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Chapter 17

Statistical Physics of Evolutionary Trajectories

on Fitness Landscapes
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Random walks on multidimensional landscapes are important to many
areas of science and engineering. In particular, properties of adap-
tive first-passage trajectories on fitness landscapes determine population
fates and thus play a central role in evolutionary biology. The topogra-
phy of fitness landscapes and its effect on evolutionary dynamics have
been extensively studied in the literature. We will survey the current
knowledge in this field, focusing on a recently developed systematic ap-
proach to characterizing path lengths, mean times, and other statistics
of the first-passage path ensemble. This approach, based on general
techniques from statistical physics, is applicable to landscapes of arbi-
trary complexity and structure. It is especially well-suited to quantifying
the diversity of stochastic trajectories and repeatability of evolutionary
events. We demonstrate this methodology using a biophysical model of
protein evolution that describes how proteins maintain folding stability
while evolving new functions.

1. Introduction

Random walks on networks are ubiquitous in nature. As an example, con-

sider proteins, macromolecules that carry out a myriad of chemical and

mechanical functions inside cells [1]. Each protein is a chain of amino

acids chemically bonded to make a linear polypeptide [2], and the sequence

of amino acids determines the protein fold — a compact 3D conforma-

tion which has the minimum free energy. Unlike random heteropolymers,

naturally-occuring proteins have unique folds that they achieve robustly

and, in many cases, rapidly (on the time scales of micro- or milliseconds),
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starting from arbitrary unfolded conformations [3].

Proteins are produced in the unfolded state inside the cell and have to

fold before they can function. Protein conformations are often represented

by sets of dihedral angles (torsion angles defined by three chemical bonds

connecting four atoms [3]). Although in general the values of dihedral angles

are continuous, they are typically discretized in protein structure prediction

algorithms. In this case, protein folding can be viewed as a random walk

on a network of conformation states with connectivity defined by the move

set — a set of instructions for changing the dihedral angles in each step.

The network is very high-dimensional. For example, for a relatively

small protein with L = 100 amino acids, 2 dihedral angles per amino acid,

and 10◦ dihedral angle increments, there are 36200 possible conformations.

With a simple move set that updates one angle at a time, each node is con-

nected to 200× (36−1) = 7000 neighbors. In such a large space, how can a

protein reach its unique folded shape on reasonable time scales? This prob-

lem is known as the Levinthal paradox [4], and key to its resolution is the

idea of the protein folding landscape [5, 6]. Each protein conformation has

a free energy which is a function of the 200 dihedral angles, forming a free

energy landscape over the network. The free energy values at a node and

its neighbors determine rates of transition between nodes, e.g., according

to the Metropolis algorithm [7]. This landscape is believed to have a global

funnel shape, which allows the protein to find its folded structure efficiently

through incremental moves, without searching the entire space [6].

This picture generalizes to many other search problems on networks

in which each node, corresponding to a discrete (or discretized) state of

the system, can be assigned a value of the objective function which sets

the transition rates. As with protein folding, a major question is how the

landscape topography and the move set determine the dynamics, especially

first-passage processes. For example, an important quantity of interest is

the mean first-passage time (e.g., to the global minimum on the protein

folding landscape), which should be minimal in optimized algorithms [8].

The effect of landscape topography on dynamics is of particular im-

portance in evolutionary theory, the study of how populations of organ-

isms change over time through mutation and natural selection [9]. The

genotype (genetic state) of an organism is represented by a sequence σ of

letters drawn from an alphabet of size k. The sequence may represent nu-

cleotides in genomic DNA ({A,C,G,T}, k = 4), amino acids in a protein

(k = 20), or the binary presence/absence of a mutation at several genes

across the genome (k = 2). Assuming a fixed number L of sites in each
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sequence, the space of all kL possible sequences represents a network with

sequence nodes connected to each other if they differ by a mutation at a

single site [10]. For simplicity we neglect recombination between sequences

and insertion/deletion of sites which would redefine network connectivity

and in some cases the total number of nodes.

Each sequence σ can be assigned a fitness value F(σ) that characterizes

the reproductive success of an organism with that sequence. The exact

definition of fitness can vary widely across different contexts, often depend-

ing on the construction of a model or what is observable in an experi-

ment [11, 12]. Here we use a general theoretical definition of fitness as the

relative probability an individual with that sequence will survive to repro-

duce [13]. This probabilistic definition of fitness is sometimes known as

multiplicative fitness. In some circumstances it is more useful to consider

logF , or additive fitness, which is related to growth rate.

Either case defines a fitness landscape or, more precisely, a genotypic

fitness landscape [14]. Just as the folding landscape’s structure is key to

a protein’s ability to reach its folded state efficiently, the fitness landscape

is key to understanding how complex biological structures, such as bac-

terial flagella or the human eye, can arise through random, incremental

mutations [10, 15]. Evolutionary adaptation, therefore, is represented by

first-passage trajectories leading to local or global maxima on the fitness

landscape. Characterizing the statistical properties of these first-passage

trajectories is a major goal for evolutionary theory.

1.1. Evolutionary dynamics

In general, individuals in a population will have different sequences, occu-

pying a distribution of points on the fitness landscape. However, in the

limit u � (LN logN)−1 [16, 17], where u is the mutation rate (defined as

the probability of mutation per site per generation) and N is an effective

population size [13, 18], new mutations arise individually and either fix in

the population or disappear from it on time scales that are short compared

with the times between successive mutations [19–21]. Thus the population

is monomorphic and, apart from short transition periods, occupies a single

point in sequence space. The stochastic process of a new mutant appearing

and fixing in the population is known as substitution, and the substitution

rate from sequence σ to σ′ is given by [19]

〈σ′|W|σ〉 = Nuφ(s), (1)
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where Nu is the total number of new mutations in the population per site

per generation, and φ(s) is the probability of a single σ′ mutant fixing in a

population of σ when the selection coefficient is s = F(σ′)/F(σ)− 1 (s > 0

for beneficial mutations, s < 0 for deleterious ones).

The exact form of the fixation probability φ(s) depends on the underly-

ing population dynamics. However, there are some common approximations

valid in different asymptotic regimes [22]. For example, when N � 1 and

|s| � 1, all beneficial mutations are essentially guaranteed to fix, while dele-

terious ones are guaranteed to be eliminated. Similar to zero-temperature

Monte Carlo, the population can only undergo substitutions that increase

fitness, and all allowed substitutions occur with the same rate Nu (since

for |s| � 1, φ(s) ≈ 1 when s > 0 and φ(s) ≈ 0 when s < 0). Thus adap-

tation follows trajectories on the landscape along which fitness increases

monotonically. This approximation is common for studying dynamics on

model landscapes (see Sec. 1.5).

