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Binding interactions between proteins and other molecules medi-
ate numerous cellular processes, including metabolism, signaling,
and gene regulation. These interactions often evolve in response
to changes in the protein’s chemical or physical environment (such
as the addition of an antibiotic). Several recent studies have
shown the importance of folding stability in constraining protein
evolution. Here we investigate how structural coupling between
folding and binding—the fact that most proteins can only bind
their targets when folded—gives rise to an evolutionary coupling
between the traits of folding stability and binding strength. Using
a biophysical and evolutionary model, we show how these protein
traits can emerge as evolutionary “spandrels” even if they do not
confer an intrinsic fitness advantage. In particular, proteins can
evolve strong binding interactions that have no functional role
but merely serve to stabilize the protein if its misfolding is dele-
terious. Furthermore, such proteins may have divergent fates,
evolving to bind or not bind their targets depending on random
mutational events. These observations may explain the abundance
of apparently nonfunctional interactions among proteins ob-
served in high-throughput assays. In contrast, for proteins with
both functional binding and deleterious misfolding, evolution
may be highly predictable at the level of biophysical traits: adap-
tive paths are tightly constrained to first gain extra folding sta-
bility and then partially lose it as the new binding function is
developed. These findings have important consequences for our
understanding of how natural and engineered proteins evolve un-
der selective pressure.
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Proteins carry out a diverse array of chemical and mechanical
functions in the cell, ranging from metabolism to gene ex-

pression (1). Thus, proteins serve as central targets for natural
selection in wild populations, as well as a key toolbox for engi-
neering novel molecules with medical and industrial applications
(2, 3). Most proteins must fold into their native state, a unique
3D conformation, to perform their function, which typically
involves binding a target molecule such as a small ligand, DNA,
or another protein (1). Misfolded proteins not only fail to per-
form their function but also may form toxic aggregates and divert
valuable protein synthesis and quality control resources (4–7). It
is therefore imperative that the folded state be stable against
typical thermal fluctuations. However, biophysical experiments
and computational studies reveal that most random mutations in
proteins destabilize the folded state (8, 9), including mutations
that improve function (9–11). As a result, many natural proteins
tend to be only marginally stable, mutationally teetering at the
brink of unfolding (12, 13). With proteins in such a precarious
position, how can they evolve new functions while maintaining
sufficient folding stability?
Directed evolution experiments have offered a window into

the dynamics of this process (2, 3), indicating the importance of
compensatory mutations, limited epistasis, and mutational ro-
bustness. Theoretical efforts to describe protein evolution in
biophysical terms have focused on evolvability (14), distributions
of protein stabilities and evolutionary rates (13, 15–17), and

global properties of protein interaction networks (18, 19).
However, a subtle but key property of proteins has not been
explored in this context: structural coupling of folding and
binding (the fact that folding is required for function) implies
evolutionary coupling of folding stability and binding strength.
Thus, selection acting directly on only one of these traits may
produce apparent, indirect selection for the other. The impor-
tance of this effect was popularized by Gould and Lewontin in
their influential paper on evolutionary “spandrels” (20), defined
as traits that evolve as byproducts in the absence of direct se-
lection. Since then the importance of spandrels and coupled
traits has been explored in many areas of evolutionary biology
(21), including various molecular examples (12, 22, 23).
How do coupled traits affect protein evolution? We consider

a biophysical model that describes evolution of a new binding
interaction in response to a change in the protein’s chemical or
physical environment, including availability and concentrations
of various ligands (24, 25), or in response to artificial selection in
a directed evolution experiment (3). We postulate a fitness
landscape as a function of two biophysical traits: folding stability
and binding affinity to a target molecule. We then use an exact
numerical algorithm (26, 27) to characterize adaptive paths on
this fitness landscape, focusing on how coupled protein traits
affect evolutionary fates, epistasis, and predictability.

