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a b s t r a c t

Monomorphic loci evolve through a series of substitutions on a fitness landscape. Understanding how
mutation, selection, and genetic drift drive this process, and uncovering the structure of the fitness
landscape from genomic data are two major goals of evolutionary theory. Population genetics models
of the substitution process have traditionally focused on the weak-selection regime, which is accurately
described by diffusion theory. Predictions in this regime can be considered universal in the sense that
many population models exhibit equivalent behavior in the diffusion limit. However, a growing number
of experimental studies suggest that strong selection plays a key role in some systems, and thus there is a
need to understand universal properties of models without a priori assumptions about selection strength.
Here we study time reversibility in a general substitution model of a monomorphic haploid population.
We show that for any time-reversible population model, such as the Moran process, substitution rates
obey an exact scaling law. For several other irreversible models, such as the simple Wright–Fisher
process and its extensions, the scaling law is accurate up to selection strengths that are well outside the
diffusion regime. Time reversibility gives rise to a power-law expression for the steady-state distribution
of populations on an arbitrary fitness landscape. The steady-state behavior is dominated byweak selection
and is thus adequately described by the diffusion approximation, which guarantees universality of the
steady-state formula and its applicability to the problem of reconstructing fitness landscapes from DNA
or protein sequence data.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

A key goal of evolutionary theory is to determine the role of
natural selection in the evolution of genotypes, and to infer in-
formation about selection strength from the growing abundance
of genomic data. Theoretical work on these issues takes many dif-
ferent forms, both because of the inherent differences among bio-
logical systems and because different simplifying assumptions are
necessary for the sake of mathematical tractability. One common
approximation is to consider unlinked loci in the monomorphic
limit, valid for neutral evolution once sufficiently low mutation
rates and effective population sizes ensure that genetic drift dom-
inates (Crow and Kimura, 1970). Even larger populations or those
with greater mutation rates can be nearly monomorphic if selec-
tion is significant.

If at any given time the population is dominated by a single
genotype at the locus of interest, to a good approximation such a

∗ Corresponding author at: Department of Physics and Astronomy, Rutgers
University, 136 Frelinghuysen Road, Piscataway, NJ 08854, USA.

E-mail addresses: mmanhart@physics.rutgers.edu (M. Manhart),
ahalda@physics.rutgers.edu (A. Haldane), morozov@physics.rutgers.edu
(A.V. Morozov).

0040-5809/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.tpb.2012.03.007
population evolves as a single entity on a fitness landscape (Wright,
1932) over genotype space, assuming that the evolutionary success
of a genotype can be distilled into a fitness value. The movement
of the entire population from one genotype to another is known as
the substitution process, where each substitution event consists of
a single mutation arising and then fixing instantaneously (Kimura,
1983). This picture greatly simplifies the theory, especially because
it permits fixation events to be analyzed using two-allele models
of population genetics (Crow and Kimura, 1970). Moreover, it is
believed that many higher eukaryotes (Kimura, 1983) and some
microorganisms contain loci that can be adequately described as
monomorphic (Ochman and Selander, 1984;Wick et al., 2002; Dos
Vultos et al., 2008; Achtman, 2008). As a result, this approach
has been followed in settings as diverse as the evolution of
transcription factor (TF) binding sites in yeast (Lässig, 2007;
Mustonen et al., 2008), viral protein evolution (Bloom et al., 2007;
Bloom and Glassman, 2009), and codon usage bias (e.g., McVean
and Vieira, 2001; Yang and Nielsen, 2008). These theoretical and
computational studies complement recent experimentalwork that
has begun to reconstruct empirical fitness landscapes directly
(Weinreich et al., 2006; Poelwijk et al., 2007).

Much theoretical work in population genetics has focused
on gradual models of adaptation in which evolutionary change
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proceeds through selection of alleles with very small fitness
advantage (Orr, 2005). The idea of the extremely slow rate
of phenotypic evolution was proposed by Darwin (1859) and
subsequently made popular by Fisher (1958) in the context of
the infinitesimal model. In more recent decades, experimental
evidence like the molecular clock and high levels of sequence
variation in some proteins suggested that genetic drift, and not
selection, was the key evolutionary driving force. This led to
the neutral and nearly neutral theories of molecular evolution
(Kimura, 1983; Ohta and Tachida, 1990; Ohta, 1992).

From the theoretical perspective, a key motivation for weak-
selection models is their universality: many specific models
are equivalent in the weak-selection, or diffusion, regime. This
equivalence is observed for the simple Wright–Fisher (Wright,
1931; Fisher, 1958) andMoran (Moran, 1958)models, which share
a diffusion limit with a variety of more elaborate models under the
appropriatemapping of parameters (e.g., Ewens, 1967;Maruyama,
1970; Otto and Whitlock, 1997; Möhle, 2001; Möhle and Sagitov,
2001; Whitlock, 2003; Wakeley, 2005). Even though the simple
Wright–Fisher model is undoubtedly a gross simplification of
natural populations, this universality has driven the use of its
diffusion limit (Kimura, 1955, 1962), and more generally, the use
of exchangeable models (Cannings, 1974) as plausible effective
theories in a wide variety of applications.

However, there is mounting experimental evidence that
stronger selection may be common in nature. Strongly deleterious
mutations have long been known to exist, although they are
typically eliminated by selection so efficiently that they play little
role in evolutionary dynamics (Kimura, 1983). Mutations with
strong selective advantage, on the other hand, may routinely occur
in organisms faced with novel environments or environmental
stresses such as high temperature (Wichman et al., 1999; Bull
et al., 2000; Holder and Bull, 2001; Barrett et al., 2006b), with
early steps in adaptation typically exhibiting larger fitness gains
than later ones. Furthermore, several QTL-mapping experiments
have demonstrated that adaptive evolution frequently involves
relatively few genetic changes with large fitness effects (reviewed
in Orr, 2001, 2005; Eyre-Walker and Keightley, 2007). Using
approaches developed in the weak-selection limit to predict the
dynamics of strongly beneficial mutations (such as fixation times
and the probability of fixation) may lead to significant errors
(Morjan andRieseberg, 2004;Whitlock, 2003; Barrett et al., 2006a).

Models attempting to include a wider range of selection
strengths are often deterministic (Eigen et al., 1989; Bürger, 2000)
and therefore exclude populations with non-negligible genetic
drift, while stochastic theories typically demonstrate model-
dependent behavior when selection becomes too strong (Proulx,
2000; Shpak, 2007; Parsons et al., 2010), which limits their
application to natural systems. Thus there is a need to study
universal properties of classes of stochastic models in which no a
priori assumptions about the strength of selection are made.