A different approximation holds when N � 1 but N−1 � |s| � 1. In

this case, φ(s) ≈ s for s > 0 and φ(s) ≈ 0 for s < 0 [13]. Thus deleterious

mutations always get eliminated as before, but beneficial mutations fix at

the rate Nus [23]. The true dynamics of real populations may not always

fall into these special cases, instead involving more complex dynamics such

as interference between multiple simultaneous mutations [24]. However, the

simplified evolutionary dynamics described here are useful when our main

objective is to qualitatively understand the role of the fitness landscape in

constraining evolution over long time scales, rather than fine-grained details

of short-time population dynamics.

1.2. Epistasis

The most basic aspect of fitness landscape topography is known as epis-

tasis. Let the sequence σ be σ1σ2 . . . σL, where σμ is the letter at site

μ ∈ {1, . . . , L}. In general the multiplicative fitness function F(σ) cannot

be decomposed into a product of independent contributions from each site

μ or, equivalently, the additive fitness logF(σ) cannot be decomposed into

a sum. This means that the fitness effect of a mutation at a given site may

depend on the state of other sites. If this is true, the sites will be correlated,

which can be thought of as a coupling between the sites. Mathematically

this is reminiscent of a Hamiltonian for a system of interacting particles.

Epistasis is precisely this interactive coupling in the context of genotypic

sequences. Following convention, we use additive fitness here (logF), and
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Fig. 1. The four qualitative types of epistasis for a two-letter, two-site model. From
left to right: no epistasis, where each mutation has the same effect on additive fitness
regardless of the state of the other site, yielding a linear landscape; magnitude epistasis,
where the magnitude (but not the sign) of the additive fitness effect of a mutation
depends on the other site; sign epistasis, where the sign of a mutation’s fitness effect
(beneficial or deleterious) depends on the other site; reciprocal sign epistasis, where
multiple instances of sign epistasis can lead to local fitness maxima.

categorize types of epistasis according to the qualitative differences in the

additive fitness effects of mutations. We summarize the four possible cases

using a two-letter, two-site model in Fig. 1 in which sequence AA evolves

into sequence BB, which has the highest fitness. In the first case on the left

of Fig. 1, there is no epistasis: the fitness effect of A → B substitution at

site 2 is the same regardless of the state of site 1, and vice versa. Thus the

additive fitness can be decomposed into a sum of contributions from each

site: logF(σ) = logF1(σ
1) + logF2(σ

2), i.e., the additive fitness landscape

is linear in sequence space. Under the aforementioned strong-selection evo-

lutionary dynamics, both trajectories from AA to the global maximum at

BB are accessible.

In the second case of Fig. 1, the additive fitness effect of A → B at site

2 differs in magnitude but not in sign depending on whether site 1 has A

or B. This situation is known as magnitude epistasis [25, 26]. Magnitude

epistasis does not completely block any trajectories, but affects quantitative

aspects of dynamics such as adaptation times. Note that there are two

kinds of magnitude epistasis: one in which the fitness benefit of a mutation

is enhanced by the presence of other mutations (as shown in the second

panel on the left of Fig. 1), and the “diminishing returns” case in which

the fitness benefit is decreased by other mutations.

The third case of Fig. 1 shows how the A → B substitution at site

2 can have opposite effects on fitness depending on the state of site 1:

it is deleterious if σ1 = A, but beneficial if σ1 = B. Since the sign of

the fitness effect depends on the other site, the situation is known as sign

epistasis. Sign epistasis can significantly affect accessibility of genotypes
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on the landscape by blocking trajectories: under strong-selection dynamics,

the trajectory AA → AB → BB is unavailable since it requires a deleterious

substitution. When sign epistasis exists at multiple sites, it is known as

reciprocal sign epistasis, as shown in the fourth case of Fig. 1. Reciprocal

sign epistasis is a necessary condition for the existence of multiple local

maxima [27]. As the examples in Fig. 1 show, epistasis underlies landscape

ruggedness that can constrain evolutionary trajectories. Thus the existence

and nature of epistasis is of prime interest in evolution.

1.3. Measures of landscape ruggedness and accessibility

Numerous measures have been proposed to quantify epistatic ruggedness

of fitness landscapes and accessibility of evolutionary trajectories (summa-

rized in [12]). One commonly-used measure is the number of local fitness

maxima, which is indicative of the presence and type of epistasis [27]: more

local maxima indicates a more rugged or epistatic landscape. For binary

alphabets, deviations of the additive fitness function from linearity can be

quantified by fitting a linear function and calculating the sum of squares of

residuals, known as a roughness parameter [12]. A more local measure of

ruggedness can be obtained by considering all pairs of sites and all pairs of

possible letters at those sites, and then determining the sub-landscape for

each combination like those shown in Fig. 1. Each sub-landscape can then

be classified into one of the four categories of epistasis.

Other measures consider accessibility and other properties of the first-

passage trajectories themselves, especially those leading to the global fitness

maximum. For example, without epistasis all first-passage trajectories to

the global maximum from any other point on the landscape are accessible

under strong-selection dynamics, but with sign epistasis some trajectories

become blocked. The distributions of first-passage trajectory times and

lengths are important for understanding the effect of landscape ruggedness

on adaptation [28–32].

1.4. Repeatability of evolution and diversity of evolutionary

trajectories

Landscape ruggedness is especially relevant in its effect on the repeata-

bility of evolution, a question of paramount importance in biology [33]. If

“life’s tape” could be replayed, would we see a completely different outcome

because evolution is a largely stochastic phenomenon, or are accessible evo-

lutionary trajectories so constrained that the outcome would have been the



February 5, 2014 9:20 BC9104 – First-Passage Phenomena and their Applications 17˙Chapter page 422

422 M. Manhart and A. V. Morozov

same or recognizably similar [15]?

