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Abstract
The growth of microbial populations in nature is dynamic, as
the cellular physiology and environment of these populations
change. Population dynamics have wide-ranging conse-
quences for ecology and evolution, determining how species
interact and which mutations fix. Understanding these dy-
namics is also critical for clinical and environmental applica-
tions in which we need to promote or inhibit microbial growth.
We first address the latest efforts and outstanding challenges
in measuring microbial population dynamics in natural envi-
ronments. We next summarize fundamental concepts and
empirical data on how population dynamics both shape and
are shaped by evolutionary processes. Finally, we discuss the
role of tradeoffs in microbial population dynamics, which may
reveal physiological constraints and help to maintain ecological
diversity. We find that current evidence for tradeoffs in popu-
lation dynamics is limited, but that consideration of the evolu-
tionary context of these tradeoffs is necessary for designing
future experiments that can better address this problem.
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What are the population dynamics of
microbes in natural environments?
The focus of microbiology has shifted in the last decade
from the study of tractable but simplified laboratory
environments to the properties of microbes in their

natural environments [1e3]. Evidence suggests that
microbial populations in these environments are highly
dynamic: individual taxa can grow 20-fold over the
course of a week in the surface ocean [4] or fluctuate
fourfold each day in the human gut microbiome [5].
Current estimates of minimum doubling times for most
known microbes range from tens of minutes to tens of
hours (Figure 1a) [6]. However, we are still beginning to
assemble a detailed quantitative picture of what these
population dynamics look like [7]. Since natural popu-
lations are always dispersed in space and contain genetic

variation even within species, here we focus on the
growth of microbial populations aggregated at a partic-
ular spatial and phylogenetic resolution. While under-
standing the variation of population dynamics across
short spatial scales or between closely related lineages
(including genetically identical single cells) is an
important problem, it is beyond the scope of the work
we discuss here.

There are three main scenarios for a population’s
growth: positive net growth (Figure 1b), as occurs for

strains colonizing new environments such as the infant
gut [8] or germ-free animal models [9]; negative net
growth (Figure 1c), as has been observed for microbial
taxa in anaerobic wastewater treatment [10]; or
approximately zero net growth such that abundance
remains constant (Figure 1d), which is the only scenario
feasible over long times. Zero net growth can arise either
because birth rates and death rates are balanced at every
time point (solid line in Figure 1d) or because birth and
death occur asynchronously, such that the population
spends some short periods of time undergoing net birth

and other periods undergoing net death while main-
taining zero net growth over long periods of time
(dashed line in Figure 1d). Indeed, there is the possi-
bility of different short-term behaviors for all of these
long-term scenarios (solid versus dashed lines in
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Figure 1

Fundamental aspects of microbial population dynamics. (a) Distribution of minimum doubling times for ~200,000 prokaryotic genome sequences
from the EGGO Database [6], as predicted from the codon usage bias of each genome. (b) Schematic abundance trajectory (solid line) for a microbial
population with a positive net growth rate, given by the slope of the log abundance over time (d log N/dt). An alternative trajectory with short-time variation
in net growth rate but the same total change in abundance is plotted on top (dotted line). (c) Similar to panel (b), but for a population with negative net
growth rate. (d) Similar to panel (b), but for a population with zero net growth rate. (e) Schematic time series of abundance for a microbial population with
zero net growth rate on long time scales but with short-time cycles of birth and death. In the right-hand panel, a zoomed-in view is shown of a single
growth cycle where the dotted lines mark discrete phases of growth, along with a general differential equation for the absolute abundance N according to
its time-dependent birth rate b(t) and death rate d(t). (f) Same as panel (e), but showing the time series of two abiotic resource concentrations (dark green
and yellow green) that drive microbial growth in panel (e). The differential equation describes the dynamics of the resource concentration Ri as it is
depleted by biomass growth, according to the biomass yield Yi (new biomass produced per unit resource).
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Figures 1b,c). It is often useful to break down these
short-term dynamics into discrete phases, each with an
approximately constant growth rate (Figure 1e) [11]. We
can then describe the trajectory of growth, a high-
dimensional object, as a lower-dimensional set of traits
(e.g., growth rates, lag times, etc.) corresponding to

discrete growth phases [12,13].