Results
Model of Protein Energetics. We consider a protein with two-state
folding kinetics (1). In the folded state, the protein has an in-
terface that binds a target molecule. Assuming thermodynamic
equilibrium (valid when protein folding and binding are faster
than typical cellular processes), the probabilities of the protein’s
structural states are given by their Boltzmann weights:
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folded; bound: pf;b = e−βðEf+EbÞ�Z;
folded; unbound: pf;ub = e−βEf

�
Z;

unfolded; unbound: puf;ub = 1=Z:

[1]

Here β is the inverse temperature, Ef is the free energy of folding
(also known as ΔG), and Eb =Eb′− μ, where Eb′ is the binding
free energy and μ is the chemical potential of the target mole-
cule. For simplicity we will refer to Eb as the binding energy. The
partition function is Z= e−βðEf+EbÞ + e−βEf + 1. Note that Ef < 0 for
intrinsically stable proteins and Eb < 0 for favorable binding
interactions; binding can thus be made more favorable either
by improving the intrinsic affinity between the protein and the
target (decreasing Eb′) or by increasing the concentration of the
target molecule (increasing μ). Because the protein can bind only
when it is folded, the binding and folding processes are structur-
ally coupled. This gives rise to binding-mediated stability: strong
binding stabilizes a folded protein, such that even intrinsically
unstable proteins ðEf > 0Þ may attain their folded and bound
state if binding is strong enough ðEf +Eb < 0Þ. Different physical
mechanisms are possible for the kinetics of the structural cou-
pling (28, 29), but in thermodynamic equilibrium only the free
energy differences matter.
The folding and binding energies depend on the protein’s

genotype (amino acid sequence) σ. We assume that adaptation
only affects “hotspot” residues at the binding interface (30, 31);
the rest of the protein does not change on relevant time scales
because it is assumed to be already optimized for folding. We
consider L hotspot residues which, to a first approximation,
make additive contributions to the total folding and binding free
energies (32) (SI Materials and Methods):

EfðσÞ=Eref
f +

XL

i=1

ef
�
i; σi

�
; EbðσÞ=Emin

b +
XL

i=1

eb
�
i; σi

�
; [2]

where efði; σiÞ and ebði; σiÞ capture the energetic contributions of
amino acid σi at position i (equivalent to ΔΔG). The reference
energy Eref

f is the fixed contribution to the folding energy from
all other residues in the protein, and the parameter Emin

b is the
minimum binding energy among all genotypes (Materials and

Methods). Amino acid energies efði; σiÞ and ebði; σiÞ are randomly
sampled from distributions constructed using available ΔΔG
data and other biophysical considerations (Materials and Meth-
ods); we will consider properties of the model averaged over
these distributions. The exact shape of the distributions is not
important for large enough L due to the central limit theorem.

Fitness Landscape. We construct a fitness landscape based on the
molecular traits Ef and Eb. Without loss of generality, we assume
that the protein contributes fitness 1 to the organism if it is al-
ways folded and bound. Let fub; fuf ∈ ½0; 1� be the multiplicative
fitness penalties for being unbound and unfolded, respectively:
the total fitness is fub if the protein is unbound but folded, and
fubfuf if the protein is both unbound and unfolded. Then the
fitness of the protein averaged over all three possible structural
states in Eq. 1 is given by

F�
Ef ;Eb

�
= pf;b + fub pf;ub + fub fuf puf;ub: [3]

This fitness landscape is divided into three nearly flat plateaus
corresponding to the three protein states of Eq. 1, separated by
steep thresholds corresponding to the folding and binding tran-
sitions (Fig. 1A). The heights of the plateaus are determined by
the values of fub and fuf , leading to three qualitative regimes of
the global landscape structure (Fig. 1 B–D).
In the first case (Fig. 1B), a protein that is perfectly folded but

unbound has no fitness advantage over a protein that is both
unbound and unfolded: fub = fuf fub. Thus, selection acts directly
on the binding trait only. This regime requires that either fub = 0
[binding is essential, e.g., in the context of conferring antibiotic
resistance to the cell (24)] or fuf = 1 (misfolded proteins are not
toxic). The latter case also includes directed evolution experi-
ments where only function is artificially selected for in vitro. In
contrast, when fub = 1 and 0≤ fuf < 1 (Fig. 1C), a perfectly folded
and bound protein has no fitness advantage over a folded but
unbound protein, and thus this case entails direct selection for
folding only; binding is nonfunctional because it provides no
intrinsic fitness advantage. Such proteins may have other, func-
tional binding interfaces that are already adapted to their targets.
Thus, the fuf fitness penalty reflects both the intrinsic misfolding
toxicity [e.g., due to aggregation (4–7)] as well as the loss of
the other functional interactions. Finally, in the most general
case there are distinct selection pressures on both binding and