Discussing this question in general entails many issues, including envi-

ronmental conditions, initial conditions, and details of population dynam-

ics. One specific approach focuses on the diversity of first-passage trajecto-

ries leading from an ancestral state to a particular descendant state or set

of states. One assessment of this diversity is simply counting the number

of such trajectories. For example, Weinreich and co-workers found that

only a small fraction of all possible trajectories from wild-type E. coli to

a strain resistant to antibiotics was accessible to adaptation [34, 35]. In

another approach, Koonin and co-workers devised a measure called mean

path divergence [33, 36]:

D =
∑

ϕ1 �=ϕ2

Δ(ϕ1, ϕ2)p(ϕ1)p(ϕ2), (2)

where the sum is over all pairs of distinct paths in an ensemble, p(ϕ) is the

probability of path ϕ, and Δ(ϕ1, ϕ2) is the path distance between ϕ1 and

ϕ2. The path distance is defined as the average of the shortest Hamming

distances between each sequence σ1 on path ϕ1 and all sequences on path

ϕ2, and vice versa:

Δ(ϕ1, ϕ2) =
1

L[ϕ1] + L[ϕ2]

( ∑
σ1∈ϕ1

argmin
σ2∈ϕ2

d(σ1, σ2)

+
∑

σ2∈ϕ2

argmin
σ1∈ϕ1

d(σ2, σ1)

)
, (3)

where L[ϕ] is the length (number of jumps) of path ϕ and d(σ1, σ2) is the

Hamming distance between σ1 and σ2. The divergence therefore captures

not only how many paths are available, but weighs them by their proximity

in sequence space. Other measures of path diversity, such as path entropy

and the distribution of path lengths and times [32], are discussed in Secs. 2

and 3.

1.5. Model and empirical landscapes

A few simple models have traditionally dominated theoretical studies of fit-

ness landscapes and evolutionary trajectories. These models serve as useful

null hypotheses or limits of more complex scenarios; they generally consider

sequences with binary alphabets (k = 2), in which case sequence space is a
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unit hypercube. Without attempting to account for every landscape pro-

posed in the literature, we will discuss and motivate several popular choices.

In Kauffman’s NK (or “LK”) model [31, 37, 38], each of the L sites in the

gene (or genes in the genome) interacts withK other sites chosen by random

sampling. The additive fitness of genotype σ is given by

logF(σ) =

L∑
μ=1

logFμ(σ
μ, σn1(μ), . . . , σnK(μ)), (4)

where n1(μ), . . . , nK(μ) are the randomly-chosen interaction partners of site

μ. The single-site fitnesses Fμ are obtained by sampling from a continuous

distribution; each combination of 2K+1 possible states of the argument

corresponds to an independent sampling. When K = 0, the NK landscape

becomes fully additive and thus non-epistatic. Because in this limit the

landscape is smooth and has a single maximum, it is sometimes called the

“Mount Fuji” model [39]. The amount of epistasis, or landscape ruggedness,

can be tuned by increasing K to the maximum value of L − 1. With

K = L− 1, the fitnesses of different sequences are uncorrelated; this model

is called the “House of Cards” [40] due to the unpredictable fitness effects of

mutations. Realistically, closely-related genotypes should have correlated

fitnesses, so this limit serves mainly as a null model. Many results are

known for the NK landscape and its adaptive first-passage trajectories [28,

30, 37, 41, 42]. For example, in the K = L− 1 limit the average number of

local maxima is kL/(L(k − 1) + 1) for any alphabet size k [12].

Another class of models starts from a non-epistatic landscape and adds

a tunable amount of ruggedness to it. For example, in the “rough Mount

Fuji” model [39], sequence σ0 is arbitrarily picked as the global maximum

and the fitness of sequence σ is given by

logF(σ) = η(σ)− θd(σ, σ0), (5)

where d(σ, σ0) is the Hamming distance between sequences σ and σ0, θ is

the parameter which controls the slope of the smooth part of the landscape,

and η(σ) is a zero-mean random variable sampled independently for each

sequence σ. The ruggedness of the landscape is controlled by the ratio of

θ and the standard deviation of the distribution from which the random

variables η(σ) are sampled.

The landscapes described above are dominated by selection. Another

approach to evolution is based on the neutral theory, which postulates that
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the majority of mutations have either no phenotypic effect (i.e., are selec-

tively neutral) or are strongly deleterious and thus rapidly removed from the

population [19]. This picture leads to evolution on a neutral network where

all viable nodes have the same fitness [10, 43]. With some probability, a vi-

able individual can acquire a lethal mutation from which it cannot recover,

and will disappear from the population. Thus the population as a whole

can only make transitions between viable, selectively-neutral states. Evo-

lution on such a landscape is reminiscent of the percolation problem [44]:

each node is assigned fitness 1 with probability p and fitness zero with

probability 1− p, independent of the other nodes [31].

Due to the enormous number of sequences involved, the structure of fit-

ness landscapes is difficult to probe experimentally. Typically, only a small

number of sites is studied (approximately 4 to 9, summarized in [12]), and

at those sites only a subset of all possible mutations is introduced, result-

ing in fitness measurements for tens or hundreds of different genotypes. In

addition, because genotype survivability is not directly accessible in exper-

iments, proxy measures of fitness are employed, such as growth rates and

antibiotic resistance. Although these empirical studies can be used to probe

the local structure of the landscapes, they are insufficient for analyzing the

global properties of adaptive trajectories because adaptation may involve

mutations outside of the experimentally-probed subset.

Nevertheless, many studies have attempted to characterize empirical

landscapes in terms of their epistatic features, accessibility, and correspon-

dence to theoretical models [12, 25, 31, 34–36, 45–47]. For example, magni-

tude and sign epistasis have been observed, as well as significant constraints

on evolutionary trajectories [34, 35, 46, 47]. One general finding of such

studies is that empirical landscapes include some epistasis, but are far from

the House of Cards regime in which all fitness values are completely un-

correlated [25]. The emerging picture is closer to the rough Mount Fuji

model, which includes a limited amount of epistasis around a mostly linear

landscape [12].

2. Statistical physics of stochastic paths

Analytical treatments of evolutionary dynamics on fitness landscapes are

typically restricted to uncorrelated or highly symmetric models, such as

those described in Sec. 1.5. Simulations, meanwhile, can suffer from nu-

merical inaccuracy and may be computationally expensive when rare events

are considered. More systematic tools are necessary, especially tools that
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directly address statistical properties of stochastic paths that are relevant

for understanding the diversity of evolutionary pathways.

Physics and chemistry have long grappled with similar problems in the

field of reaction rate theory [48], which studies rare transitions between

metastable states that model phenomena ranging from protein folding [3]

to chemical reactions [49]. In these systems, quantities of interest include

not only mean first-passage times and reaction rates but also the spatial

distribution of transition paths and identification of kinetic bottlenecks.

