Z

�

d�

Z

!

d! �!(� lnD � !)⇥(� lnD � !)p
mut,growth

(�)p
mut,lag

(!). (S30)

Using the symmetry of p
mut,growth

(�) and p
mut,lag

(!), the above integral must be equal to
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I 0 =

Z

�

d�

Z

!

d! �!|� lnD � !|⇥(! � � lnD)p
mut,growth

(�)p
mut,lag

(!). (S31)

Therefore we can rewrite I and remove the ⇥ function:

I =
1

2

Z

�

d�

Z

!

d! �!|� lnD � !|p
mut,growth

(�)p
mut,lag

(!). (S32)

Given any point in the above integral such that �! > 0, we can find a corresponding point with �! < 0 with equal
or higher |� ln(D)� !| that occurs with the same probability. Therefore the total integral, and hence h�!i

fixed

, must
be negative.

X. ADAPTATION RATES OF THE GROWTH RATE AND LAG TIME IN THE SSWM REGIME

In this section, we calculate the average adaptation speeds of growth rate and lag time using the average changes
in these traits determined in Sec. IX. First, the total number of cell divisions in a growth cycle is the population size
at the end of the cycle, N

final

=
P

strain i

N
i

(t
c

), minus the population size at the beginning, N
0

. We can approximate
the final population size as RY

0

, which assumes that the yields of the evolved strains do not vary significantly from
the ancestral yield Y

0

(as confirmed by simulations, e.g., Fig. 3e); we also assume D � 1 so that N
final

�N
0

⇡ N
final

.
Therefore the total number of mutation events per growth cycle is approximately µRY

0

. For each mutation, the
average probability that it fixes is Z (Eq. S22). The expected change in growth rate for a mutation is approximately
h�i

fixed

r
0

, assuming a small number of fixed mutations so that the growth rate has not changed significantly from the
ancestral growth rate r

0

; similarly, the expected change in lag time is approximately h!i
fixed

/r
0

.
We find that for both the uniform and Gaussian distributions of mutations, the expected changes in growth rate

and lag time per cycle are (Eq. 8)

W
growth

= µRY
0

Zh�i
fixed

r
0

= �2

�

r
0

(lnD)

✓
µRY

0

lnD

D � 1

◆
,

(S33)

W
lag

= µRY
0

Z
h!i

fixed

r
0

= ��2

!

r
0

✓
µRY

0

lnD

D � 1

◆
.

(S34)

where �2

�

= �2

max

/3 and �2

!

= !2

max

/3 are the variances of � and ! in the case of a uniform distribution (Eq. S15).
The ratio between the growth and lag adaptation speeds defines the average direction of evolution in growth-lag trait
space (Eq. 9):

W
growth

W
lag

= �r2
0

�2

�

�2

!

lnD. (S35)

We can use this relation to predict the average trajectory of the population growth rate r
pop

and lag time L
pop

over
evolution. In the SSWM regime, we can approximate the average population growth rate and lag time as

hr
pop

i = r
0

+ nW
growth

, (S36)

hL
pop

i = L
0

+ nW
lag

, (S37)

where n is the total number of cycles. Therefore,

hr
pop

i � r
0

hL
pop

i � L
0

= �r2
0

�2

�

�2

!

lnD. (S38)
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In Fig. S5 we compare this equation with the trajectories obtained from simulations for three values of the dilution
factor D. The prediction matches best for large D (Fig. S5a), since that produces smaller population sizes (through
Eq. 4) and therefore better approximates the SSWM limit. The prediction becomes less accurate for small D
(Fig. S5b,c) when clonal interference plays a larger role, but still matches well at early times.