In this paper we investigate such properties, focusing on time
reversibility (i.e., detailed balance) and the steady state of the sub-
stitution process.We restrict ourselves to asexual haploids for sim-
plicity, which includes many populations of single-cell organisms
(Ochman and Selander, 1984; Wick et al., 2002; Dos Vultos et al.,
2008; Achtman, 2008). For any time-reversible population model,
such as the Moran process, we show that the substitution rates
obey a simple scaling law. This result is exact in the monomorphic
limit and requires no diffusion or weak-selection approximation.
For irreversible models, we find that the scaling law is an accu-
rate approximation for sufficiently weak selection, and in fact may
hold for a large range of selection strengths beyond the classical
diffusion limit, aswe show for the simpleWright–Fishermodel and
its extensions. Since this scaling behavior is equivalent to time re-
versibility, this contradicts the belief that selection should break
reversibility (McVean and Vieira, 2001).
The scaling law also gives rise to a power-law formula for the
steady-state distribution, which is exact for any reversible model.
This generalizes the work of Sella and Hirsh (2005), who obtain
this result in the special case of the Moran model. Moreover,
we find that strong selection plays little role in steady state,
which is dominated by genetic drift and weak selection. Since
evolutionary behavior in this regime is known to be universal
through established results based on the diffusion approximation,
the steady-state formula is accurate within a sizable range of
selection strengths for a large class of populationmodels, including
many irreversible ones. Thewide range of applicability of the time-
reversibility condition greatly simplifies computational studies of
evolutionary dynamics in biological systems, such as probabilistic
phylogenetic inference (Yang, 2006). Finally, the simple power-law
form of the steady-state distribution allows inference of fitness
landscapes from genomic data in systems for which the steady
state is believed to be a good approximation, such as TF binding
sites in yeast (Mustonen et al., 2008).

2. Substitution model for monomorphic populations

We consider the evolution of a single locus in themonomorphic
limit, where the mutation rate is sufficiently low that the vast
majority of single mutations either fix or become extinct before
a second mutation on the locus arises (Kimura, 1983). Thus we
can describe evolution of this locus as a series of substitution
events in which the entire population switches from genotype σ
to genotype σ ′. Since the time scale for fixation or extinction of
a mutant (during which the population is actually polymorphic) is
very short compared to the time scales of interest, we approximate
these events as instantaneous. For a locus of length L and single-
site mutation rate µ, Champagnat (2006) and Champagnat et al.
(2006) have shown that the condition necessary to guarantee a
monomorphic population is µ ≤ 1/(LN logN) for a population of
size N . However, if most mutations introduce significant selective
effects, the fixation or extinction of mutants will occur more
rapidly, weakening the condition on µ. For beneficial mutations
of selective advantage s (where 1 ≪ Ns ≪ N), Desai and Fisher
(2007) have shown that themonomorphic condition becomesµ ≤

1/(LN log(Ns)).
We will assume that the locus of interest is unlinked to the rest

of the genome (linkage equilibrium) by frequent recombination
with rateρ, which satisfiesρ ≫ NµL (Mustonen and Lässig, 2010);
here, recombination also includes homologous DNA transfer such
as that observed in bacteria. Therefore we can consider the
evolution of the locus independently from the rest of the genome.
We assume that the locus is short enough that recombination does
not occurwithin the locus itself. In general,we are interested in loci
with <103 nucleotides, which easily meet these conditions. Such
loci include short regulatory sequences of nucleotides such as TF
binding sites, and coding regions. Viruses or loci with mutation
or recombination hotspots are outside the scope of this model.
Note that while the locus of interest is unlinked to other genomic
sites, there may be epistasis among the nucleotides or amino acids
constituting the locus itself.

Let σ and σ ′ be two genotypes (i.e., sequences of L nucleotides
or amino acids) at the locus of interest. The substitution rate fromσ
to σ ′ can be approximated by the rate of producing a singlemutant
times the probability that the mutation fixes (Kimura and Ohta,
1971; Kimura, 1983):

W (σ ′
|σ) ≈ Nµ(σ ′

|σ) · φ(σ ′
|σ), (1)

where N is an effective population size, µ(σ ′
|σ) is the nucleotide

or amino acid mutation rate from σ to σ ′, and φ(σ ′
|σ) is the

probability that a single σ ′ mutant fixes in a population of wild-
type σ . Wewill assume thatµ is nonzero only for genotypes σ and
σ ′ differing by a single nucleotide or amino acid.
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Given an ensemble of populations evolving with these rates,
we can define π(σ , t) to be the probability that a population
is monomorphic at the locus with genotype σ at time t . This
probability evolves over time via the master equation

d
dt
π(σ ′, t) =


σ∈S

[W (σ ′
|σ) π(σ , t)− W (σ |σ ′) π(σ ′, t)], (2)

where S is the set of all possible genotypes at the locus of
interest. This Markov process is finite and irreducible, since there
is a nonzero probability of reaching any genotype from any
other genotype in finite time. Hence it has a unique steady-state
distribution π̃(σ ) (Allen, 2011) satisfying
σ∈S

[W (σ ′
|σ) π̃(σ )− W (σ |σ ′)π̃(σ ′)] = 0. (3)

The form of this steady-state distribution depends on the
underlying population genetics model that gives the fixation
probability φ.

Themonomorphic limit permits us to consider two-allele popu-
lation models without mutation. First, we consider Wright–Fisher
and Moran models that describe populations of fixed size N , with
the selective value of each genotype σ specified by a single pa-
rameter f (σ )which we refer to as the genotype’s fitness. Next, we
extend our treatment to a model in which population size varies
periodically with time, and finally consider more general models
proposed by Gillespie (1974) which allow for different variances
in offspring number.

An important consequence of fixed size N is that only relative
fitnesses matter. Relative fitness can be an arithmetic difference or
a ratio, depending on the parameterization. These are equivalent
under a simple exponential mapping. Note that the model is
then symmetric under either a shift or rescaling of all fitnesses,
a symmetry which is convenient to maintain at all stages of
an approximation. For instance, in the Wright–Fisher or Moran
models, it is typical to incorporate fitness as a multiplicative
weight in the transition probabilities, in which case all observable
quantities depend only on the ratio of the wild-type to mutant
fitness. In particular, the probability that a single σ ′ mutant fixes in
a population of wild-type σ must only depend on r = f (σ ′)/f (σ )
and, implicitly, on the population size N: φ(σ ′

|σ) ≡ φ(r).

3. The scaling law and steady state

Since substitution rates depend on the fixation probabilityφ(r),
we aim to use arguments from population genetics to study time
reversibility (or simply ‘‘reversibility’’), which in turn determines
the form of the steady state. Time reversibility is equivalent to
detailed balance, a sufficient but not necessary condition for steady
state:

W (σ ′
|σ) π̃(σ ) = W (σ |σ ′) π̃(σ ′), (4)

where π̃(σ ) denotes the steady-state distribution. The left- and
right-hand sides of this equation are the steady-state probability
currents σ → σ ′ and σ ′

→ σ , respectively. Eq. (4) means that
these currents are exactly balanced for each pair of genotypes
σ and σ ′, and hence there are no net currents, consistent with
the notion that it is impossible to distinguish the forward and
backward flow of time in steady state.

Throughout this paper, we will assume that neutral evolution
– when all genotypes are selectively neutral relative to each
other – is reversible. In the neutral model, the fixation probability
φ(σ ′

|σ) = 1/N for all σ and σ ′, and hence Eq. (1) shows that the
neutral substitution rates are just the mutation rates (Kimura,
1983): W (σ ′

|σ) = µ(σ ′
|σ). Let the steady-state distribution of
the neutral substitution process be π̃0(σ ). Then reversibility of the
neutral model is expressed by

µ(σ ′
|σ) π̃0(σ ) = µ(σ |σ ′) π̃0(σ

′). (5)

Many popular neutral models are reversible (see Yang, 2006, for
a summary), although this condition is not guaranteed. This issue
will be explored further in Section 5.