Transition state theory is a well-known approach to these problems;

however, it relies on the existence and a priori identification of key tran-

sition states [48]. A more recent development has been transition path

sampling [49–54], in which paths are directly sampled via Monte Carlo to

estimate their statistical properties. Similar methods have been used in

phylogenetic analysis of protein sequences [55–59]. These techniques are

based on a finite sample of paths and do not provide natural cutoffs for

the size of the sample, which may lead to noisy estimates of various path

statistics. Another technique, called transition path theory [60–64], relies

on explicit solutions to the Kolmogorov backward equation. This approach,

though more systematic, does not directly address the diversity of paths.

Here we discuss a general statistical physics treatment of stochastic

paths that provides many useful tools for analyzing evolutionary models and

other stochastic processes [32]. A semi-Markov process (i.e., continuous-

time random walk [65]) on the discrete state space S consists of jumps

between states and continuous-time waiting within states; the jump process

is memoryless, but the waiting process need not be. Thus the process

is defined by a set of jump probabilities, 〈σ′|Q|σ〉 for the jump σ → σ′

(σ, σ′ ∈ S), and waiting time distributions ψσ(t), which is the probability

density of waiting exactly time t in state σ before jumping out. We assume

that ψσ(t) has finite mean w(σ) for all σ ∈ S. For fully Markov processes

with memoryless waiting, ψσ(t) = e−t/w(σ)/w(σ); non-exponential ψσ(t)

may arise due to coarse-graining a Markov process [66–68]. Note that the

space S equipped with the jump matrix Q defines a network with directed

and weighted edges.

Define a trajectory as a path through state space ϕ = {σ0, σ1, . . . , σ�}
combined with a set of intermediate waiting times {t0, t1, . . . , t�−1}, where
ti is the waiting time in σi. We consider the trajectory finished once it

reaches the final state σ�, and thus do not count the waiting time in that

state. The probability functional of starting in the initial state σ0 and
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completing the path ϕ no later than time t is

Π[ϕ, t] = π(σ0)

(
�−1∏
i=0

〈σi+1|Q|σj〉
)

×
(

�−1∏
i=0

∫ ∞

0

dti ψσi(ti)

)
Θ

(
t−

�−1∑
i=0

ti

)
, (6)

where the first factor is the initial state probability π(σ0), the second is

the product of jump probabilities, the third integrates over waiting times,

and the fourth constrains the total waiting time to be less than t (Θ is the

Heaviside step function). In the t → ∞ limit we obtain the probability of

the path ϕ for any duration,

Π∞[ϕ] = π(σ0)

�−1∏
i=0

〈σi+1|Q|σi〉, (7)

which is just the product of jump probabilities. In the time-dependent case,

the Laplace transform of Eq. (6) results in a simpler expression through

deconvolution [69]:

Π̃[ϕ, s] =
π(σ0)

s

�−1∏
i=0

〈σi+1|Q|σi〉 ψ̃σi(s), (8)

where ψ̃σi(s) is the Laplace transform of ψσi(t). For Markov processes,

Eq. (8) becomes [70]

Π̃[ϕ, s] =
π(σ0)

s

�−1∏
i=0

〈σi+1|Q|σi〉
1 + sw(σ)

. (9)

2.1. Path ensemble averages

The distribution Π[ϕ, t] in principle contains all statistical information on

a set of paths. However, direct analysis of this distribution is typically

prohibitive due to the high dimensionality of path space. The simplest

alternative entails taking averages of various path properties over this dis-

tribution. Let Φ be an ensemble of paths that defines some dynamical

process; for example, this may be all first-passage paths from a set of ini-

tial states Si to a set of final states Sf . The partition function for this
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ensemble is

ZΦ(t) =
∑
ϕ∈Φ

Π[ϕ, t], (10)

which represents the total probability of reaching Sf from Si by time t via

paths in Φ.

We define the following path functionals:

L[ϕ] = length (number of jumps) of ϕ, Iσ[ϕ] =
{
1 if σ ∈ ϕ,

0 otherwise,

T [ϕ] =

�−1∑
i=0

w(σi), Tσ[ϕ] =
�−1∑
i=0

δσ,σiw(σi), (11)

where δ is the Kronecker delta. We can now express various path statistics

as averages of these functionals over the ensemble, conditioned on complet-

ing the process by time t. For example, the average time of paths is given

by [53]

τ̄Φ(t) = 〈T (t)〉Φ =
1

ZΦ(t)

∑
ϕ∈Φ

T [ϕ]Π[ϕ, t]. (12)

The distribution of path lengths is given by

ρΦ(�, t) =
1

ZΦ(t)

∑
ϕ∈Φ

δ�,L[ϕ]Π[ϕ, t], (13)

from which the average length �̄Φ(t) = 〈L(t)〉Φ and standard deviation of

length �sdΦ (t) are readily obtained.

Averages over state-dependent functionals can be used to characterize

the spatial structure of paths. For example, the fraction of time paths

spend in a state σ can be expressed as 〈Tσ(t)〉Φ/τ̄Φ(t); this is a normalized

distribution over all states σ ∈ S and therefore it represents the density of

states on the paths in the ensemble Φ. The quantity 〈Tσ(t)〉Φ/w(σ) gives

the average number of visits to state σ. The probability that a path will

visit a state σ at all is given by 〈Iσ(t)〉Φ, which we will refer to as the

density of paths in the ensemble Φ. We can also construct the two-point

correlation function 〈Iσ′ (t)Iσ(t)〉Φ, which gives the probability of paths

passing through both σ and σ′.
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In many cases we are interested in the time-independent versions of these

quantities, i.e., statistical properties of paths taking any amount of time to

finish. These can be obtained as the t→ ∞ limit of the above expressions,

which amounts to replacing Π[ϕ, t] (Eq. (6)) with Π∞[ϕ] (Eq. (7)). We

will denote these time-independent properties by simply omitting the time

dependence, e.g., limt→∞ τ̄Φ(t) = τ̄Φ. The convergence of these limits de-

pends on the path ensemble Φ. For example, if Φ includes all possible paths

connecting the initial and final states, including those that visit the final

state multiple times, then these limits generally diverge: typically, there is

no finite average time or length for these paths. However, restriction to

first-passage paths in Φ, as is our focus here, guarantees convergence.

This formalism also allows for development of path thermodynamics.

The entropy of the path ensemble is given by

SΦ(t) =− 1

ZΦ(t)

∑
ϕ∈Φ

Π[ϕ, t] log

(
Π[ϕ, t]

ZΦ(t)

)

=− 〈log Π(t)〉Φ + logZΦ(t).