XI. CORRELATION BETWEEN GROWTH RATES AND LAG TIMES

In this section we calculate the evolved correlations between growth rates and lag times. For a single fixed mutation,
the correlation coe�cient between the relative change in growth rate � and relative change in lag time ! is

⇢
fixed

=
h�!i

fixed

� h�i
fixed

h!i
fixedp

(h�2i
fixed

� h�i2
fixed

) (h!2i
fixed

� h!i2
fixed

)
. (S39)

However, the quantity more relevant to experimental data is the correlation between absolute growth rate r and lag
time L between replicate populations at a given time when multiple mutations have fixed. To calculate this, we focus
on the SSWM regime and assume that each mutation has small e↵ects on the growth rate and lag time, so that the
total growth rate r and lag time L can be approximated as sums of these e↵ects:

r ⇡ r
0

+ r
0

mX

i=1

�
i

,

L ⇡ L
0

+
1

r
0

mX

i=1

!
i

,

(S40)

where r
0

and L
0

are the ancestral growth rate and lag time, and the sums are over all fixed mutations (indexed by i)
up to the total number m.

We can now calculate moments of the evolved growth rate and lag time by averaging over both the distribution of
fixed mutations (Eq. S23) and across populations with di↵erent numbers m of fixed mutations:

hLri
fixed

⇡ 1

M

X

population ↵

* 
r
0

+ r
0

m↵X

i=1

�
i

! 
L
0

+
1

r
0

m↵X

i=1

!
i

!+

fixed

=
1

M

X

population ↵

�
r
0

L
0

+m
↵

h!i
fixed

+ L
0

r
0

m
↵

h�i
fixed

+m
↵

h�!i
fixed

+ (m2

↵

�m
↵

)h�i
fixed

h!i
fixed

�

= r
0

L
0

+mh!i
fixed

+ L
0

r
0

mh�i
fixed

+mh�!i
fixed

+ (m2 �m)h�i
fixed

h!i
fixed

.

(S41)

Here the bar indicates an average over all independent populations (total number M). Similar calculations yield the
(co)variances:

hLri
fixed

� hLi
fixed

hri
fixed

= m (h�!i
fixed

� h�i
fixed

h!i
fixed

) +
⇣
m2 �m2

⌘
h�i

fixed

h!i
fixed

, (S42)

hr2i
fixed

�
⇣
hri

fixed

⌘
2

= r2
0

m
�
h�2i

fixed

� h�i2
fixed

�
+ r2

0

⇣
m2 �m2

⌘
h�i2

fixed

, (S43)

hL2i
fixed

�
⇣
hLi

fixed

⌘
2

=
1

r2
0

m
�
h!2i

fixed

� h!i2
fixed

�
+

1

r2
0

⇣
m2 �m2

⌘
h!i2

fixed

. (S44)

That is, the (co)variances of the growth rate and lag time are sums of the (co)variance in the traits for a single fixed
mutation and the variance of number of mutations (m2 � m2). In the SSWM regime, di↵erent fixed mutations are
independent of each other and the probability of any mutation fixing (Z, Eqs. S24 and S27) is small (Z ⇠ D�1 with
D � 1); therefore the number of fixed mutations over a finite time will be approximately Poisson-distributed, so that
the variance approximately equals the mean:

m2 �m2 ⇡ m. (S45)



11

The Pearson correlation coe�cient of the evolved growth rate and lag time is therefore (Eq. 11)

⇢
evo

=
hLri

fixed

� hLi
fixed

hri
fixeds✓

hr2i
fixed

�
⇣
hri

fixed

⌘
2

◆✓
hL2i

fixed

�
⇣
hLi

fixed

⌘
2

◆

⇡ h�!i
fixedp

h�2i
fixed

h!2i
fixed

.

(S46)

That is, the correlation between evolved growth and lag depends entirely on the moments of growth and lag for a
single fixed mutation, but is not identical to the correlation coe�cient for a single fixed mutation (Eq. S39).

For the uniform distribution of mutations (Eq. S15), these two correlations equal:

⇢
fixed

=

8
>>>><

>>>>:

s
2!2

max

(5�4

max

ln4 D � 2�2

max

!2

max

ln2 D + !4

max

)

3(5�6

max

ln6 D + 15�4

max

!2

max

ln4 D + 3�2

max

!4

max

ln2 D + !6

max

)
if �

max

lnD > !
max

,

(�5�

6

max

!

2

max

ln

6

D+31�

4

max

!

4

max

ln

4

D�19�

2

max

!

6

max

ln

2

D+9!