Measuring the population growth rate and distinguish-
ing the three scenarios (Figure 1bed) is in principle
straightforward given time-series data on absolute
abundances. Unfortunately, measuring the absolute
abundance of microbial strains in natural environments
remains difficult since traditional omics methods only
provide relative abundance [14], despite recent ad-
vances to calibrate these protocols for absolute abun-
dance by adding foreign cells or DNA sequences to the
Current Opinion in Systems Biology 2023, 36:100470
sample [8,10,14e16]. However, the more fundamental
obstacle to measuring growth dynamics is insufficient
time resolution. For example, the gut microbiome of a
single person can be sampled at best every six hours [5]
(although an average time series of resolution every two
hours can be reconstructed from replicate samples

[17]), but this frequency is insufficient to capture short
growth phases of 2e3 cell divisions. One possible solu-
tion to these problems has been to simulate natural
environments in the laboratory [18], where direct ab-
solute abundance measurements are easier.

An alternative strategy to the time-series approach relies
instead on inferring the instantaneous birth rate of a
population from a covariate property measured from a
single “snapshot” in time. For example, the age distri-
bution in a population of plants or animals at a single
www.sciencedirect.com
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Ecology and evolution of microbial growth Fink and Manhart 3
time point can be used to estimate the birth rate [19].
In the case of microbes, Korem et al. [20] used a
mechanistic model of cell division to identify the ratio of
maximum to minimum read coverage over the genome
(known as the peak-to-trough ratio) as a proxy for birth
rate. This method performed well for Escherichia coli in
lab environments, and the method has since been
extended to work with draft genomes [21,22] and lower

read coverage [23,24], but neither of these imple-
mentations performed as well in additional experiments
with Synechococcus [25] and a diverse marine community
[24,26]. One key limitation of the peak-to-trough ratio
is that it cannot be converted into a birth rate unless the
period of DNA replication is known [20], which may
vary across species and environments.

Since the instantaneous birth rate is a global regulator of
many cellular processes, snapshot methods have
also tried to correlate the birth rate with other cell

properties such as gene expression [27], proteome
allocation [28], or other omics data [29]. For these
methods to measure birth rates in natural environments,
they must be trained with measured birth rates from
these habitats. Such benchmarking data sets are
currently lacking, but they will have to use time series of
absolute abundance [26] or other methods that already
provide calibrated growth rates. Insight into the birth
rate of natural populations also comes from environ-
mental biogeochemistry, using nutrient turnover rates in
sediments [30] or by adding isotope-labeled nutrients as

chemical tracers [31,32].

A final category of methods for determining population
dynamics aims not to infer instantaneous birth rates in
samples but rather to infer properties of growth from
evolved patterns in genomes. One such method uses the
accumulation of mutations in a genome as a clock to
determine the historical birth rate of the species,
assuming that mutations occur only during cell divisions
and are largely neutral [33]. Other methods of this type
infer the maximum potential birth rate of a species. The
best genomic pattern here appears to be codon usage

bias [6,34]. Figure 1a shows an example of these data.
However, when tested in benchmark marine species, the
predicted maximum birth rate falls short of matching the
birth rate measured from absolute abundance data [26].
This may be because of qualitative differences between
the environmental conditions used for the training data
[34] and the species’ true natural environments, or
because the organism simply grows at rates much slower
than their maximum due to nutrient limitation or other
inhibiting factors. Besides codon usage bias, rRNA copy
number provides another genomic pattern that can show

a moderate correlation with birth rate in literature data
[35,36], but mostly fails to predict the actual birth rate
measured by isotope-labeled heavy water in a soil com-
munity [36].
www.sciencedirect.com
What causes population growth to vary with time?
Changes in the supply of resources are a likely factor in
many systems. For example, populations may grow fast
right after a pulse of resources but then decelerate and
eventually stop growing once they deplete the resources
(Figure 1f). Understanding population dynamics in
natural environments therefore requires understanding
resource dynamics as well. One major question here is