(14)

Indeed, if we define the path Hamiltonian to be

H[ϕ, t] = − log(Π[ϕ, t]), (15)

(so that Π[ϕ, t] = e−H[ϕ,t]), we can express the path ensemble free energy

as

FΦ(t) = 〈H(t)〉Φ − SΦ(t) = − logZΦ(t). (16)

The partition function ZΦ(t) monotonically increases with time. Therefore

the free energy FΦ(t) monotonically decreases as t → ∞, corresponding to

equilibration of the path ensemble.

For recurrent processes (i.e., where the system will almost surely reach

the final states eventually [67]), limt→∞ ZΦ(t) = ZΦ = 1, and hence equi-

librium free energy is zero. In these cases, equilibrium path entropy is equal

to the average Hamiltonian. If the ensemble Φ consists of only a single path

with nonzero probability, its entropy is SΦ = 0. This situation may arise

if a landscape is so constrained that only a single viable pathway exists

between the initial and final states. In contrast, consider a purely random

walk on a homogeneous network with γ nearest neighbors per node. The

jump probability between any pair of neighboring nodes is thus γ−1, so any
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path ϕ has probability Π∞[ϕ] = γ−L[ϕ], and the entropy of the ensemble is

given by

SΦ = −〈logΠ∞〉Φ = �̄Φ log γ. (17)

Note that path entropy and the average path Hamiltonian scale with the

average path length, which defines a notion of extensivity in the path en-

semble. This is sensible if we think of a path as a gas of particles, where

each jump in the path corresponds to a particle. The path ensemble, which

includes paths of many lengths, therefore is equivalent to the grand canon-

ical ensemble of the gas. In the case of the gas, extensive quantities like

entropy and energy scale with the number of particles, and hence these

quantities here scale with the path length.

2.2. Numerical algorithm

The factorized form of the path probability distribution functional

(Eqs. (7)–(9)) permits efficient calculation of path ensemble averages via

a recursive algorithm [32]. Here for simplicity we consider the time-

independent case, and thus assume that Φ consists of first-passage paths

to guarantee convergence of path averages. Let |σ〉 be the vector with 1

at position σ and zero otherwise, and let |π〉 =
∑

σ π(σ)|σ〉 be the vector

of initial state probabilities. For each jump � and intermediate state σ, we

calculate P�(σ) = 〈σ|Q�|π〉, the total probability of all paths that end at

σ in � jumps; T�(σ), the total average time of all such paths; and Γ�(σ),

the total entropy of all such paths. These quantities obey the following

recursion relations:

P�(σ
′) =

∑
nn σ of σ′

〈σ′|Q|σ〉P�−1(σ), (18)

T�(σ
′) =

∑
nn σ of σ′

〈σ′|Q|σ〉 [T�−1(σ) + w(σ)P�−1(σ)] ,

Γ�(σ
′) =

∑
nn σ of σ′

〈σ′|Q|σ〉 [Γ�−1(σ)− log〈σ′|Q|σ〉P�−1(σ)] ,

where P0(σ) = π(σ) and T0(σ) = Γ0(σ) = 0 for all σ ∈ S, and the sums

run over all nearest neighbors (nn) σ of σ′. The final states σ ∈ Sf are

treated as absorbing to ensure that only first-passage paths are counted.

This procedure can be considered a generalization of the exact-enumeration
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algorithm of [71]. Path ensemble averages are then given by

ZΦ =
∞∑
�=1

∑
σ∈Sf

P�(σ), ρΦ(�) =
1

ZΦ

∑
σ∈Sf

P�(σ), (19)

τ̄Φ =
1

ZΦ

∞∑
�=1

∑
σ∈Sf

T�(σ), SΦ =
1

ZΦ

∞∑
�=1

∑
σ∈Sf

Γ�(σ).

We can similarly calculate state-dependent quantities such as 〈Iσ〉Φ and

〈Tσ〉Φ. The two quantities to be recursively updated are P�(σ
′;σ), the total

probability of all paths currently at σ′ at jump � that have visited σ at least

once previously, and T�(σ
′;σ), the total average time that all such paths

have spent in σ. These obey the following recursion relations:

P�(σ
′;σ) =

⎧⎪⎪⎨
⎪⎪⎩

∑
nn σ′′ of σ′

〈σ′|Q|σ′′〉P�−1(σ
′′;σ), σ′ 
= σ,

P�(σ), σ′ = σ,

(20)

T�(σ
′;σ) =

∑
nn σ′′ of σ′

〈σ′|Q|σ′′〉[T�−1(σ
′′;σ) + δσ,σ′′w(σ′′)P�−1(σ

′′;σ)],

with the initial conditions P0(σ
′;σ) = T0(σ

′;σ) = 0 for all σ, σ′ ∈ S, σ 
= σ′

(P0(σ;σ) = π(σ), T0(σ;σ) = 0). Averages are then expressed as

〈Iσ〉Φ =
1

ZΦ

∞∑
�=1

∑
σ′∈Sf

P�(σ
′;σ), 〈Tσ〉Φ =

1

ZΦ

∞∑
�=1

∑
σ′∈Sf

T�(σ
′;σ). (21)

Furthermore, we can calculate mean path divergence that characterizes

the spatial diversity of the paths in Φ:

DΦ =

∞∑
�=1

∑
σ,σ′∈S

d(σ, σ′)P�(σ)P�(σ
′), (22)

where d(σ, σ′) is a distance metric on S. This definition is distinct from that

proposed in [33, 36] (Eq. (2)) in that it dynamically calculates distances

between points on paths as they propagate, rather than comparing the

minimal distance between complete paths. Thus for a path that revisits



February 5, 2014 9:20 BC9104 – First-Passage Phenomena and their Applications 17˙Chapter page 431

Statistical physics of evolutionary trajectories 431

some states multiple times, the divergence with a path that travels through

the same set of states without revisiting any of them will be zero according

to Eq. (2), but nonzero with the definition in Eq. (22).

