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The development of molecular biology in the mid-twentieth century revolutionized the life sciences by revealing 
how genetic information is stored in DNA sequences and expressed as RNA and protein sequences. Although the con-
cept of populations evolving on fitness landscapes dates to Sewall Wright and the modern synthesis [1], the discovery 
that genotypes are encoded as long sequences of nucleotides created a new conundrum for evolutionary biology: 
Given the “hyper-astronomical” number of possible genotypes — more possibilities than atoms in the observable 
universe — how does evolution ever find functional states [2]? Unlike the empirical discoveries of molecular biology, 
this was a problem in need of theoretical solutions, since the enormous sizes of sequence spaces preclude exhaustive 
experimental or computational approaches. The resulting theory of evolution on fitness landscapes, or more generally 
genotype-phenotype (GP) maps, has largely solved this problem by demonstrating that these landscapes are neither 
flat nor random, but rather have characteristic structure that can both facilitate the evolution of new phenotypes as well 
as maintain existing phenotypes in the face of mutational deterioration.

In a new review, Manrubia, Cuesta, et al. [3] explore many of the key models and empirical data contributing 
to this theory. As they rightly emphasize, some of the most compelling models have been those that make ab initio
predictions of phenotypes, such as RNA [4] or protein structures [5], from the underlying genotypes. Because these 
predictions are based on fundamental principles of physics and chemistry, these models plausibly capture generic 
features of landscapes across different organisms and environments. The last decade and a half has also brought an 
explosion of new experiments that directly measure properties of GP maps, allowing empirical verification of many 
model predictions. These experiments generally fall into two classes: combinatorially-complete measurements of a 
set of mutations in a small part of the genome [6,7]; and mutational scans that exhaustively sample single mutations 
(and sometimes double or triple mutations) on a reference genotype [8], forming a complete picture of the local 
neighborhood of a genotype.

These models and empirical data have revealed a number of important insights into the structure of GP maps and 
how evolutionary dynamics proceed on them. First and foremost is a solution to the initial problem posed by molec-
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ular biology: new phenotypes are often highly evolvable on GP maps, with single mutations leading to incremental 
improvements that can be positively selected [2]. At the same time, these landscapes exhibit significant robustness, 
meaning that phenotypes can be stable to mutational perturbations over evolution. A major accomplishment of models 
has been to elucidate the relationship between evolvability and robustness. In particular, we have learned that high 
evolvability can actually go hand-in-hand with high robustness for phenotypes, despite their apparent contradiction [9]. 
Underlying this result is a concept known as phenotypic bias, meaning that some phenotypes are produced by many 
more genotypes than are other phenotypes; for example, the most common secondary structure of a 20 nucleotide-long 
RNA is represented by 10 orders of magnitude more genotypes than is the least common structure [10]. This means 
that the evolved phenotypes we observe in extant organisms are driven not purely by selection for those phenotypes, 
but also by an entropic tendency that favors phenotypes that are common across genotype space. This conceptual result 
can explain a number of important observations in molecular evolution, such as the marginal stability of proteins [11], 
the prevalence of loss-of-function mutations in evolution experiments [12], and the existence of molecular cross-talk 
between proteins [13] and between proteins and DNA regulatory sites [14].

One of the most exciting possibilities raised by this work has been the existence of universal, effective models 
that capture the essential features of a wide range of landscapes without relying on details of specific systems. For 
example, a genotypic sequence can be partitioned into a subset of constrained loci, which contribute significantly to 
phenotypes under selection, and a subset of unconstrained or neutral loci [15]. Models constructed on this feature alone 
are sufficient to make statistical predictions, such as the distribution of neutral networks of genotypes, that quantify 
phenotypic bias [16]. There are also various models capturing the essential statistical features of other properties of 
GP maps such as epistasis [17,18].

How far can we take this approach toward the next frontiers of biology? While models and experiments for GP maps 
in the context of well-defined molecular phenotypes — such as RNA secondary structure or a protein binding a ligand 
— have driven much of this success, Manrubia, Cuesta, et al. point out that there is still a large gap between these 
molecular phenotypes and properties of whole cells or organisms, especially the organismic fitness that determines 
whether a lineage expands or contracts in a population. Multiscale models have been constructed to address this 
problem, but these typically require strong assumptions about the mechanisms by which molecular phenotypes give 
rise to cell growth and division. Experiments, on the other hand, do often measure organismic fitness, but the inevitable 
limitation of these experiments by the underlying combinatorics of genotype space means that we will eventually need 
models and theoretical approaches to fully address this problem.

One appealing approach to the problem of phenotype-fitness maps is to focus on effective statistical models, as 
aforementioned for genotype-phenotype maps, to uncover universal properties. For example, one can measure (or 
infer) a large number of phenotypes for a collection of genotypes and determine the quantitative map between these 
phenotypes and fitness. So far this approach has been used mainly to determine the number of independent phenotypes 
contributing to fitness [19,20] and the modularity of the phenotype-phenotype interaction network [21]; for example, 
one striking result from these studies has been that the dimensionality of fitness-relevant phenotypes is ∼10. However, 
a major challenge going forward is to determine whether the properties of phenotype-fitness maps can ever be gen-
eralized across environmental conditions: while molecular phenotypes often have more straightforward dependence 
on the environment (e.g., through temperature or ligand concentration), complex phenotypes, especially fitness, may 
depend on the environment idiosyncratically. This problem is especially acute for microbes, which exist in dynamic 
ecosystems consisting of many different species constantly altering their own chemical and metabolic environment. 
For example, mutations that change the metabolic secretions of microbial cells can “deform” the fitness landscape 
experienced by future mutations, leading to non-commutativity between these mutations [22]. The promise of land-
scapes for predicting evolutionary biology will hinge on our ability to glean universal principles that account for these 
complexities in natural biological systems.
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