A B C

D E F

Fig. 1. Fitness, selection, and epistasis in energy
trait space. (A) Phase diagram of protein structural
states. Dashed lines separate structural states of the
protein corresponding to plateaus on the fitness
landscape; arrows represent the folding transition
(green), binding transition (red), and the coupled
folding–binding transition (blue). Fitness landscapes
FðEf,EbÞ with direct selection (B) for binding only
ðfub = fuf = 0Þ, (C) for folding only (fub = 1, fuf = 0),
and (D) for both binding and folding (fub = 0:9,
fuf =0). Black contours indicate constant fitness val-
ues. The contours are uniformly sampled in energy
space, with unequal fitness differences between
adjacent contours. Streamlines indicate the direction
of the selection “force” ~∇ logF , with color showing
its magnitude (decreasing from red to blue). (E) Ex-
ample genotype distribution and mutational net-
work for L= 2 and k= 2. (F) Blue arrows indicate the
same mutation on different genetic backgrounds.
When the fitness contours are straight, the mutation
is beneficial regardless of the background (σ1 or σ2).
With curved contours, the same mutation can be-
come deleterious ðσ3 → σ3′Þ, indicative of sign epis-
tasis. Sign epistasis can give rise to multiple local
fitness maxima (e.g., AA and BB in E).
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folding. This occurs when 0< fub < 1 and 0≤ fuf < 1, resulting in
a landscape that is a hybrid of the previous two cases (Fig. 1D).
It is straightforward to generalize our three-state model to

proteins with additional structural states (such as metastable
partially folded configurations) and allow for simultaneous ad-
aptation at multiple binding interfaces. Furthermore, the fitness
landscape in Eq. 3 can be made an arbitrary nonlinear function
of state probabilities. However, these more complex scenarios
would still share the essential features of our basic model: cou-
pling between folding and binding traits and sharp fitness
thresholds between bound/unbound and folded/unfolded states.
Thus, our qualitative conclusions do not depend on the specific
model in Eq. 3.

Epistasis and Local Fitness Maxima. For protein sequences of length
L with an alphabet of size k, each of the kL possible genotypes is
projected onto the 2D trait space of Ef and Eb (Eq. 2) and
connected to Lðk− 1Þ immediate mutational neighbors, forming
a network of states that the population must traverse (a simple
example is shown in Fig. 1E). Adaptive dynamics are determined
by the interplay between the fitness function (Eq. 3) and the
distribution of genotypes in trait space (Eq. 2).
This interplay gives rise to the possibility of epistasis and

multiple local fitness maxima. For the energy traits our model is
nonepistatic (Eq. 2). At the level of fitness, magnitude epistasis is
widespread owing to the nonlinear dependence of fitness on
folding and binding energies (Eq. 3). Sign epistasis in fitness
cannot occur when the fitness contours in energy space are
straight parallel lines (Fig. 1F). However, curved fitness con-
tours, which occur near folding or binding thresholds in our
model (Fig. 1 B–D), can produce sign epistasis, giving rise to
multiple local fitness maxima in the genotype space (Fig. 1E).

Evolutionary Dynamics. We assume that a population encoding
the protein of interest evolves in the monomorphic limit:
LNu logN � 1, where L is the number of residues, N is an ef-
fective population size, and u is the per-residue probability of
mutation per generation (33). In this limit, the entire population
has the same genotype at any given time, and the rate of sub-
stitution from the current genotype to one of its mutational
neighbors is given by Eq. S1 in SI Materials and Methods. We use
the strong-selection limit of the substitution rate (Eq. S2), in
which the effective population size enters only as an overall time
scale. We verify the validity of this assumption in SI Materials and
Methods (Fig. S1). In this regime, deleterious mutations never fix
and adaptive paths have a finite number of steps, terminating
at a global or local fitness maximum. For compact genomic units
such as proteins, the monomorphic condition is generally met
in multicellular species, although it may be violated in rapidly
mutating unicellular organisms (34, 35). Sequential fixation of
single mutants is also a typical mode of adaptation in directed
evolution experiments (3). For simplicity, we neglect more com-
plex mutational dynamics such as indels and recombination.