8

max

)(
p
3�

max

(lnD)(3�2

max

ln

2

D+!

2

max

))�1

p
(�

4

max

ln

4

D�2�

2

max

!

2

max

ln

2

D+5!

4

max

)(�

6

max

ln

5

D�2�

4

max

!

2

max

ln

3

D�15�

2

max

!

4

max

lnD�20!

6

max

)

if �
max

lnD < !
max

,

(S47a)

⇢
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=

8
>>>>>>><

>>>>>>>:

�
p
2!

max

�
5�2

max

ln2 D � !2

max

�
q�

5�2

max

ln2 D + 3!2

max

� �
15�4

max

ln4 D + !4

max

� if �
max

lnD > !
max

,

�
!2

max

�
�2

max

ln2 D + 3!2

max

� �
5�2

max

ln2 D � !2

max

�

�2

max

(lnD)
�
3�2

max

ln2 D + !2

max

�q
(lnD)

�
�2

max

ln2 D � 5!2

max

� �
3�2

max

ln2 D + 5!2

max

� if �
max

lnD < !
max

,

(S47b)

while for the Gaussian distribution of mutations (Eq. S16) they are

⇢
fixed

=
(⇡ � 2)�

�

�
!

lnDq⇥
(4� ⇡)�2

�

ln2 D + 2�2

!

⇤ ⇥
2�2

�

ln2 D + (4� ⇡)�2

!

⇤ , (S48a)

⇢
evo

= � �
�

�
!

lnDq
2�4

�

ln4 D + 5�2

�

�2

!

ln2 D + 2�4

!

. (S48b)

Note that the correlation ⇢
fixed

for a single fixed mutation is positive in the uniform and Gaussian cases, while the
correlation ⇢

evo

between evolved traits is negative (cf. Fig. 5). The latter is true for any independent, symmetric
distributions of � and ! as proved in Sec. IXC.

[1] M. Manhart, B. V. Adkar, and E. I. Shakhnovich, Proc R Soc B 285, 20172459 (2018).
[2] M. Manhart and E. I. Shakhnovich, Nat Commun 9, 3214 (2018).
[3] Y. Guo, M. Vucelja, and A. Amir, Sci Adv 5, eaav3842 (2019).
[4] T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. A. Datsenko, M. Tomita, B. L. Wanner, and H. Mori,

Mol Syst Biol 2, 2006.0008 (2006).
[5] M. Campos, S. K. Govers, I. Irnov, G. S. Dobihal, F. Cornet, and C. Jacobs-Wagner, Mol Syst Biol 14, e7573 (2018).
[6] L. M. Wahl and P. J. Gerrish, Evolution 55, 2606 (2001).
[7] L. M. Wahl and A. D. Zhu, Genetics 200, 309 (2015).
[8] J. F. Crow and M. Kimura, An Introduction to Population Genetics Theory (Harper and Row, New York, 1970).
[9] Y. Li, S. Venkataram, A. Agarwala, B. Dunn, D. A. Petrov, G. Sherlock, and D. S. Fisher, Current Biology 28, 515 (2018).



12

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.002

0.004

0.006

0.008

0.01

-0.02 0 0.02 0.04 0.06 0.08
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08a b

Selection coefficient

F
ix

a
tio

n
 p

ro
b

a
b

ili
ty

FIG. S1. Fixation probabilities of mutations with Gaussian-distributed mutational e↵ects (a) The relative growth
rates � and the relative lag times ! of fixed mutations against their background strain. Dashed lines mark contours of constant
selection coe�cient with interval �s = 0.05 while the solid line marks s = 0. The standard deviations of the Gaussian
distribution (Eq. S16) are �� = �! = �� = 0.02, with zero correlation ⇢

mut

between � and !. The parameters of the population
dynamics are D = 102 and R = 107. (b) We bin mutations according to their e↵ects � and !, and for each bin we calculate the
fixation probability and the selection coe�cient according to Eq. 3. Di↵erent colors represent di↵erent growth-lag correlation
coe�cients ⇢

mut

. The red dashed line shows the fixation probability predicted in the SSWM regime (Eq. 5 in the main text).