whether natural resource dynamics are more “chemo-
stat-like”ewhere the rate of resource influx is fast
compared to the rate of population birth and death,
leading to an approximately constant resource abun-
danceeor more “batch-like,” where the resource influx
is slow compared to population growth (i.e., resources
arrive in infrequent pulses) [37]. Identifying which
nutrients are limiting growth is also an important
question, especially for the problem of promoting or
inhibiting the growth of microbial populations. For
example, recent work has suggested that nitrogen is the

primary limiting nutrient for microbes in mammalian
guts [38], but it is also possible that multiple nutrients
could simultaneously co-limit growth [39]. Whereas
nutrients control population dynamics from the bottom-
up, other biological players in the environment like
phages, predators, and host immune systems can serve
as top-down controls of microbial populations. This is
particularly relevant for microbial pathogens, whose
death rate, for example, has been found to depend
strongly on the activity of host phagocytes [40].

What is the feedback between microbial
population dynamics and evolutionary
processes?
As with all aspects of biology, we must understand mi-
crobial population dynamics in the context of evolu-
tionary processes. On the one hand, population
dynamics affect key aspects of evolution (Figure 2a): the
population size determines the supply rate of new mu-
tations and other sources of genetic variation (e.g.,

horizontal gene transfer), as well as the strength of de-
mographic fluctuations (genetic drift) associated with
that variation. Population dynamics also determine how
selection acts on genetic variation by setting both the
total selection “budget”ethe overall magnitude of se-
lection on a mutation over a time period, which is pro-
portional to the number of generations over which that
mutation competes with its ancestor [41e43]eand the
allocation of that selection budget across traits affected
by the mutation (Figure 2b,c). For example, strain A
(blue) in Figure 2b undergoes more generations during

growth phase II than in phase III and hence has greater
selection on mutations affecting traits for phase II
(Figure 2c), while strain B (red) undergoes more gen-
erations in phase III and hence has greater selection on
that phase. Different patterns of resource supply and
mortality also play major roles. For example, Letten and
Ludington [37] recently demonstrated in a model that
Current Opinion in Systems Biology 2023, 36:100470
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Figure 2

Feedback between microbial population dynamics and evolution. (a) Schematic diagram for the feedback between population dynamics (left panel)
and evolutionary processes (right panel). In the ancestral population (gray growth curve on the left, gray cell on the right), there is a supply of new
genotypes (gray and orange cells) through spontaneous mutations, horizontal gene transfer (HGT), or migration, but only one of them (orange cell)
survives subsequent processes of selection, genetic drift, and clonal interference to reach fixation while the others go extinct (gray crosses). Population
dynamics set key parameters of this process such as the population mutation rate, strength of genetic drift, and selection. But the outcome of genetic
evolution (right panel) also influences the population dynamics in turn (left panel) by changing the population growth traits. For example, the evolved
population (orange curve, left panel) may have a shorter lag time compared to the growth of the ancestor (gray curve). (b) Schematic growth curves for
two species with different patterns of growth phases. Strains A (blue line) and B (red line) both have the same lag phase (marked as I), but strain A
experiences greater growth in the first phase of exponential growth (II), whereas strain B has more growth in the second phase of exponential growth (III).
(c) Schematic of the total budget and allocation of selection pressure for the two growth curves in panel (b). The height of the bars represents the total
magnitude (“budget”) of selection on a spontaneous mutation that appears on the backgrounds of strains A and B. The composition of the bars shows the
contribution of each growth phase (in Roman numerals) to selection in a mutant. (d) Simulated growth curve under the Monod model of growth rate
g(R) = gmax , R/(R + K) for an ancestral strain where the half-saturation concentration K is approximately equal to the initial resource concentration R0