Quantitative Description of Adaptation. Although our model can
describe many adaptive scenarios, for concreteness we focus on
a specific but widely applicable case. A population begins as
perfectly adapted to binding an original target molecule char-
acterized by an energy matrix eb1 with minimum binding energy
Emin
b1 (defining a fitness landscape F 1). The population is then

subjected to a selection pressure that favors binding a new target,
with energy matrix eb2 and minimum binding energy Emin

b2 (fitness
landscape F 2). For simplicity we assume that the original binding
target is replaced by a new one with uncorrelated binding en-
ergies, although it is straightforward to extend our results to the
case where the original target simply changes concentration and
hence chemical potential (eb1 = eb2 but Emin

b1 ≠Emin
b2 ). The adap-

tive paths are first-passage paths leading from the global maxi-
mum on F 1 to a local or global maximum on F 2, with fitness
increasing monotonically along each path.

Each adaptive path φ with probability Π½φ� is a sequence of
genotypes connecting initial and final states. Using an exact
numerical algorithm (26, 27) (SI Materials and Methods), we
determine the path length distribution ρðℓÞ, which gives the
probability of taking an adaptive path with ℓ total amino acid
substitutions, and the mean adaptation time t. We also consider
Spath, the entropy of the adaptive paths:

Spath =−
X

φ

Π½φ�logΠ½φ�: [4]

The path entropy is maximized when evolution is neutral, re-
sulting in all paths of a given length being accessible and equally
likely. In that case Spath = ℓ logLðk− 1Þ (27), where ℓ is the mean
path length.
We also consider the path density ψðσÞ, which gives the total

probability of reaching a state σ at any point along a path. When
σ is a final state (a local fitness maximum on F 2), the path
density is the commitment probability. We calculate the entropy
Scom of the commitment probabilities as

Scom =−
X

final states σ

ψðσÞlogψðσÞ: [5]

Direct Selection for Binding Only. We first focus on the case
fub = fuf fub in Eq. 3. The geometry of the fitness contours is in-
variant under overall shifts in the binding energy Eb (Fig. 1B);
equivalently, the direction (but not the magnitude) of the selection
force ð~∇ logF=

��~∇ logF ��Þ does not depend on Eb. Thus, without
loss of generality, we set Emin

b1 =Emin
b2 = constant in this section.

The contours of constant fitness are parallel to the Ef axis
when Ef is low, indicating that, as expected, selection acts only on
binding when proteins are sufficiently stable. However, when
stability is marginal [which describes most natural proteins (12,
13)], the fitness contours begin to curve downward, indicating
indirect selection for folding, even though selection acts directly
only on the binding trait. Thus, adaptation will produce a trait
(more stability) that is neutral at the level of the fitness function
simply because it is coupled with another trait (binding) that is
under selection. Folding stability can therefore be considered an
evolutionary spandrel (20) caused by structural coupling between
folding and binding. For intrinsically unstable proteins ðEf > 0Þ,
binding-mediated stability causes the fitness contours to ap-
proach diagonal lines: selection effectively acts to improve both
binding and folding equally (Fig. 1B).
An example realization of evolutionary dynamics in the mar-

ginally stable regime is shown in Fig. 2 A and B (see Fig. S2 for
stable and intrinsically unstable examples and Fig. S3 for dis-
tributions of initial, intermediate, and final states averaged over
multiple landscape realizations). There is typically just one or
two fitness maxima; all maxima are usually accessible (Fig. 2C).
For stable proteins, the global maximum almost always coincides
with the best-binding genotype and is about as far as a randomly
chosen genotype from the best-folding genotype (Fig. 2D; two
random genotypes are separated by 1− 1=k= 0:8 for an alphabet
of size k= 5). However, as Ef becomes greater, the average
distance between the maxima and the best-binding genotype
increases, while the average distance between the maxima and
the best-folding genotype decreases, until they meet halfway for
intrinsically unstable proteins (Fig. 2D). In general the maxima
lie on or near the Pareto front (36) (Fig. 2A and Fig. S2), defined
here as the set of genotypes such that either Ef or Eb cannot be
decreased further without increasing the other (the global max-
imum is always on the front, whereas local maxima may not be).
As protein stability decreases (Ef becomes higher), the aver-