13

FIG. S2. Fixation probabilities for large-e↵ect mutations. (a) The relative growth rate � and lag time ! of fixed
mutations. Dashed lines mark contours of constant selection coe�cient with interval �s = 0.05, while the solid line marks
s = 0. The parameters of the population dynamics are D = 102 and R = 107. (b) Fixation probability of mutations against
their selection coe�cient, using fixed mutations from panel (a). The red dashed line shows the fixation probability predicted
in the SSWM regime (Eq. 5 in the main text), while the black line shows a numerical fit of the data points to the fixation
probability under clonal interference (Eq. 6 in the main text; A = 0.1072 and B = 0.3261). (c) Same as (a) but for D = 104

R = 108 and with �s = 0.1. (d) Same as (b) but for fixed mutations in panel (c). Numerical fit of Eq. 6 produces parameters
A = 0.0014 and B = 0.0820. In all panels mutations randomly arise from a uniform distribution p

mut

where �0.1 < � < 0.1
and �0.1 < ! < 0.1, with the mutation rate µ = 10�6 and the distributions of the relative yield � the same as Fig. 3.
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FIG. S3. Empirical estimate of mutational e↵ects from single-gene knockout collection of E. coli. (a) Example
growth curve (optical density at 600 nm) from a single-gene knockout strain (cyoC deleted) from which we estimate the growth
rate (slope of diagonal dashed line) and the lag time (vertical dashed line). We obtain a proxy for the yield by taking the
maximum optical density and normalizing by the average cell size. (b) Relative growth rates � and relative lag times ! of all
knockout mutants compared to the wild-type. The Pearson correlation coe�cient between � and ! is 0.02± 0.05. (c) Relative
growth rates � and relative yields � of all knockout mutants compared to the wild-type. The Pearson correlation coe�cient
between � and � is 0.09±0.05. (d) Growth rates and lag times for all knockout mutants as well as wild-type replicates in the data
set. (e) Growth rates and yields for all knockout mutants as well as wild-type replicates in the data set. (f) Fixation probabilities
of mutations as functions of the selection coe�cient, using the knockout mutant data as the distribution of mutational e↵ects;
other parameters are R = 107, D = 103, and µ = 5⇥ 10�7. The red dashed line shows the fixation probability predicted in the
SSWM regime (Eq. 5). Raw growth curve data is from Campos et al. [5].
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FIG. S4. Robustness of fixation probability dependence on the selection coe�cient. (a) Fixation probability of
mutations as a function of their selection coe�cients, but with each data point colored by its neutral phenotype t = � lnD+!.
The simulation data is the same as in Fig. S2b. (b) We replot Fig. 2e in the main text with the partial selection coe�cient
s = � lnD (component of selection of growth alone), which does not lead to a collapse of data.
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FIG. S5. Average evolutionary trajectories in growth-lag trait space. We plot the average population growth rate
r
pop

and lag time L
pop

from simulations (solid blue lines) with (a) D = 104, (b) D = 103, and (c) D = 102, along with the
predicted trajectories in the SSWM limit (Eq. S38; dashed black line). In all panels R = 107.
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FIG. S6. Evolved patterns of covaration among growth traits. (a-c) Pearson correlation coe�cients of the population-
averaged growth rates and lag times versus the cycle number from simulations. The blue circles are the measured values from
the full simulations and the dashed lines are the predictions for the SSWM regime (Eq. 11). The error bars represent 95%
confidence intervals. (d) Evolved correlation coe�cient ⇢

evo

of growth rate and lag time (after 50000 mutational trials) as a
function of the mean mutational e↵ects on growth rate and lag time (Eq. S15). (e) Evolved correlation coe�cient ⇢

evo

of growth
rate and lag time (after 50000 mutational trials) as a function of the mutational correlation ⇢

mut

of these two traits (Eq. S16).
The blue points show simulation results, while the red points show the prediction from Eq. 11. The black line shows the line
of identity. In both (d) and (e), we simulate the SSWM regime by introducing random mutations one-by-one and determining
their fixation from Eq. 5 with D = 103.