We now consider the reversibility of the substitution rates
under selection, Nµ(σ ′

|σ)φ(r). Let us first define the function

ψ(r) ≡
φ(r)
φ(1/r)

. (6)

Hence the ratio of the forward and backward substitution rates
between σ and σ ′ is

W (σ ′
|σ)

W (σ |σ ′)
=
µ(σ ′

|σ)

µ(σ |σ ′)
·

φ


f (σ ′)

f (σ )


φ


f (σ )
f (σ ′)

 =
π̃0(σ

′)

π̃0(σ )
· ψ


f (σ ′)

f (σ )


, (7)

where we have invoked the reversibility of the neutral rates
(Eq. (5)). Studying the properties of the ψ function is the main
focus of this paper: it will determine the existence of reversibility
under selection and the form of the steady-state distribution. We
will investigate both its general properties and its form for specific
models.

We will first assume that the substitution rates W (σ ′
|σ) under

selection are reversible, whichwewill show completely constrains
the form of ψ and the steady state under selection π̃(σ ). In this
case, W (σ ′

|σ)π̃(σ ) = W (σ |σ ′)π̃(σ ′), and hence

π̃(σ ′)

π̃(σ )
=

W (σ ′
|σ)

W (σ |σ ′)
=
π̃0(σ

′)

π̃0(σ )
· ψ


f (σ ′)

f (σ )


. (8)

It follows that

ψ


f (σ ′′)

f (σ ′)


· ψ


f (σ ′)

f (σ )


= ψ


f (σ ′′)

f (σ )


, (9)

that is,ψ generally satisfiesψ(r1)ψ(r2) = ψ(r1r2). Thereforeψ(r)
must be a simple power law:

ψ(r) = rν, (10)

for some constant ν (Roberts, 1979). The constant ν can only
depend on the population size N , since this is the only other
parameter in our populationmodel. Wewill refer to Eq. (10) as the
scaling law for ψ . Using the definition of ψ(r) (Eq. (6)), one can
show that

ν =
2φ′(1)
φ(1)

= 2Nφ′(1), (11)

where φ′(1) = dφ(r)/dr|r=1 and φ(1) = 1/N is the neutral
fixation probability.

Now rewriting Eq. (8) with our explicit form of ψ ,

π̃(σ ′)

π̃(σ )
=
π̃0(σ

′)

π̃0(σ )


f (σ ′)

f (σ )

ν
, (12)

we can deduce the steady state:

π̃(σ ) =
1
Z
π̃0(σ ) (f (σ ))ν, (13)

where Z is a normalization constant. Note that Eq. (13) can be
rewritten in the form of a Boltzmann distribution, with energy
replaced by the negative logarithm of fitness:

π̃(σ ) =
1
Z
π̃0(σ ) eν log f (σ ). (14)



M. Manhart et al. / Theoretical Population Biology 82 (2012) 66–76 69
The Boltzmann form in Eq. (14) suggests a straightforward
analogy with statistical mechanics (Iwasa, 1988; Sella and Hirsh,
2005). One may think of the evolutionary model defined by
Eqs. (1) and (2) as describing an ensemble of monomorphic
populations taking random walks on a fitness landscape. The
ensemble of walkers eventually reaches steady state in genotype
space, which is given by Eq. (13) or (14). Populations will be
driven toward the peaks of the landscape by selection, which
manifests itself as the f ν factor in the steady state; this effect
becomes exponentially stronger as ν increases. This is analogous
to energy minimization in statistical mechanics. However, as in
statistical mechanics, we also expect the entropy of states to affect
the steady-state distribution, since typically there are few states
with optimal or near-optimal fitness and many states with low
fitness. This density of states is given by the neutral distribution
π̃0. The corresponding entropy (defined as − log π̃0) competes
with selection the same way energy and entropy compete in
statistical mechanics: selection favors high fitness states while
entropy favors low fitness states since there are usuallymanymore
of them. These competing forces reach some balance in the form of
a ‘‘free fitness’’ function that is maximized in the steady state, as
explored in Iwasa (1988) and Sella and Hirsh (2005).

This steady-state formula was derived in the special case of the
Moran model by Sella and Hirsh (2005). We generalize this earlier
result by showing that any reversible substitution process leads to
the power law forψ and the steady-state formula of Eq. (13). Note
that this conclusion, obtained in the monomorphic limit, requires
no additional assumptions, such as the weak-selection diffusion
approximation.

Next,we show that the power law implies reversibility.Wenow
assume Eq. (10) without assuming reversibility. Then

W (σ ′
|σ)

W (σ |σ ′)
=
π̃0(σ

′)

π̃0(σ )


f (σ ′)

f (σ )

ν
. (15)

We can combine this with the steady-state condition (Eq. (3)) to
show that

0 =


σ∈S

[W (σ ′
|σ)π̃(σ )− W (σ |σ ′)π̃(σ ′)]

=


σ∈S

W (σ |σ ′)


π̃0(σ

′)

π̃0(σ )


f (σ ′)

f (σ )

ν
π̃(σ )− π̃(σ ′)


. (16)

Clearly the distribution in Eq. (13) satisfies this condition, so itmust
be the unique steady state. The reversibility condition (Eq. (4)) is
satisfied as well, and thus the power law implies reversibility.

Therefore, time reversibility and the scaling behavior of ψ
are mathematically equivalent, and both lead to the steady-state
formula of Eq. (13). We will refer to these collective results as the
scaling law of the substitution process. This means that we can
concentrate our attention on determining the form of ψ , since
its scaling behavior tells us the extent to which reversibility and
Eq. (13) hold. Obviously not all models are reversible, so the scaling
lawwill not hold exactly in those cases. However, we demonstrate
below that the scaling behavior of ψ is at least an approximate
feature of a large class of models, and therefore reversibility and
the steady-state formula (Eq. (13)) provide a good approximation
within a sizable range of selection strengths.

Since itwill bemore convenient to describe the scaling behavior
of ψ on logarithmic scales, we expand logψ(r) in a power series
in log r around the neutral limit (log r = 0):

logψ(r) =

∞
j=0

c2j+1

(2j + 1)!
(log r)2j+1

= c1(log r)


1 +

1
c1

∞
j=1

c2j+1

(2j + 1)!
(log r)2j


, (17)
where

ci =


di

d(log r)i
logψ(r)


r=1

. (18)

Note that logψ(r) is an odd function in log r , and hence there are
only odd powers in the expansion. Since c1 = 2φ′(1)/φ(1) = ν,
we can write

logψ(r) = ν(log r)


1 +

1
ν

∞
j=1

c2j+1

(2j + 1)!
(log r)2j


. (19)

The scaling behavior of ψ is captured by the first-order term
in this expansion. As long as ν is nonzero, there will always be
someneighborhood of selection strengths around the neutral limit,
r = 1, in which the scaling law holds. We give an argument that
ν ≠ 0 in Appendix A. The argument relies on the universal nature
of the diffusion approximation to a population model. That is,
discrete population models can be approximated by a continuous
diffusion equation, and it is known that a large class of population
models are equivalent under this approximation (e.g., Ewens,
1967; Maruyama, 1970; Otto and Whitlock, 1997; Möhle, 2001;
Möhle and Sagitov, 2001; Whitlock, 2003; Wakeley, 2005). The
diffusion approximation is valid for weak-selection strengths: r −

1 = s ∼ O(N−1) (Ewens, 2004). Since the scaling behavior of
ψ appears in the diffusion regime, it is shared by a large class of
models.