age distance between initial and final states for adaptation decrea-
ses. As a result the mean path length (number of substitutions)
decreases as well, although the variance of path lengths is relatively
constant over all energies (Fig. 2E). The path entropy per substitution
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Spath=ℓ also decreases with Ef , reflecting greater constraints on
adaptive paths (note that Spath=ℓ= logLðk− 1Þ≈ 3:2 for neutral
evolution with L= 6 and k= 5). Finally, Scom ≈ 0:31 in the mar-
ginally stable regime (Fig. 2F). Because the average number of
maxima is ≈ 1:9 in this regime (Fig. 2C), the maximum value of
Scom is roughly log 1:9≈ 0:64, indicating that multiple maxima are
usually not equally accessible.

Direct Selection for Folding Only. In this regime, fub = 1 and 0≤ fuf < 1
in Eq. 3, which means that the binding interaction under consid-
eration is nonfunctional. Analogous with the previous case, the
geometry of the fitness contours and thus most landscape properties
are now independent of the folding energy Ef (Fig. 1C).
When the nonfunctional binding is weak, the fitness contours

are parallel to the Eb axis, indicating that selection acts only on
folding (Fig. 1C). This regime yields a single fitness maximum
due to the lack of sign epistasis; the maximum predominantly
coincides with the best-folding genotype (Fig. 3A). However,
with increasing binding strength the fitness contours curve such
that the effective selection force attempts to improve both
binding and folding equally, due to binding-mediated stability.
Thus, binding emerges as an evolutionary spandrel in this case.
There is also an increased likelihood of multiple local maxima,
located between the best-folding and best-binding genotypes
(Fig. 3A).
Depending on the abundance of the old and new ligands in the

cell and their binding properties, several adaptive scenarios may
take place. First, the best-binding strengths Emin

b1 and Emin
b2 of the

old and new targets may be similar in magnitude. If both are
weak, initial and final states are likely to be the best-folding
genotype or close to it (Fig. 3A); in this case, there is a high
probability that no adaptation will occur (Fig. 3B). When Emin

b1
and Emin

b2 are both low, adaptation usually occurs to accommo-
date the binding specificity of the new ligand (Fig. 3B and

Fig. S4A). Surprisingly, we see that proteins frequently evolve
stronger binding at the expense of folding (Fig. S4A, Bottom).
This happens due to the constraints of the genotype–phenotype
map: not enough genotypes are available to optimize both
traits simultaneously.
It is also possible to gain or lose a nonfunctional binding in-

terface through adaptation. In the first case, the new target is
more abundant or has stronger binding than the old one
ðEmin

b2 <Emin
b1 Þ. Thus, the initial state is the best-folding genotype

or close to it, and the protein adapts toward a genotype with
intermediate folding and binding (Fig. S4B). As before, adap-
tation is tightly constrained by the genotype–phenotype map,
sacrificing the trait (folding stability) under direct selection to
affect the spandrel (nonfunctional binding interaction). Effec-
tively, the protein switches from being a self-reliant folder to
needing a binding partner to stabilize folding. In the second case
(Emin

b1 <Emin
b2 ), the dynamics is opposite: the protein loses its

nonfunctional binding interface and becomes self-reliant (Fig.
S4C). Thus, proteins may acquire or lose binding interfaces
depending on the availability of ligands that can participate in
binding-mediated stability.

Divergent Evolutionary Fates.Near Eb = 0 the selection streamlines
diverge in Fig. 1C, creating the possibility of multiple local
maxima with at least one having negative Eb (strong binding)
and at least one having positive Eb (negligible binding); Fig. 3C
shows an example. Such a protein has two qualitatively differ-
ent fates available to it: one in which it evolves to bind the
target and another in which it does not. The eventual fate of the
protein is determined by random mutation events, making
evolution inherently unpredictable. Indeed, the distribution of
final states can be strongly bimodal (Fig. 3D), and there is
a sizable probability of divergent fates across a range of binding
energies (Fig. S5).