[43]. We mark the two phases of the growth dynamics: phase I, where growth is approximately at the maximum growth rate, and phase II, where the
growth rate decelerates to zero as the resource is depleted. As a bar plot on the right shows, the selection budget for a mutation that increases the
maximum growth rate gmax and decreases the half-saturation concentration K by 1%. (e) Same as panel (d), but for an evolved microbial strain that has a
much lower half-saturation concentration, K/R0 z 0.01. In this evolved strain, the population dynamics have changed such that the phase of deceleration
(II) is almost negligible due to the low value of the trait K. As such, there is little selection allocated to this phase, as shown in the bar plot on the right.
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population dynamics with constant resource supply and
mortality (chemostat-like conditions) select for
different compositions of strains than population dy-
namics with pulsed resource supply and mortality
(batch-like conditions).

However, population dynamics not only shape, but are
also shaped by, evolution, as mutations affecting growth
traits fix. For example, evolution could change the length
Current Opinion in Systems Biology 2023, 36:100470
or growth rate of different growth phases (Figure 2a).
What patterns of population dynamics should we expect
to emerge from evolution? Evolution occurs in two main
steps (Figure 2a). First, genetic variation in growth traits
is supplied to the population, usually through sponta-
neous mutations, horizontal gene transfer, or migration,
but there can also be cryptic genetic variation whose
phenotypic effects are revealed after a change in envi-
ronment. Evolved trait patterns can be strongly
www.sciencedirect.com
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Ecology and evolution of microbial growth Fink and Manhart 5
influenced by biases in the supply of growth trait varia-
tion alone. For example, growth phases may evolve to be
shorter compared to lag phases if there are more muta-
tions that affect growth rates than mutations that affect
lag times. Previous studies have measured the supply of
variation in growth traits for various combinations of
traits, including lag times, growth rates, and yields for
gene deletion strains of E. coli [44e47] and Saccharomyces
cerevisiae [48], a collection of yeast hybrids [49], and a set
of E. coli strains with point mutations in the adenylate
kinase protein [50].

In general, these measurements show that mutations are
almost always pleiotropic, affecting multiple phases of
growth simultaneously. A key question about these
measurements is whether mutation effects for different
traits are correlated, especially in the form of a tradeoff,
which we discuss in the next section. However, these
data sets are relatively limited in scope and number due

to the difficulty of performing high-throughput mea-
surements of growth traits for large mutant libraries;
since current omics methods for growth dynamics are
insufficiently accurate (as discussed in the previous
section), these measurements typically require imaging
or tracking optical absorbance or fluorescence in
microplates. Improving these methods or otherwise
expanding the scale of these experiments is a critical
need for future work. We also expect mechanistic
models that can predict how mutations affect growth
traitsefor example, based on whole-genome metabolism

[51] or intracellular resource allocation [52]eto play a
crucial role in addressing questions beyond the practical
constraints of empirical measurements.

Given a supply of genetic variation in growth traits, that
variation is then shaped by selection, genetic drift, and
other population genetic processes (e.g., clonal inter-
ference) into the evolved patterns of traits (Figure 2a).
Laboratory competition experiments can empirically
measure aspects of these processes, but they are espe-
cially amenable to mathematical models since the
evolved trait patterns generally do not depend on mo-

lecular or cellular details. In particular, competition ex-
periments and models have determined the total budget
and allocation of selection across different traits
(Figure 2b,c), such as lag times versus growth rates
[41,47,53], maximum growth rates versus deceleration
rates [43,54], and secondary growth phases such as
fermentation versus respiration in yeast [42,55].

How much of the evolved population dynamics is due to
the mutation supply versus selection on the growth
traits? Evolution experiments in both E. coli [56,57] and
S. cerevisiae [58,59] found significantly different amounts
of evolutionary change on different growth traits under
selection, suggesting that the mutation supply was
limited for some of those traits. However, practical
limitations on measurements, as aforementioned, have
www.sciencedirect.com
constrained the scale of these experiments. Thus, we
still need more data on growth traits within and between
evolved populations, ideally over long evolutionary tra-
jectories, to comprehensively address this question.