The diffusion argument in Appendix A also gives us insight into
the interpretation of ν = 2Nφ′(1): it suggests that φ′(1) ∼ O(N0)
and therefore ν ∼ O(N). Thus we can interpret ν as a ‘‘scaling’’
effective population size that is of the same order as the census
population size for fixed-size models or the variance effective
population size for more general models. This is sensible in light of
the Boltzmann form of the steady state (Eq. (14)), which suggests
that 1/ν plays the role of temperature, i.e., the scale of stochastic
fluctuations.

There is a range of selection strengths in which the scaling law
is approximately valid. Specifically, we wish to find the range of
fitness ratios r , which wewill denote as (r−1

0 , r0)with r0 > 1, such
that

ν(1 ∓ ϵ) log r < logψ(r) < ν(1 ± ϵ) log r, (20)

where the upper signs are valid for r > 1, the lower signs are valid
for r < 1, and ϵ > 0 is a small number that we choose to control
the accuracy of the power law approximation. This range is
determined by the next coefficient in the expansion of Eq. (19),

c3
6ν

=
1

12ν


ν3 − 3ν2 + 2ν − 6N(ν − 2)φ′′(1)+ 4Nφ(3)(1)


, (21)

where we have evaluated the derivative of logψ(r) in terms
of φ(r) and substituted φ(1) = 1/N and ν = 2Nφ′(1). For
small ϵ,

|c3|
6ν
(log r0)2 = ϵ −→ r0 = exp


6νϵ
|c3|


. (22)

For any particular model, we need only compute ν and c3 to obtain
the range of selection strengths (r−1

0 , r0) for which the scaling law
is a good approximation.

Even outside of this range, however, deviations from the power
law likely lead to negligible errors in estimating the probabilities
of extremely unfit genotypes. This is a situation encounteredwhen
the monomorphic population is in steady state on the fitness
landscape, with the majority of time spent in locally optimal
high-fitness states from which many strongly deleterious but
no strongly beneficial substitutions can be made. Specifically,
assume that the range of fitness ratios for which the scaling-
law approximation is valid, computed from Eq. (22), is (r−1

0 , r0).



70 M. Manhart et al. / Theoretical Population Biology 82 (2012) 66–76
Suppose that genotype σ1 has fitness f1 and genotype σ2 has fitness
less than f1/r0 (r0 > 1), and also assume that they are separated by
a singlemutation. By construction, the substitution from σ1 to σ2 is
outside the range forwhich the power law is a valid approximation.
Now suppose that there is a third genotype σ3 (also separated by a
single mutation from σ1) with fitness of exactly f1/r0, so that its
probability is given by Eq. (13). Since ψ must be monotonically
increasing, the probability of the unfit σ2 is bounded from above
by the probability of σ3:

π̃(σ2) <
1
Z
π̃0(σ3) r−ν

0 f ν1 . (23)

Then the ratio of π̃(σ2) to π̃(σ1) has an upper bound as well:

π̃(σ2)

π̃(σ1)
<
π̃0(σ3) r−ν

0 f ν1
π̃0(σ1) f ν1

≃ r−ν
0 , (24)

where the last relation holds because the neutral probabilities
π̃0(σ1) and π̃0(σ3) are of the same order of magnitude (under the
reasonable assumption that mutation rates within the locus are
all of the same order). Since ν is proportional to the population
size, the maximum fitness ratio r0 in the scaling region need not
be very large to generate an enormous suppression of the unfit
genotype in steady state. Thus inaccuracies in the probabilities of
unfit genotypes caused by deviations from the scaling law will be
negligible for all practical purposes.

Furthermore, we can explicitly show that the selection
strengths of the dominant substitutions in steady state are
precisely those described by the diffusion approximation. In steady
state, it is sufficient to consider genotypes that have relative
probabilities, with respect to the most fit genotype, of at least
δ > 0. Then the relevant fitness ratios r are constrained by r−ν > δ
or r < δ−1/ν . Since ν ∼ O(N), we expand in powers of 1/ν to
obtain

r < 1 −
1
ν
log δ + O(ν−2). (25)

In terms of s = r − 1, this implies s ∼ O(ν−1) ∼ O(N−1), which
is the selection strength for which the diffusion approximation is
valid (Ewens, 2004). Therefore the steady state of substitutions
is adequately described by the diffusion approximation and thus
by the scaling law (Eqs. (10) and (13)). As a result, only the
optimal genotype and slightly less fit neighboring states have non-
negligible probabilities in steady state.

The steady-state distribution of Eq. (13) was previously derived
for the special cases of theMoran process by Sella and Hirsh (2005)
and for the diffusion limit of theWright–Fisher model by Sella and
Hirsh (2005), Lässig (2007), and Li (1987), among others. Indeed,
some form of this formula can even be found in Wright (1931).
We have generalized these results by showing that the steady-
state formula holds exactly for any reversible model, not just the
Moran process, without requiring any diffusion approximation. For
irreversible models, we have shown how this result arises as an
approximation, and determined its range of validity. Surprisingly,
weak selection dominates steady-state behavior in a wide class
of population models, justifying application of the steady-state
formula to systemswhichmay includemutationswith large fitness
effects.

4. Specific population models

We now verify the general results of the previous section for
specific models, computing the scaling effective population size ν
and the range of selection strengths for which the scaling law is a
good approximation.
4.1. The Moran model

Consider a haploid population of fixed size N with two alleles,
A and B, and let n denote the number of B alleles. The single time-
step transition probabilities of the Moran model are then (Moran,
1958; Ewens, 2004)

Π(n + 1|n) =
fB
f̄

n
N


1 −

n
N


Π(n − 1|n) =

fA
f̄

n
N


1 −

n
N


(26)

Π(n|n) = 1 −Π(n + 1|n)−Π(n − 1|n),

where fA, fB are fitnesses of alleles A and B and f̄ = (n/N)fB + (1−

n/N)fA is the average fitness. In this case the probability of fixing a
single mutant is (Ewens, 2004)

φ(r) =
1 − r−1

1 − r−N
, (27)

where r = fB/fA. A straightforward calculation shows that ψ(r) =

φ(r)/φ(1/r) = rN−1 (Sella and Hirsh, 2005). Hence ν = N − 1 for
Moran, and the scaling law holds exactly if the neutral substitution
rates are reversible (Fig. 1A).