A

C

E

B

D

F

Fig. 2. Adaptation with direct selection for bind-
ing only. (A) Distribution of folding and binding
energies for all kL = 56 genotypes (small gray
points) in a single realization of the model with
a marginally stable protein (Eref

f =−3 kcal/mol). The
black star indicates the initial state for adaptation
(global maximum on F 1); red triangles indicate
local fitness maxima on F 2, shaded according to
their commitment probabilities ψðσÞ; and blue
crosses show best-folding and best-binding geno-
types. The magenta line connects genotypes on the
Pareto front, and black contours indicate constant
fitness F 2. (B) The region of energy space accessible
to adaptive paths, zoomed in from A. Example
paths are shown in blue and green; black circles
indicate intermediate states along paths, sized
proportional to their path density ψðσÞ; small gray
circles are genotypes inaccessible to adaptation. (C)
Average number m of local fitness maxima (solid,
green) and average number macc of local maxima
accessible to adaptation (dashed, blue) versus Eref

f .
(D) Average per-residue Hamming distance be-
tween the maxima and the best-folding genotype
(δf; solid, green) and the best-binding genotype (δb;
dashed, blue) versus Eref

f . (E) Average distributions
ρðℓÞ of path lengths ℓ (number of substitutions) for
stable proteins (Eref

f =−15 kcal/mol; solid, green),
marginally stable proteins (Eref

f =−3 kcal/mol;
dashed, blue), and intrinsically unstable proteins
(Eref

f = 5 kcal/mol; dotted, red). (F) Average per-sub-
stitution path entropy Spath=ℓ (solid, green) and av-
erage entropy of commitment probabilities Scom
(dashed, blue) versus Eref

f . Averages are taken over
105 realizations of the energy matrices (ef, eb1 , eb2 )
in E and 104 realizations otherwise. In all panels,
fub = fuf = 0 and Emin

b1
= Emin

b2
=−5 kcal/mol.
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Direct Selection for Both Binding and Folding.Here we consider the
most general case in which 0< fub < 1 and 0≤ fuf < 1 in Eq. 3 (Fig.
1D). The fitness landscape is divided into two regions by a
straight diagonal contour with fitness fub and slope −1. Below
this contour, the landscape is qualitatively similar to the case of
selection for binding only (Fig. 1B), whereas above the contour
the landscape resembles that of the folding-only selection sce-
nario (Fig. 1C). Thus, evolutionary dynamics for proteins with
favorable binding and folding energies ðEf ;Eb < 0Þ will largely
resemble the case of selection for binding only. However,
a qualitatively different behavior will occur if the distribution of
genotypes straddles the diagonal contour (Fig. 4). This happens
when folding stability is marginal and initial binding is unfavor-
able. In this case, selection streamlines around the diagonal
contour (Fig. 1D) and the genotype–phenotype map tightly
constrain the adaptive paths to gain extra folding stability first,
and then lose it as the binding function is improved (Fig. 4).

Tempo and Rhythm of Adaptation. The strength of selection is the
primary determinant of the average adaptation time t. If the
selection coefficient s is small (but Ns> 1), the substitution rate
in Eq. S1 is proportional to s. Thus, as selection becomes ex-
ponentially weaker for lower energies (Fig. S1), adaptation
becomes exponentially slower. The distribution of the total ad-
aptation time over an adaptive path is highly nonuniform. For
example, in the case of selection for binding only and a margin-
ally stable protein, the adaptation time is concentrated at the end
of the path, one mutation away from the final state (Fig. S6 A
and B). Substitutions at the beginning of the path occur quickly
because there are many possible beneficial substitutions and
because selection is strong; in contrast, at the end of the path
adaptation slows down dramatically as beneficial mutations are
depleted and selection weakens. This behavior is observed in
most of the other model regimes as well.
The exception to this pattern occurs in the case of selection

for both binding and folding in marginally stable and marginally

bound proteins, owing to the unique contour geometry (Figs. 1D
and 4). As the adaptive paths wrap around the diagonal contour
in the region of high Eb and low Ef , the landscape flattens, making
selection weaker and substitutions slower (Fig. S6C). Thus, most of
the time is spent in the middle of the path rather than the end (Fig.
S6D). Adaptation accelerates toward the end of the path as the
strength of selection increases again. If the intermediate slowdown
is significant enough, a protein may not have time to complete the
second half of its path before environmental conditions change, so
that it will never evolve the new binding function.