This algorithm allows for very general definitions of the path ensemble

Φ without having to explicitly enumerate all paths. For instance, Φ can in-

clude paths that begin and end at arbitrary sets of states, or are prohibited

from passing through arbitrary sets of intermediate states. The time com-

plexity of the algorithm is O(γNΛ) for ZΦ, ρΦ(�), τ̄Φ, SΦ, and O(γN2Λ)

for 〈Iσ〉Φ, 〈Tσ〉Φ, DΦ, where γ is the average number of nearest neighbors,

N is the number of states visited by paths in Φ, and Λ is the cutoff path

length. The cutoff Λ scales with network size N in the same way as the

average path length �̄Φ; for simple random walks, it is known that

Λ ∼ �̄Φ ∼
{
Ndw/df , dw ≥ df (compact exploration),

N, dw < df (non-compact exploration),
(23)

where dw is the dimension of the walk and df is the fractal dimension of

the space [72, 73]. Therefore, the algorithm scales as

O(γNΛ) =

{
O(γN1+dw/df ), dw ≥ df ,

O(γN2), dw < df ,
(24)

automatically accounting for the sparseness of network connections. This

scaling compares favorably with standard linear algebra algorithms, which

in general requireO(N3) operations [74] to solve the backward equation [62,

63].

2.3. Evolution on a neutral network

As a simple application of this approach, we consider a population evolving

on a neutral network [31]. In the space of all sequences of length L and with

an alphabet of size k, we assign each sequence fitness 1 with probability p or

fitness zero with probability 1−p. The subset of fit states connected to each

other forms a neutral network; there can be several disconnected neutral

networks in each landscape realization. All jumps between neighboring fit

states occur at the same rate, and waiting times are Markovian. We choose

L = 8 and a binary alphabet {A,B} (k = 2), which gives 28 = 256 total

nodes in the network, and we consider the ensemble Φ of first-passage paths

from the sequence AAAAAAAA to the sequence BBBBBBBB.
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Fig. 2. (Color online) First-passage path ensemble statistics in a neutral network model.
(A) The path length distribution ρΦ(�) (solid, blue) and exponential fit (dashed, green)
in the interval [Λ − 5,Λ] for Λ = 25 in a single realization of a neutral network with
p = 0.9. (B) Distribution of mean path times τ̄Φ, (C) distribution of mean path lengths
�̄Φ and standard deviations of path lengths �sdΦ , and (D) distribution of path entropies SΦ

for p = 0.1 and p = 0.9. All quantities in (A)-(D) are per site. Histograms in (B)-(D) are
generated from 104 successful random realizations of the neutral network for each value
of p; a realization is considered successful if both initial and final states are included in
a single connected network.

Figure 2A shows ρΦ(�) for a single realization of this model with p = 0.9.

The exponential tail of ρΦ(�) is a universal feature of first-passage processes

on finite spaces [72]; other path statistics, such as the average time τ̄Φ(�) of

paths up to length �, also show asymptotic behavior that is exponential for

long paths. We can use this feature to determine the cutoff path length Λ

for the algorithm: Λ is set at a length such that ρΦ(�) and τ̄Φ(�) are close to

exponential in a region around Λ. Then one need only consider paths with

� < Λ and infer the contributions of all longer paths from an exponential

fit to the tail, which considerably improves the efficiency of the algorithm.

This procedure takes advantage of the fact that information about longer

paths is already contained in the structure of shorter paths; the longer
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paths are built on the shorter paths by adding loops. The maximum length

Λ of the shorter paths that must be explicitly calculated depends on the

chemical distance between the initial and final states and the lengths over

which the landscape is correlated. This essentially implements a numerical

renormalization scheme on the ensemble of paths [70].

In Fig. 2B,C,D we show distributions of the mean path time τ̄Φ, mean

path length �̄Φ, path length standard deviation �sdΦ , and path entropy SΦ

for multiple realizations of the neutral network with high and low values of

p. We see that long paths are likely in these models: dozens of substitutions

can occur at each site before the final state is reached. The larger size of the

neutral network for p = 0.9 allows longer paths on average than for p = 0.1.

However, the mean time of paths for the larger neutral network is usually

smaller (Fig. 2B), since the increased connectivity of the network leads to

shorter waiting times at individual nodes. Larger p leads to substantially

more diversity of paths and path lengths, as expected due to the increased

size and connectivity of the network (Fig. 2C,D). Note that the distributions

of �̄Φ and �sdΦ in Fig. 2C are very similar, owing to the nearly exponential

distribution of ρΦ(�) in this model (cf. Fig. 2A).

In an unconstrained sequence space, the number of nearest neighbors is

γ = L(k− 1), and the average path length �̄Φ scales as N = kL (Eq. (23)).

According to Eq. (17), the entropy of paths in sequence space is

SΦ = �̄Φ logL(k − 1) ∼ kL logL(k − 1). (25)

When p = 0.9 the neutral network is nearly the size of the entire sequence

space, and these results hold approximately. Indeed, we see that �̄Φ and

SΦ differ by roughly a factor of logL(k − 1) ≈ 2.1 (Fig. 2C,D).

3. Biophysics of protein evolution

We now consider more realistic models of evolution based on protein bio-

physics, where the fitness landscape depends on protein folding stability

and energetics of intermolecular interactions [3]. Many recent studies have

focused on how proteins evolve under the constraint of maintaining thermo-

dynamic stability of their folded state [75–82]. Suppose that an organism

encodes a particular protein that is folded with probability 1/(1 + eβEf ),

where Ef is the free energy of folding (i.e., the free energy difference be-

tween folded and unfolded states of the protein) and β = 1.7 (kcal/mol)−1

is inverse room temperature. The protein contributes multiplicative fitness
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1 if it is folded and f0 < 1 if it is unfolded. Then the total fitness averaged

over all proteins in an organism is given by

F(Ef ) =
1 + f0e

βEf

1 + eβEf
. (26)

Equation (26) states that robust protein folding confers a fitness advantage;

in the extreme case of a protein essential to the organism, f0 = 0 and so

limEf→+∞ F(Ef ) = 0. Some studies simplify this idea further by assuming

that the folding energy Ef need only be below a particular threshold Ethr
f ;

below that threshold all proteins are adequately stable and equivalent in

fitness [75, 77, 81]. Mathematically,

F(Ef ) = Θ(Ethr
f − Ef ), (27)

where Θ is the Heaviside step function. This model is equivalent to the zero-

temperature limit of Eq. (26). Similar approaches based on protein-DNA

binding energies have also been used to study evolution of gene regula-

tion [20, 83–87].

An extension of this model considers both protein stability and func-

tion [32], which we take to be the ability to bind a target molecule such as

another protein (e.g., in a signaling pathway). Let Eb be the free energy

of binding relative to the chemical potential of the target molecule, so that

the probability of binding is 1/(1 + eβEb). We assume that the protein

contributes fitness 1 if it both folds and binds, and f0 < 1 otherwise [88].