Altogether, population dynamics and evolution form a
feedback loop (Figure 2a) [42]: population dynamics set
constraints for evolution over short times, but then

evolution changes those constraints over long times.
Previous work on the evolution of the half-saturation
concentration K (concentration of a limiting nutrient
at which growth rate is half its maximum) in the Monod
growth response provides a useful example [43].
Initially, the trait K determines the population dynamics
by controlling the phases of maximum growth and
deceleration, which shape evolution by determining the
allocation of selection for mutations to each of these
phases (Figure 2d). But as the trait K evolves to lower
concentrations, the population dynamics change as well:

the phase of deceleration becomes shorter, until the
population dynamics are almost entirely at maximum
speed (Figure 2e). This means there is little selection
for additional mutations in K.

Are there tradeoffs in microbial population
dynamics?
When considering patterns of evolved growth traits for
microbial populations, tradeoffs between these traits are

one of the most important possibilities. For example,
one species could grow faster but another species could
use resources more efficiently (rate-yield tradeoff) [60],
or one species could grow faster when resources are
abundant while another species could grow faster when
resources are scarce (rate-affinity tradeoff) [54,61].
Species could also have tradeoffs between their growth
on different resources altogether [55,62,63].

Tradeoffs matter for two main reasons: First, they can
reflect an underlying physiological or biophysical

constraint on cells. For example, the rate-yield tradeoff
has been hypothesized because of a thermodynamic
constraint in energy metabolism [60]. Another common
scenario is that if cells have only a fixed amount of re-
sources to invest in metabolism for two different nu-
trients, then different genotypes can have different
investment strategies, creating a tradeoff between
growth on those different nutrients. The second reason
tradeoffs in population dynamics matter is that they can
underlie complex ecological interactions between ge-
notypes. In particular, growth tradeoffs enable the

exploitation of distinct spatial or temporal nichesesuch
that different species have growth advantages at
different points in space or timeewhich can allow those
species to stably coexist [54,60,62]. These mechanisms
are especially important to ecology because they may
explain the maintenance of species diversity with few
resources. However, growth tradeoffs can produce other
complex ecological dynamics as well, including
Current Opinion in Systems Biology 2023, 36:100470
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multistability, non-transitive selection, and higher-order
interactions [41,42,53].

There are several different forms of tradeoffs when
considering microbial population dynamics, depending
on what type of variation (genotypic or environmental)
one considers and at what biological scale. We
enumerate the possibilities and their interpretations in

Box 1 and Figure 3. In general, tradeoffs across sponta-
neous mutations (Figure 3a,d) or environments
(Figure 3g) are most relevant for revealing underlying
constraints, while tradeoffs across genotypes within
Box 1. Types and interpretations of tradeoffs in microbial population

A tradeoff between two quantitative traits X and Yof population dynamics i
samples. Here we focus on traits that directly describe the population dyna
studies have focused on traits at molecular or cellular scales (e.g., rates o
correlate with traits of population growth [65]. However, this is often not the
must be cautious about extrapolating tradeoffs or other patterns across b

There are two major types of tradeoffs in population growth traits, which
interpretations.

1. Genotypic tradeoffs. In this case, one considers traits across a set of
existence of a tradeoff between two growth traits (e.g., lag time and m
traits for all genotypes in the set. A genotypic tradeoff exists if there is a n
Tradeoffs of these types in population dynamics traits appear to be rare
set of genotypes in various ways, but there are three most common typ
(a) Tradeoff across spontaneous mutations (Figure 3a). Here, the

reference genotype. This represents the genetic variation that ar
therefore it is an important determinant of the mutations that actu
selection or other evolutionary processes, a tradeoff here is indicati
on two different carbon sources, then a tradeoff across spontaneo
investments of a fixed pool of cellular resources into the metabolism
lag times across a set of E. coli strains with point mutations in the
exhibit tradeoffs, the whole set does not at a statistical level, sugg

(b) Tradeoff across standing variation within a population (Figure
population at a single point in time. This set of genotypes reflects
Figure 3a) and the outcome of selection and other evolutionary pro
the level of spontaneous mutations, tradeoffs induced by selection
tradeoffs at this level. Since this set represents genotypes that actua
opportunities for coexistence or other ecological dynamics associa
order interactions) [41,42,53,54].