Discussion
Protein Folding and Binding As Evolutionary Spandrels. In the dec-
ades since Gould and Lewontin’s paper (20), the existence of
evolutionary spandrels has become a critical evolutionary con-
cept. There are many possible scenarios in which spandrels can
emerge through evolution (20, 21), although two key mecha-
nisms are indirect selection (arising from coupled traits) and
neutral processes (such as genetic drift and biases in mutation
and recombination) (37). Here we have focused on the former,
which we expect to be more important on short time scales.
Previous studies have argued that the marginal stability of

most proteins may be an evolutionary spandrel that evolved
due to mutation–selection balance (3, 12, 13). We suggest more
broadly that having folding stability at all may be a spandrel for
proteins with no misfolding toxicity. Even more striking is the
possibility that some binding interactions may be spandrels that
evolved solely to stabilize protein structures. Previously the role
of binding-mediated stability has been mainly discussed in the
context of intrinsically disordered proteins (28, 29) and therapies
for protein misfolding diseases (38); here we show that it is a
general phenomenon with significant implications for our inter-
pretation of data on proteome-wide interactions (39). In par-
ticular, our results suggest that less stable proteins should have
a greater number of nonfunctional interactions. Protein stability
ð−EfÞ was previously argued to correlate positively with abun-
dance to explain the observed negative correlation of abundance
with evolutionary rate (16, 17), whereas models of protein–
protein interaction networks imply that protein abundance also
correlates negatively with the intrinsic number of interactions
(e.g., as measured by surface hydrophobicity) (19, 40). Together
these observations argue that stability should indeed be nega-
tively correlated with the number of interactions (41). Moreover,
the possibility of evolving new binding interactions solely to
stabilize protein structure suggests how chaperones and protein
quality control machinery may have first evolved (42).

Pareto Optimization of Proteins. The Pareto front is a useful con-
cept in problems of multiobjective optimization (36). The Pareto
front in our model consists of the protein sequences along
the low-Ef , low-Eb edge of the genotype distribution (e.g., see

A

C

B

D

Fig. 3. Adaptation with direct selection for folding only. (A) The average
number of local maxima m (solid, green) and their average per-residue Ham-
ming distances from the best-folding (δf; dashed, blue) and the best-binding (δb;
dotted, red) genotypes versus Emin

b . (B) Probability that adaptation occurs (i.e.,
the initial state is not coincident with any of the final states) as a function of
Emin
b1

and Emin
b2

. (C) Example landscape with divergent binding fates: there are
two accessible local maxima, one with Eb < 0 (favorable binding, ψðσÞ≈ 0:6) and
the other with Eb > 0 (negligible binding, ψðσÞ≈ 0:4). All symbols are the same
as in Fig. 2B. (D) Average distribution of local maxima weighted by their
commitment probabilities. In C and D, Emin

b1
= Emin

b2
=−6:5 kcal/mol. Averages are

taken over 105 realizations of the energy matrices in D and 104 realizations
otherwise. In all panels, fub = 1, fuf = 0, and Eref

f = 0 kcal/mol.

A B C

Fig. 4. Adaptation with direct selection for both binding and folding.
(A and B) Example distribution of folding and binding energies for a marginally
stable and marginally bound protein; all symbols are the same as in Fig. 2 A
and B. (C) Distribution of initial states in green, intermediate states in blue
(weighted by their path densities), and final states in red (weighted by their
commitment probabilities) for 105 realizations of the energy matrices. In all
panels, fub = 0:9, fuf = 0, and Eref

f = Emin
b1

= Emin
b2

=−4 kcal/mol.
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Fig. 2A). Pareto optimization assumes that all states on the front
are valid final states for adaptation; however, nonlinear fitness
functions with saturation effects (as expected from biophysical
considerations, e.g., Eq. 3) will confound this assumption. Our
model shows how this nonlinearity leads to a small subset of true
final states on or even off the front. Thus, Pareto optimization
does not capture a key feature of the underlying biophysics,
providing only a rough approximation to the true dynamics.