Then fitness averaged over all proteins in an organism is given by

F(Ef , Eb) =
1 + f0(e

βEf + eβEb + eβ(Ef+Eb))

1 + eβEf + eβEb + eβ(Ef+Eb)
. (28)

The folding and binding energies depend on the amino acid sequence σ.

Many proteins have only a small number of residues at the binding interface

that contribute the majority of the binding affinity; these are known as

“hotspot” residues [89]. We assume that there are L such residues and

that they make additive contributions to the total folding and binding free

energies [90]:

Ef (σ) = E0
f +

L∑
μ=1

εf (μ, σ
μ), Eb(σ) = E0

b +

L∑
μ=1

εb(μ, σ
μ), (29)
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where E0
f , E

0
b are overall offsets and εf(μ, σ

μ), εb(μ, σ
μ) are the folding and

binding energy contributions of amino acid σμ at position μ. The offset E0
f

is a fixed contribution to the folding energy from all other residues in the

protein, which we assume to be perfectly adapted. We sample εf ’s from a

Gaussian distribution with mean 1.25 kcal/mol and standard deviation 1.6

kcal/mol, consistent with computational studies showing the mutational

effects on stability are universally distributed [91].

We randomly assign a sequence σbb to be the best-binding sequence.

Since binding hotspot residues typically have a minimum penalty of 1–3

kcal/mol for mutations away from the wild-type amino acid [92] (this re-

quirement is used to define which residues make up the hotspot), we set

εb(μ, σ
μ
bb) = 0 for all μ = {1, . . . , L}, and sample the other εb’s from an ex-

ponential distribution defined in the range of (1,∞) kcal/mol, with mean 2

kcal/mol. This distribution is consistent with alanine-scanning experiments

which probe energetics of amino acids at the binding interface [93]. Here

we consider L = 5 hotspot residues and a reduced alphabet of k = 8 amino

acids grouped by physico-chemical properties, resulting in 85 = 32768 pos-

sible sequences. Different choices of these parameters can be considered,

but they appear to have little effect on the overall qualitative features of

the model.

We consider a population of individuals whose genomes encode a pro-

tein of interest. In each individual, the sequence of the protein is perfectly

adapted to binding an original target molecule. Then the population is

subjected to a selection pressure which favors binding a new target. This

situation is common in directed evolution experiments which attempt to

evolve new protein functions in a laboratory [94]. To model such experi-

ments, we sample one set of εf ’s and two sets of εb’s (one for each target),

while E0
f and E0

b are assumed to be fixed. This procedure defines two fitness

landscapes, F1 and F2, through Eq. (28); the entire population begins at the

sequence with the global maximum on F1 and proceeds to adapt to a new

global or local maximum on F2. We assume the strong-selection evolution-

ary dynamics as described in Sec. 1.1: any beneficial mutation that arises is

guaranteed to fix in the population. Thus the substitution rate from σ to σ′

is 〈σ′|W|σ〉 = Nu if F(σ′) > F(σ) and zero otherwise, and the mean wait-

ing time for sequence σ is w(σ) = (
∑

nn σ′ of σ〈σ′|W|σ〉)−1 = (Nub(σ))−1,

where b(σ) is the number of beneficial mutations available from σ. There-

fore the jump probability is 〈σ′|Q|σ〉 = 〈σ′|W|σ〉w(σ), which equals 1/b(σ)

for a beneficial mutation and zero for a deleterious one. Note that in this

limit the results are independent of f0 and the population mutation rate
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Fig. 3. (Color online) Three realizations of the fitness landscape. The offsets E0
f and

E0
b are different for each realization, but εf ’s and the two sets of εb’s (one for F1 and

another for F2) are the same. (A) Binding phase, with E0
f = −17 kcal/mol and E0

b =

−3 kcal/mol. (B) Crossover regime, with E0
f = −9 kcal/mol and E0

b = −11 kcal/mol.

(C) Folding phase, with E0
f = −3 kcal/mol and E0

b = −17 kcal/mol. Top panels

of (A)-(C) show the global distribution of all 85 = 32768 sequences in energy space
according to F2, where the blue crosses indicate the best-folding (σbf) and best-binding
(σbb) sequences, red triangles indicate local fitness maxima on F2 (shaded according to
their commitment probabilities), and black stars indicate the initial state for adaptation
(sequence with global maximum on F1). Black lines are contours of constant fitness
F2. In the bottom panels of (A)-(C) only the regions of energy space accessible to APs

are shown; these regions are outlined by dashed lines in the top panels. Example APs
are shown in blue and green; black circles indicate intermediate states along APs, sized
proportional to the AP density 〈Iσ〉AP; small gray circles are sequences inaccessible to
APs.

Nu only affects the overall time scale. The path ensemble consists of all

adaptive paths (APs), which are first-passage paths leading from the ini-

tial state to a local maximum on F2, with fitness monotonically increasing

along each path. In Fig. 3 we show three realizations of F2 with examples

of APs.

We focus on the generic properties of these landscapes, averaged over

multiple realizations of εf and εb (Fig. 4). Varying E0
f and E0

b reveals two

qualitatively different phases of adaptation. When E0
f is low and E0

b is high

(see Fig. 3A for an example), adaptation is in the binding phase, i.e., the
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Fig. 4. (Color online) Statistics of fitness landscapes and adaptive paths averaged over
multiple landscape realizations. All quantities in (A), (C), and (D) are per-residue (ex-
cept the number of local maxima). (A) Average number of local fitness maxima (solid,
green), average Hamming distance δf (number of mutations) between the maxima and
the best-folding sequence σbf (dashed, blue), and average Hamming distance δb between
the maxima and the best-binding sequence σbb (dotted, red) for the parameter subspace
E0

f +E0
b = −20 kcal/mol. Note that the average distance between two random sequences

is 1− 1/k = 0.875, where k = 8 is the size of the alphabet. (B) Fraction of local fitness
maxima accessible from the initial state (dashed, blue), fraction of all landscape realiza-
tions in which the global maximum has the largest commitment probability (committor)
among all local maxima (dotted, red), probability that the initial sequence starts at a
local maximum resulting in no adaptation (dashed and dotted, cyan), and fraction of all
sequences accessible to APs (solid, green). (C) Mean AP length �̄AP, standard deviation
�sdAP of APs, average Hamming distance δ between the initial state and the final states,
and average length �max of the longest APs connecting the initial state with the final
states. (D) Path ensemble entropy SAP (dashed, blue) and the mean time of paths τ̄AP