4.2. The Wright–Fisher model

Next we define the simple Wright–Fisher model for a haploid
population of fixed size N with two alleles A and B of fitness fA
and fB, respectively (Wright, 1931; Fisher, 1958). Given that there
are n alleles of type B in the current generation, the probability of
having n′ B alleles in the next generation is (Rouzine et al., 2001;
Ewens, 2004)

Π(n′
|n) =


N
n′


qn

′

(1 − q)N−n′

, where q ≡
n
N

fB
f̄
. (28)

Unlike the Moran model, the Wright–Fisher model is ill-suited to
exact treatment, and hence the traditional approach to it has been
the diffusion approximation. The diffusion theory yields many
results in the neutral and weak-selection regimes (Kimura, 1955,
1957, 1962), such as the formula for the fixation probability:

φ(r) =
1 − e2(1−r)

1 − e2N(1−r)
, (29)

where r = fB/fA. However, there are two problems with the
classical diffusion approach. The first is that the moment functions
M(x, r) and V (x, r) are typically expanded to the lowest order in
r − 1 for the weak-selection regime (as in Appendix A), and so
all subsequent calculations, including those leading to the fixation
probability in Eq. (29), are not strictly valid for selection strengths
beyond s = r − 1 ∼ O(N−1). This expansion in selection strength,
however, is not necessary, as it is possible to carry out the diffusion
approximation using the exact moments derived from Eq. (28).
This approach yields accurate results in the polymorphic limit,
but fails to give an accurate formula for the fixation probability.
This is due to the inherent breakdown of diffusion when the
underlying discrete nature of themodel becomes important, which
is especially pronounced when selection effects are strong.

Since the diffusion approach is unsuitable to describe fixation
outside of a fairly narrow range of selection strengths, we take
a more accurate but numerical approach: computing fixation
probabilities directly from the discrete Markov chain defined in
Eq. (28) (Appendix B). The end result is an efficient numerical
procedure for accurate computation of the fixation probability,
and hence the ψ function, for any N and r . Fig. 2 compares a
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A C

B D

Fig. 1. Plot of logψ(r) as a function of log r for several population models. The scaling law appears as the straight line logψ(r) = ν log r . (A) The Moran model with
N = 1000. Here the scaling law is exact with ν = N − 1. (B) The simple Wright–Fisher model for N = 1000, calculated using the numerical procedure from Appendix B.
The numerical calculation is the dashed line and the scaling-law prediction is the solid line. Here the scaling law is not exact but holds as a good approximation for a large
range of selection strengths. The scaling effective population size is ν = 2(N − 1). (C) A modified Wright–Fisher model with population size N that varies sinusoidally as in
Eq. (33), with N0 = 100, α = 20 and T = 20 generations. Simulation results are shown as dots (with each dot an average over 108 independent runs), and the scaling law as

a solid line. The scaling law is an accurate approximation with ν = 2(Ne − 1), where Ne =


N2
0 − α2 is the harmonic mean of the census population sizes. Because explicit

simulations are required (as opposed to the numerical procedure used for the simpleWright–Fishermodel), poor statistics on deleterious fixations and beneficial extinctions
restricts us to considering smaller population sizes and range of selection strengths. (D) A model based on those in Gillespie (1975), where the mutant and wild-type may
have different variances in offspring number in addition to different means. Here fitness is defined as µ− σ 2/N , where µ is the average number of offspring and σ 2 is the
variance. As in (C), we use N = 100 for numerical reasons. The scaling law is deduced by a linear fit.
Fig. 2. Plot of φ(r), the probability that a single mutant fixes as a function of
its fitness ratio with the wild-type. For N = 1000, we compare an explicit
simulation of the Wright–Fisher model with our discrete Markov chain approach
(Eq. (B.8)) and Kimura’s diffusion approximation (Eq. (29)). The explicit simulation
data is averaged over 106 independent runs. The agreement between the discrete
Markov chain and the simulation is excellent, in contrast with the noticeable
disagreement between the simulation and the diffusion approximation at larger
selection strengths.

simulation of φ(r) with this numerical approach along with the
diffusion approximation (Eq. (29)). The numerical calculation and
the simulationmatch verywell for all selection strengths, but there
is noticeable disagreement with the diffusion result beyond the
weak-selection regime.

Now we consider the expansion of ψ(r) for the simple
Wright–Fisher model. We know from diffusion theory that ν =

2Nφ′(1) = 2(N − 1) (Kimura, 1962). Hence the expansion ofψ(r)
has the form

logψ(r) = 2(N − 1) log r + O((log r)3). (30)

Thus the power law and the steady state in Eq. (13) hold
approximately with ν = 2(N − 1). As Appendix B shows, the
form of the exact fixation probability is too complex to be
useful for analytical calculations, such as computing c3 in
Eq. (21) to determine the range of selection strengths for which
the power-law approximation is approximately valid. However,
we can numerically compute this next-order coefficient for a range
of N using the method in Appendix B to obtain derivatives of
fixation probabilities for Eq. (21). Fig. 3 shows, remarkably, that the
Fig. 3. Plot of c3/6ν as a function ofN for the simpleWright–Fishermodel, obtained
numerically from φ(r) using the procedure described in Appendix B. For realistic N
values it rapidly converges to the constant ≈−0.0093. This small value means that
the scaling-law approximation is valid for a large range of selection strengths, and
its N-independence means that this range does not shrink as N grows, contrary to
the prediction of diffusion theory.

next-order correction is independent of N for large N . Indeed, as
N increases to realistic values, the next-order coefficient rapidly
converges to a small value of

c3
6ν

≈ −0.0093. (31)

Its smallnessmeans that the scaling law is valid for a large range
of selection strengths in the simple Wright–Fisher model. Indeed,
for deviations from the power law of at most 5%, we set ϵ = 0.05
in Eq. (22) and find that the fitness ratio r is constrained to be
between 0.098 and 10.2. This corresponds to a selection coefficient
s between −0.9 and 9.2, well beyond the typical weak-selection
limits of ±O(N−1). A numerical calculation of ψ confirms this
large scaling region (Fig. 1B). Indeed, using the argument leading to
Eq. (24), unfit genotypes that might exhibit deviations from the
scaling law will be suppressed by at least a factor of r−ν

0 , where
(r−1

0 , r0) is the range of fitness ratios for which the scaling law
approximately holds. If we let r0 ≈ 10.2, even a very conservative
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N = 200means that these unfit genotypes are suppressed bymore
than 10−402 relative to the most fit genotype.

The N-independence of c3/6ν means that the size of the scaling
region does not change with N . The standard diffusion approach
implies a degeneracy of N and s: Ns ∼ O(1), so that as N increases,
the range of selection strengths that are considered weak shrinks.
This is not intrinsic to the Wright–Fisher model, but is merely
an emergent property in the diffusion limit (Wakeley, 2005). Our
result, however, shows that the scaling law is valid well beyond
diffusion. In contrast, c3/6ν calculated using Kimura’s diffusion
approximation (Eq. (29)) is given by:
c3
6ν

= −
1
6
N. (32)

Since this coefficient grows with N , the scaling region for r
shrinks as N increases. This is consistent with the selection-drift
degeneracy predicted by diffusion, but it is clearly misleading in
light of our analysis of the full Wright–Fisher model, since it would
erroneously imply that the scaling law and reversibility hold for
an extremely small range of selection strengths. This provides an
example of the danger posed by extrapolating diffusion results to
arbitrary regions of parameter space: the universality of the scaling
law is much stronger than diffusion could predict. While this turns
out to beunimportant for steady state,which is dominated byweak
selection, the fact that reversibility approximately holds in systems
with strong selection affects dynamical properties as well.