(c) Tradeoff across independent populations (Figure 3c). These
previous case, these genotypes represent the combined outcome
co-occur in the same population, they may demonstrate a different
could be due to stochastic differences in the number of accumula
environmental variation that exists between the populations. As
to interpret.

2. Environmental tradeoffs. These tradeoffs correspond to negative cor
trajectories or treatments (Figure 3g,h). Note that this requires defining
with tradeoffs across spontaneous mutations, tradeoffs across environ
et al. [64] found an environmental tradeoff for a single E. coli strain betw
time Yafter shifting to a different carbon source (Figure 3i), which they

We finally note that individual cells and populations are characterized bym
dimensional reduction when evaluating two-dimensional tradeoffs as discu
could still be another type of constraint that is only apparent when consid
between two traits, the consequences for ecology and evolution may be u
trait also under selection. The dimensionality of trait space relevant for m

Current Opinion in Systems Biology 2023, 36:100470
populations (Figure 3b,d) are necessary for realizing
complex ecological dynamics such as stable coexistence.

What tradeoffs in microbial population dynamics are
actually realized? Existing data shows that tradeoffs
across genotypes occur sometimes but are not wide-
spread among closely related genotypes. A rate-affinity
tradeoff in population growth rates at high and low

concentrations of resources has been reported in a few
systems [67], while other studies have actually found
synergies across genotypes [68] or no correlation at all
[43]. Tests for rate-yield tradeoffs [57,69e75] and
dynamics.

s a negative correlation in the values of those traits across some set of
mics of microbes (e.g., lag time and doubling time), but some previous
f metabolic pathways or nutrient uptake) on the assumption that they
case (see Figure S12 and the Discussion section in Ref. [43]), so one
iological scales.

differ in the variation across samples they represent and hence their

samples representing different genotypes (Figure 3a–c). We test the
inimum doubling time of a growth curve, Figure 3d) by measuring the
egative correlation between those traits across genotypes (Figure 3e).
, at least across closely related sets of genotypes. One can choose the
es of genetic variation, each having a different meaning for a tradeoff.
samples are spontaneous mutations on the background of a single

ises spontaneously in a population during evolution (Figure 2a), and
ally fix in the population. Since this set of genotypes is not biased by
ve of an underlying constraint. For example, if X and Yare growth rates
us mutations may occur because the different mutants reflect different

of each carbon source. Figure 3f shows growth rates and reciprocal
adenylate kinase protein [50]; while some subsets of these mutations
esting there is no underlying constraint on both lag and growth.
3b). These genotypes are those that co-occur within a single, evolving
both the supply of spontaneous mutations (i.e., the pattern of traits in
cesses (Figure 2a). Tradeoffs here can therefore be due to tradeoffs at
, or both. As a result, one cannot deduce underlying constraints from
lly co-occur in a population at the same time, these tradeoffs represent
ted with tradeoffs (e.g., multistability, non-transitive selection, higher-

genotypes come from independently evolving populations. Like the
of mutation supply and selection, but because these genotypes do not
pattern of traits compared to those within populations (Figure 3b). This
ted mutations between populations [47], but it could also be due to
a result, tradeoffs across this type of variation are usually difficult

relations of traits for a single genotype across multiple environmental
traits X and Y in a way that matches across environmental variation. As
ments can also represent underlying constraints. For example, Basan
een its growth rate X in various carbon sources and the reciprocal lag
explain in terms of a constraint on the underlying metabolic regulation.

ore than just two traits, and so one must consider the possible effects of
ssed here. In particular, if there is no tradeoff between two traits, there
ering a higher-dimensional set of traits [55]. Even if there is a tradeoff
nclear from that data alone, as there can be hidden variation in a third
utations and selection remains an important topic for research [66].

www.sciencedirect.com
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tradeoffs between lag times and growth rates
[49,50,68,70,76] have also found mixed results
(e.g., Figure 3f).