(solid, green), in units of inverse population mutation rate (Nu)−1. The probability of
no adaptation in (B) is an average over 2 × 104 landscape realizations; all other data
points are averages over 5 × 103 realizations, and realizations with no adaptation are
excluded.

need to bind the new target molecule dominates evolutionary dynamics. In

this phase, there is typically a single local fitness maximum which coincides

with the best-binding sequence σbb (Fig. 4A). In contrast, when E0
f is high



February 5, 2014 9:20 BC9104 – First-Passage Phenomena and their Applications 17˙Chapter page 438

438 M. Manhart and A. V. Morozov

and E0
b is low (see Fig. 3C for an example), adaptation is in the folding

phase, where evolution is mostly constrained by the need to maintain or

increase folding stability. In this case there are also few local maxima and

they tend to be close in sequence space to the best-folding sequence σbf
(Fig. 4A). Between these phases there is a crossover regime, where folding

and binding compete more equally in shaping the landscape and adaptive

dynamics (see Fig. 3B for an example). The crossover regime has the most

epistasis, as indicated by the number of local maxima, the accessibility of

those maxima, and the fraction of fitness landscape realizations in which

the global maximum has the largest commitment probability (Fig. 4A,B).

The differences in the landscape structure in the binding and folding phases

lead to substantial differences in adaptive dynamics. In particular, APs are

longer and take more time in the binding phase compared to the folding

phase; they are also more diverse (Fig. 4C,D). Initial and final states in

the binding phase are separated by longer Hamming distances (Fig. 4C).

In the folding phase, there is an appreciable probability that no adaptation

occurs at all, since the initial state may coincide with one of the local

maxima (Fig. 4B).

This model reproduces several important features of molecular evolution

observed in experimental studies. First of all, we see that adaptive dynam-

ics involve tradeoffs between folding and binding as frequently observed in

directed evolution experiments [94–96], even though mutational effects on

folding and binding energies are uncorrelated [97]. This evolutionary cou-

pling between folding and binding is introduced through nonlinearities in

the fitness function F(Ef , Eb) (Eq. (28)), which contains both magnitude

and sign epistasis. We note that although these landscapes are generated

from randomly-drawn parameters εf and εb, similar to many classical model

landscapes (Sec. 1.5), the protein landscapes studied here are highly cor-

related [98]: fitness values of kL sequences are determined by 2Lk εf and

εb parameters. Indeed, the average number of local maxima on a House of

Cards landscape for the same sequence space (L = 5 and k = 8) is ≈ 910,

while the protein landscape has on average no more than 7 (Fig. 4A). Thus,

this model is far less epistatic than completely uncorrelated landscapes [38].

This more moderate level of epistasis is consistent with previous analyses

of empirical fitness landscapes [12, 25, 36].

There are other features of the model that correspond to experimental

observations. In the folding phase, APs tend to be short and no adaptation

may occur if the old global maximum on F1 coincides with a new local

maximum on F2 (Fig. 4B). This lack of adaptation is sometimes observed



February 5, 2014 9:20 BC9104 – First-Passage Phenomena and their Applications 17˙Chapter page 439

Statistical physics of evolutionary trajectories 439

Fig. 5. (Color online) A realization of the fitness landscape for the three-state model
(Eq. (30)) in the crossover regime, with E0

f = 5 kcal/mol and E0
b = −10 kcal/mol. As

in Fig. 3, k = 8 and L = 5, resulting in 85 sequences. Note that εf ’s and the two sets of
εb’s (one for F1 and another for F2) are the same as in Fig. 3. Black lines are contours
of constant fitness F2 (Eq. (30)). All symbols are identical to those in Fig. 3.

in experiments in which a protein already exhibiting some affinity for the

new ligand cannot increase it any further [94]. Natural proteins are of-

ten found to have only marginal folding stability [76]; the model presented

here shows that marginal stability can arise purely from the evolutionary

tradeoff between binding and folding in the crossover regime, unlike pre-

vious hypotheses that explain it with mutational entropy [78] or a fitness

function that explicitly disfavors hyperstable proteins [76].

The basic model described here can be generalized to account for

many other aspects of protein evolution. For example, we can incorpo-

rate chaperone-assisted folding [99] by modifying E0
f or the distribution

of εf ’s, and include “folding hotspots” away from the binding interface,

which may acquire stabilizing mutations as a buffer against destabilizing

but function-improving mutations at the interface [94, 95]. Neutral and

weakly-selected mutations can be incorporated as well by using substitu-

tion rates from more complex population genetics models [18, 21], although

we expect non-adaptive substitutions to play little role on short time scales.

Another important case is binding-mediated stability, in which binding

stabilizes an otherwise disordered protein [100]. In this case, instead of con-

sidering folding and binding to be independent as in Eq. (28), which leads

to four possible protein states, we assume that the protein can only bind

when it is folded. This results in three possible protein states (excluding

the bound-and-unfolded state), yielding a fitness function
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F(Ef , Eb) =
1 + f0(e

βEb + eβ(Ef+Eb))

1 + eβEb + eβ(Ef+Eb)
, (30)

where Ef , Eb are again defined by Eq. (29). In this model a protein may

have high fitness even if Ef > 0, as long as the protein is stabilized by

binding (Ef + Eb < 0). The methodology described here can be straight-

forwardly applied to this new fitness function. When E0
f is low, adaptive

dynamics resemble the binding phase of the four-state model (Eq. (28)).

However, when E0
f > 0, the dynamics enter a crossover regime, in which

adaptation changes folding and binding energies simultaneously (Fig. 5).

Unlike the four-state model (Eq. (28)), there is no folding-dominated phase.

In this chapter we have summarized many aspects of evolutionary tra-

jectories on fitness landscapes, focusing especially on landscape topography

and the statistical properties of adaptive first-passage trajectories. We have

also described a general statistical physics-based methodology for studying

stochastic paths on arbitrary landscapes and networks. This approach can

be widely applied to first-passage problems in physics, chemistry, biology,

and engineering, including protein folding, transport and search in complex

media, stochastic phenotypes, and cell-type differentiation. Here we have

emphasized its utility in exploring evolutionary problems, which can often

be modeled as random walks on fitness landscapes and where the diversity

and reproducibility of evolutionary paths is a central issue. The path-based

methodology is well-suited for providing intuitive path statistics in prob-

lems whose complexity and high dimensionality make direct visualizations

impossible.
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