4.3. Other models

Models that share the diffusion limit with the Moran and
Wright–Fisher models will also share the scaling law. This
encompasses a wide class of exchangeable models (Cannings,
1974; Möhle, 2001; Möhle and Sagitov, 2001). For instance, many
generalizations of the Wright–Fisher model with varying N are
known to have properties equivalent to the simple Wright–Fisher
model with some effective population size Ne (Ewens, 1967; Otto
and Whitlock, 1997; Sjödin et al., 2005). Other generalizations,
such as incorporating the effects of subdivided populations, also
lead to equivalencies (Maruyama, 1970; Whitlock, 2003).

As an example we consider the case whenN varies periodically.
For periods of oscillation smaller than fixation times, it is known
that the Wright–Fisher diffusion results carry over with an
effective population size Ne equal to the harmonic mean of the
census population sizes (Ewens, 1967; Otto and Whitlock, 1997).
Let the transition probabilities be of the Wright–Fisher form
(Eq. (28)), with N changing over time according to

N(t) = N0 + α sin

2π t
T


, (33)

where N0 is the average size and T is the period of oscillation. The

harmonic mean can be shown to be Ne =


N2

0 − α2. In Fig. 1C,
we use explicit simulations to compute ψ(r), and we indeed
find scaling behavior with ν = 2(Ne − 1). This slope, predicted
through mapping to the simple Wright–Fisher model, is also
obtained by a linear fit to the explicit simulation. Thus the scaling
law still holds. For this model we do not have a computational
technique for fixation probabilities like the one used for the simple
Wright–Fishermodel Appendix B, and explicit simulations prevent
accurate statistics on fixation of very deleterious and extinction
of very beneficial mutations, limiting us to a smaller range of
selection strengths. Nevertheless, deviations beyond this smaller
range can still be shown to be negligible in steady state. As Fig. 1C
shows, the scaling region extends to at least r0 ≈ 1.08. Therefore
any unfit genotypes leading to deviations must be suppressed by
at least a factor of r−ν

0 : even for Ne = 200, this is a suppression
of 10−14.
Other models beyond the paradigms of exchangeable and
Wright–Fisher-type models may also demonstrate the scaling
behavior. For instance, whereas Wright–Fisher and Moran models
typically incorporate selective advantage as a difference in the
mean number of offspring between allele types, Gillespie proposed
to incorporate stochasticity at the level of selection by allowing
for different variances in offspring number (Gillespie, 1974, 1975,
1977). In thesemodels fitness is characterized byµ−σ 2/N , where
µ is the mean and σ 2 is the variance of the offspring number
for a given allele. Other authors have extended models of this
type to describe spatial variation, age structure, and demographic
stochasticity, which may be important for small populations or
populations subdivided into small demes (Proulx, 2000; Shpak,
2007; Parsons et al., 2010).

Here we simulate a model described in Gillespie (1975).
Consider a haploid population of two allele types, A and B. Each
generation, every individual iproduces a number of offspring 1+Xi,
where Xi is a binomially-distributed random variable. This variable
has mean µA and variance σ 2

A if i is of type A, or µB and σ 2
B if i is of

type B. Adding 1 to Xi simply guarantees that there are at least N
total offspring. These offspring are then culled by samplingwithout
replacement until there is a new generation of exactly N alleles.
We simulate this process to obtain theψ function (Fig. 1D). Fitness
ratios r are defined using the fitness definition fi = µi −σ

2
i /N . For

each i, XA or XB is generated from the binomial distribution B(n, pA)
or B(n, pB), respectively, where n = 10 and pA and pB are given by
the desired fitness ratio r (pA+pB = 1). By repeating the simulation
for several population sizes, we observe that ν is proportional to N
(for each N , ν is obtained by a linear fit, one of which is shown in
Fig. 1D).

5. Discussion

5.1. Universality

The notion of universality has been key to the success of
population genetics. The remarkable fact that many population
models with varying degrees of complexity share the same
diffusion limit when selection is weak has proven to be a strong
justification of their use as effective phenomenological theories
(Wakeley, 2005; Parsons et al., 2010). However, in light of the
growing body of evidence that strong or at least intermediate
selection may be important in some systems, it is desirable to
pursue models that make no a priori assumptions about the
strength of selection, and in particular, to find universal properties
of such models. Our study shows that strong-selection effects
are negligible in the steady state of the substitution process,
so that the universality of the diffusion limit gives rise to a
universal scaling law (Eq. (10)) which determines the steady-state
distribution (Eq. (13)). Furthermore, the scaling law is proven to
hold exactly for any reversible process (such as the Moran model),
and holds approximately within a sizable range of selection
strengths even for irreversible models. In some cases such as the
simple Wright–Fisher model, this range is so large that deviations
from it are not practically important. This finding significantly
generalizes previous work of Sella and Hirsh (2005), Lässig (2007),
Li (1987), and others.

5.2. Theoretical significance of time reversibility

The existence of reversibility in the weak-selection limit is not
surprising in light of diffusion theory. Indeed, diffusion models are
essentially always reversible (Watterson, 1977; Levikson, 1977;
Ewens, 2004), and diffusion is known to adequately capture weak-
selection behavior (Kurtz, 1981). The fact that reversibility is
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broken by some models and not others when selection is strong
is also clear. The Moran process, for instance, is well-known to be
exactly reversible in all regimes, as are all models with tridiagonal
transitionmatrices (Ewens, 2004). TheWright–Fisher model is not
exactly reversible, and indeed we see that reversibility becomes
significantly broken beyond a certain selection strength. In general,
we find that the scaling behavior of the ψ function (Eq. (6))
indicates the extent to which a model is time reversible.

But besides being a technical convenience, what is the deeper
significance of reversibility? In modern studies of population
genetics and evolution, reversibility plays a crucial role in linking
the prospective and retrospective paradigms (Ewens, 1990).
Traditional population models are prospective; the interest is in
calculating future properties given the current ones. However,
more recent approaches, especially due to the emergence of large-
scale molecular data, have led to the wide use of the retrospective
paradigm, which looks backward in time from the present. This
is the essence of coalescent theory and phylogenetics (Kingman,
1982; Yang, 2006). Time reversibility links the prospective and
retrospective paradigms and thus has been exploited, for instance,
in studies of age properties (Watterson, 1976, 1977; Ewens, 2004)
and in phylogenetic methods (Yang, 2006).

An additional consequence of reversibility is the nonexistence
of net probability currents in steady state, as guaranteed by
Eq. (4). That is, reversible Markov models will have no net
probability currents through any cycle of states, since such
a current would distinguish between forward and backward
directions in time. What does this mean for evolutionary models?
Consider, for instance, a monomorphic substitution model with
three alleles, A, B, and C , in order of decreasing fitness. If the
substitution process is irreversible, there would be a net current
around the loop C → B → A → C . The net currents C → B and
B → A flow from less fit to more fit alleles, but to complete the
cycle, there is also a current A → C from a more fit allele to a less
fit allele. This current must exist in any irreversible substitution
model with selection, a strange consequence of evolutionary
irreversibility.