We believe there are two major causes for the incon-
clusive status of many tradeoffs. First, tradeoffs do not
necessarily translate across biological scales. Some of the
proposed tradeoffs in microbial growth, such as rate-yield

and rate-affinity, were initially formulated for molecular-
or cellular-scale processes such as metabolic pathways,
but traits at those scales do not directly correspond to
growth traits for whole cells or populations [43,65].

Second, many discussions of tradeoffs have conflated
different types of genetic variation (Box 1 and
Figure 3aec), whose interpretations are quite different.
Tradeoffs across spontaneous mutations (Figure 3a)
Figure 3

Types of tradeoffs in microbial population dynamics. (a) An example set of
on the same background genotype. (b) An example set of genotypes (colored
set of genotypes (cells of different colors) that occur in independent populations
genotypes (colored cells) in a single environmental condition (gray box). For e
growth curve (gray line). (e) Schematic of data showing a tradeoff across gen
reciprocal lag time (y-axis) for a set of E. coli genotypes that differ by single
ancestral strain. (g) Schematic procedure for measuring a tradeoff across en
environmental treatment, two traits X (here shown as initial growth rate in first
growth phase) are estimated from the growth curve (gray line). (h) Schematic
and Y. (i) Measured growth rate before nutrient shift to acetate (x-axis) and re
pre-shift carbon sources (colors) [64].

www.sciencedirect.com
should directly reflect underlying physiological con-
straints, but tradeoffs across genotypes within or be-
tween populations (Figure 3b,c) depend on both the
supply of spontaneous mutations and the selection on
these traits (Figure 2a). For example, even if there is a
tradeoff across spontaneous mutations, there may be no
tradeoff in evolved populations if selection favors
generalist trait combinations over specialists. Moreover,

a tradeoff across lineages within evolved populations can
emerge in the absence of a tradeoff across spontaneous
mutations if the trait combinations of the lineages are
selectively neutral with respect to each other [47].

Future work on this topic will therefore require high-
throughput measurements of growth traits (rather
than uptake or metabolic traits) across well-defined sets
of genetic variants, ideally in systems where libraries of
genotypes (gray cells) that vary by spontaneous mutations (lightning bolts)
cells) that all co-occur in the same population (gray box). (c) An example
(colored boxes). (d) Schematic procedure for measuring a tradeoff across

ach genotype, the two growth traits X and Yare identified from the strain’s
otypes between two traits, X and Y. (f) Measured growth rate (x-axis) and
mutations in their adenylate kinase protein [50]. The gray dot marks the
vironments (colored shapes) for a single genotype (gray cell). For each
phase) and Y (here shown as reciprocal lag time after a shift to a second
of data showing a tradeoff across environments between the two traits X
ciprocal lag time after shift to acetate (y-axis) for E. coli under six different

Current Opinion in Systems Biology 2023, 36:100470
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spontaneous mutants and evolved lineages can be
directly compared. In particular, this would be valuable
for collections of strains or species that are already
known to coexist in the same community, so we can test
how much of this coexistence can be explained by any
growth tradeoffs [41,53,54,62].
Outlook
Understanding the population dynamics of microbes in
natural environments holds the promise of helping us
control microbial growth in clinical and environmental
systemsefor example, by promoting the growth of
commensal bacteria or inhibiting the growth of a path-

ogen. However, future progress will hinge on our ability
to make these measurements more accurate and sys-
tematic; we expect this will require a combination of
experimental innovations as well as insights from
modeling, especially in terms of identifying better
snapshot biomarkers of cellular birth and death. We have
also learned a great deal, both theoretically and empir-
ically, about how ecology and evolution may give rise to
these observed population dynamics. Here we also look
forward to improvements in high-throughput growth
phenotyping, especially for large mutant libraries and

within-community strain libraries, as well as multiscale
modeling that can predict mutation effects on growth
traits. Together these steps will help us toward our ul-
timate goal of a quantitative and predictive theory of
microbial population dynamics.
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