5.3. Applications

Models of monomorphic populations evolving through succes-
sive substitutions on a fitness landscape have important applica-
tions to molecular data, since loci in many asexual populations are
believed to be well-approximated as monomorphic (Ochman and
Selander, 1984; Wick et al., 2002; Dos Vultos et al., 2008; Acht-
man, 2008). In particular, population genetics-based approaches
allow for inference of biologically meaningful parameters, such as
selection coefficients, as opposed to merely inferring overall sub-
stitution rates (McVean and Vieira, 2001). A precise form of the
steady-state distribution is important in these applications, since
it can be used to weigh ancestral nodes in phylogenetic inference
calculations.

Several recent studies of codonusage bias have employedpopu-
lation genetics-basedmodels of substitutionwith selection (e.g., Li,
1987; Bulmer, 1991; McVean and Charlesworth, 1999; McVean
and Vieira, 1999, 2001; Nielsen et al., 2007; Yang and Nielsen,
2008). Results for the steady-state distribution using the standard
Wright–Fisher diffusion approximation (Eq. (29)) for individual
codons have been reported that are consistent with Eq. (13) in the
limit of weak selection. However, there is growing experimental
evidence that big-benefit single mutations may occur more often
than previously thought. Studies on bacteriophages adjusting to
new environmental conditions reported fitness ratios of nearly 4
(Wichman et al., 1999; Bull et al., 2000; Holder and Bull, 2001; Bar-
rett et al., 2006b), clearly beyond the diffusion regime. Thus, it is
necessary to understand the role of thesemutations in steady state
and whether the steady-state distribution predicted from weak-
selectionmust bemodified in such systems. Our theoretical frame-
work has enabled us to show that mutations with large fitness
ratios are negligible in steady state.

Throughout this work we have assumed reversibility of the
underlying mutation process. Reversible models are much more
suitable to analytic and computational treatment, and thus
reversibility is a key feature of many widely-used nucleotide
and amino acid mutation models (e.g., Jukes and Cantor, 1969;
Kimura, 1980; Tamura and Nei, 1993; Felsenstein, 1981; Yang,
2006; Felsenstein, 2011). Moreover, Rodríguez et al. (1990) have
shown that it is not even possible tomake self-consistent estimates
of substitution rates from pairwise sequence alignments without
assuming reversibility, although somework has been done to treat
this type of molecular data with irreversible models (e.g., Barry
and Hartigan, 1987). Nevertheless, mutation rates are determined
by complex biochemical factors (such as replication and error-
correctingmachinery), so there is no obvious reason to believe that
reversibility must hold.

Our approach can be used to describe arbitrary fitness land-
scapes for the locus under consideration, including those with a
fitness function that depends on the state of the entire DNA or
protein sequence at the locus. Standard models of sequence evo-
lution typically assume that all nucleotides or amino acids evolve
independently of each other (Yang, 2006). This approximation
excludes correlations among sites within a locus and the corre-
sponding epistatic effects, whose importance is being increasingly
emphasized (DePristo et al., 2005; Bershtein et al., 2006;Weinreich
et al., 2006; Poelwijk et al., 2007).

One application of particular interest is the ability to infer
an arbitrary fitness landscape from sequence data under the
assumption of steady state. Indeed, Eq. (13) can be inverted to
obtain the fitness function in terms of the neutral distribution
and the steady-state distribution under selection (Lässig, 2007;
Mustonen et al., 2008):

log

π̃(σ )

π̃0(σ )


= ν log f (σ )− log Z . (34)

Here the left-hand side depends only on genotype distributions
that can, in principle, be obtained from sequence data. Since
the scaling effective population size ν and normalization Z are
unknown in real systems, Eq. (34) gives logarithmic fitness up to
an overall scaling and shift.

The application of Eq. (34) requires an ensemble of loci that have
reached evolutionary steady state. To assess this assumption, we
estimate the time required to reach steady state in our substitu-
tion model. As discussed in Section 2, the monomorphic limit re-
quiresµ ≤ 1/(LN logN) for neutral evolution (Champagnat, 2006;
Champagnat et al., 2006). Assuming that deleterious substitutions
donot affect equilibration towards steady state (due to exponential
suppression of their substitution rates), equilibration times will be
dominated by neutral evolution. Eq. (1) then implies that the neu-
tral substitution rate is equal to the mutation rate.

For sequences consisting of L nucleotides, we can model
the locus genotype space as the vertices of a hypercube in 2L
dimensions, since two bits encode a single nucleotide. A random
walk on a hypercube of dimension d with standard connectivity
reaches steady state on the order of d log d steps (Levin et al.,
2009). However, since the nucleotide sequence space hypercube
is more connected, we may take 2L log(2L) as an upper bound on
the required number of steps. Combining this with the minimum
average time to make a single neutral substitution step, LN logN ,
we estimate that evolutionary steady state will be reached on the
order of

(LN logN)× (2L log(2L)) generations. (35)
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For small genomic loci (L = O(10) nucleotides) in microbial
organisms with generation times of approximately 10−4 years, an
effective population size N ∼ 106 yields an estimated time to
reach steady state of about a million years, a reasonable value on
evolutionary timescales. Moreover, the presence of selection, the
additional connectivity of genotype space compared to a standard
hypercube, and a smaller effective population size N will further
shorten this timescale.

Moreover, the genotype space may be projected onto a lower-
dimensional subspace. Previous work has described models of TF
binding site evolution in S. cerevisiae in which the distribution
of binding sites has been projected onto free energies of TF-
DNA binding (Berg and Lässig, 2003; Berg et al., 2004; Lässig,
2007; Mustonen et al., 2008). The steady state is expected to
be reached more quickly in the one-dimensional energy space
than in the high-dimensional genotype space (Mustonen et al.,
2008). Mustonen et al. (2008) also find that energy distributions
of binding sites for the same TF in different yeast species
are remarkably similar despite significantly different divergence
times, suggesting that these distributions have indeed reached
evolutionary steady state.

This previous work, however, has relied purely on the
diffusion approximation of the Wright–Fisher model. Such an
approximation is not obviously valid in this application, since
strong-selection effects are expected from binding site biophysics:
single base pair mutations may be sufficient to completely inhibit
TF binding (Sarai and Takeda, 1989; Lehming et al., 1990),
potentially causing misregulation of an essential gene. We have
demonstrated in this work that strong selection does not affect the
steady state. The universality of the steady-state distribution then
justifies application of Eq. (34) to genomic data such as collections
of TF binding sites. Current work is in progress to apply these
results to evolution of regulatory sites in yeast, exploring the
biophysical origins of the underlying fitness landscapes.
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Appendix A. The scaling law in the weak-selection limit

Here we present an argument that the leading-order behavior
of ψ(r) is always a power law in the diffusion limit. Since ν =

2Nφ′(1), this is equivalent to showing that φ′(1) ≠ 0, which
means that the fixation probability must be locally linear around
the neutral limit r = 1. The fixation probability in the diffusion
approximation is given by Kimura (1962):

φ(r) =

 1/N
0 dx G(x, r) 1
0 dx G(x, r)

,

G(x, r) = exp


−2
 x

0
dy

M(y, r)
V (y, r)


,

(A.1)

whereM(x, r) and V (x, r) are the first twomoments of the change
in mutant fraction x per unit time. Define expansions of the
moments:

M(x, r) = M0(x)+ (r − 1)M1(x)+ O((r − 1)2)
V (x, r) = V0(x)+ (r − 1)V1(x)+ O((r − 1)2).

(A.2)

Since evolution under pure drift (r = 1) is unbiased, the mean
change in mutant fraction without selection is zero: M0(x) =

0. Substituting these expansions into Eq. (A.1) and expanding to
lowest order in r − 1, we obtain
φ(r) =
1
N

+ 2(r − 1)


1
N

 1

0
dx
 x

0
dy

M1(y)
V0(y)

−

 1/N

0
dx
 x

0
dy

M1(y)
V0(y)


+ O((r − 1)2). (A.3)

Therefore

φ′(1) = 2


1
N

 1

0
dx
 x

0
dy

M1(y)
V0(y)

−

 1/N

0
dx
 x

0
dy

M1(y)
V0(y)


, (A.4)

where φ′(1) = dφ(r)/dr|r=1. Note that V1(x) does not appear—
the correction to the second moment by weak selection does not
affect the fixation probability expanded to the lowest order. Thus,
barring some coincidental cancelation of terms in Eq. (A.4), φ′(1)
should be nonzero as long asM1(x) is nonzero.

To argue that M1(x) ≠ 0, we invoke an operational definition
of selection strength. Experimental measurements of selection
strength are often made by inferring it as the exponential growth
rate of a small mutant sub-population, at least for microorganisms
(Lenski and Elena, 2003), so we require that the population model
show this behavior. If X is the random variable denoting the
fraction of mutants in the population, its deterministic equation
is

d
dt

E[X] = E[M(X, r)], (A.5)

where E[·] is the expected value operator. In the limit of weak
selection (r ∼ 1) and small mutant fraction (X ≪ 1),

d
dt

E[X] ≈ (r − 1)E[M1(X)] ∝ (r − 1)E[X], (A.6)

assuming that M1(x) is linear in x to the lowest order. This yields
exponential growth at a rate proportional to the selection strength
s = r − 1. Therefore M1(x) should be nonzero and hence φ′(1) is
nonzero, establishing the power-law behavior of ψ(r) in the limit
of weak selection.

Eq. (A.4) suggests an interpretation of ν. Under the appropriate
rescaling of time units, the pure drift V0(x) is proportional to 1/N
and M1(x) is independent of N . For example, this is true in the
Wright–Fisher model with generations as the time unit, and it also
holds in the Moran model with the single birth/death time scaled
by a factor of N . Then Eq. (A.4) implies that φ′(1) ∼ O(N0), and
therefore ν ∼ O(N). This observation can be generalized to a
broader class of models in which V0(x) is proportional to 1/Ne,
whereNe is the variance effective population size (Cannings, 1974;
Ewens, 2004).

Appendix B. Exact Wright–Fisher fixation probability from
discrete Markov chain

Studying discreteMarkov chain properties of theWright–Fisher
model is not new (Ewens, 2004). However, previous work has
typically focused on explicit results using spectral theory, with
particular emphasis placed on neutral evolution. In contrast, we
will obtain an implicit result suitable for numerical application.
These results will allow investigation of the dynamics of themodel
under large selection effects that are beyond the scope of diffusion
theory.

We can represent the transition probabilities Π(n′
|n) from

Eq. (28) as elements of an (N+1)×(N+1)matrix P. Wewill adopt
the convention in which the final state n′ is the row index and the
initial state n is the column index. Transition probabilities between
different states at different time steps are given by the matrix
elements of powers of P. That is, the probability of transitioning



M. Manhart et al. / Theoretical Population Biology 82 (2012) 66–76 75
from n to n′ in m generations is given by (Pm)n′,n. Therefore the
probability of fixation by generation m from initial state n is given
by (Pm)N,n, and the probability of fixing a single mutant in the
infinite time limit is given by

lim
m→∞

(Pm)N,1 = φ(r). (B.1)

This limit can be conveniently expressed by permuting the
states to group the transient states (n = 1, . . . ,N−1) together and
the absorbing states (n = 0,N) together. Define elements of the
(N−1)×(N−1) submatrixAij = Π(i|j) for i, j = 1, . . . ,N−1; this
matrix describes transitions between transient states only. Next,
define elements of the 2 × (N − 1) submatrix Bαi = Π(α|i) for
α = 0,N and i = 1, . . . ,N − 1; this matrix describes single-
generation transitions from transient states to absorbing states.
Now we permute the indices to put P in the canonical form
(Kemeny and Snell, 1960):

P =


A 0
B 12


, (B.2)

where 0 is the (N − 1) × 2 zero matrix and 1k is a k × k identity
matrix. We can now easily compute the infinite time limit:

lim
m→∞

Pm
= lim

m→∞


A 0
B 12

m
= lim

m→∞


Am 0

B(1N−1 + A + · · · + Am−1) 12


=


0 0

B(1N−1 − A)−1 12


, (B.3)

since Am
→ 0 asm → ∞ and

(1N−1 − A)−1
=

∞
j=0

Aj. (B.4)

The fixation probability of a single mutant is given by the
element of the matrix B(1N−1 − A)−1 in the second row
(corresponding to the final state n = N) and the first column
(corresponding to the initial state n = 1):

φ(r) = (B(1N−1 − A)−1)2,1. (B.5)

Alternatively, this expression can be expanded in powers of A:

φ(r) = B2,1 +

N−1
i=1

B2,iAi,1 +

N−1
i,j=1

B2,iAi,jAj,1 + · · · . (B.6)

Each term in the expansion represents the probability of fixing
in a certain finite number of generations: the first term is the
probability of fixing in exactly one generation, the second term is
the probability of fixing in exactly two generations, etc.

For small population sizes N , Eq. (B.5) can be evaluated
explicitly:

N φ(r)
2 r2

1+r2

3 r3(8r3+48r2+6r+1)
8r6+48r5+6r4+65r3+6r2+48r+8

...
...

N rN aN (r)
bN (r)

(B.7)

Empirically we observe that aN(r) is a degree N(N −2) polynomial
and bN(r) is a degreeN(N−1) polynomial. Note that bN(r) appears
to be palindromic: bN(r) = rN(N−1)bN(1/r). Unfortunately, the
polynomials in these exact expressions grow increasingly in-
tractable withN , making a numerical computation of φ(r) the only
option. Eq. (B.5) can be rewritten as

(1N−1 − A)TuT
= BT , (B.8)

where u is the 2 × (N − 1) matrix of fixation and extinction
probabilities from all initial mutant fractions. The resulting system
of linear equations can be efficiently solved to find u for the
arbitrary fitness ratio r . The solution agrees extremely well with
explicit simulations (Fig. 2).
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