Epistasis and Evolutionary Predictability.Our results also shed light
on the role of epistasis—the correlated effects of mutations
at different sites—in protein evolution. Epistasis underlies the
ruggedness of fitness landscapes (43, 44) and determines the
predictability of evolution, an issue of paramount importance in
biology (24, 45, 46). In most cases considered here, limited sign
epistasis gives rise to less-predictable intermediate pathways
(high Spath) but highly predictable final outcomes (low Scom).
However, there are two major exceptions to this pattern. First,
proteins with a nonfunctional binding interaction may have
multiple local maxima, some with strong binding and others with
weak binding (Fig. 3 C and D). Here both the intermediate
pathways and the final states are unpredictable—pure chance,
in the form of random mutations, drives the population to one
binding fate or the other. The second exception occurs in pro-
teins with direct selection for both binding and folding. Here
there is usually a single maximum, but the adaptive paths are

tightly constrained in energy space (Fig. 4), making protein evo-
lution highly predictable at the level of biophysical traits.

Materials and Methods
Energetics of Protein Folding and Binding. Folding energetics are probed ex-
perimentally and computationally by measuring the changes in Ef resulting
from point mutations of a reference sequence. We choose an arbitrary ge-
notype σref as a reference, with efði,σirefÞ= 0 for all i∈ f1, . . . ,Lg such that
EfðσrefÞ= Eref

f . Then we sample the remaining entries of ef from a Gaussian
distribution with mean 1.25 kcal/mol and standard deviation 1.6 kcal/mol,
consistent with available ΔΔG data showing these energies to be universally
distributed over many proteins (8). We also choose an arbitrary genotype σbb
to have the minimum binding energy: ebði,σibbÞ= 0 for all i∈ f1, . . . ,Lg and
EbðσbbÞ= Emin

b . Because binding hotspot residues typically have a 1–3 kcal/mol
penalty for mutations away from the wild-type amino acid (30, 31), we
sample the other entries of eb from an exponential distribution defined in
the range of ð1,∞Þ kcal/mol, with mean 2 kcal/mol. This distribution is con-
sistent with alanine-scanning experiments that probe energetics of amino
acids at the binding interface (47). Note that binding energy matrices eb1

and eb2
are sampled independently in all figures. We consider L= 6 hot-

spot residues and a reduced alphabet of k=5 amino acids (grouped into
negative, positive, polar, hydrophobic, and other), resulting in 56 = 15,625
genotypes. Our population genetics model and the algorithm for ex-
act calculation of adaptive path statistics are described in SI Materials
and Methods.
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SI Materials and Methods
Validity of the Additive Energy Model. Protein engineering studies
have generally found multiple mutations to have nearly additive
effects on protein energetics, at least for mutations at spatially
separated residues (1–4). For example, Istomin et al. (4) found
that residues separated by more than 6 Å are close to additive
(a slope of 0.88 between the sum of ΔΔG s for two single mutants
and ΔΔG for the double mutant, with correlation R= 0:97).
Spatially close residues, however, tend to be subadditive (slope
of 0.54 with R= 0:84): if the sum of energy changes associated
with each single mutant is (de)stabilizing, the double mutant will
also be (de)stabilizing, but the magnitude of its energy change
will be less than the sum of the two single-mutant energy changes
(1, 4). However, in the present study we are considering a small
number of hotspot residues ðL= 6Þ, which are statistically un-
likely to be close to each other. Thus, we expect mutational ef-
fects on energies to be additive to a good approximation. Note
that the additivity assumption neglects residues with long-range
interactions such as those involved in allosteric regulation.

Population Genetics Model. In the monomorphic limit, the pop-
ulation is described by a single point in genotype space (5). The
population evolves over time via mutations that arise sequen-
tially and either fix or disappear. Each fixation event leads to
an amino acid substitution in the entire population. The rate of
making a substitution from genotype σ to genotype σ′ is given
by (6)

W
�
σ′jσ�=Nuϕ

�
σ′jσ�; [S1]

where N is the effective population size, u is the mutation rate,
and ϕðσ′jσÞ is the probability of a single σ′ mutant fixing in a
population of wild-type σ. Typically the fixation probability de-
pends only on the relative selection coefficient s=Fðσ′Þ=FðσÞ− 1
between the two genotypes, where FðσÞ is the fitness of genotype
σ. For example, in the Wright–Fisher model, ϕðsÞ= ð1− e−2sÞ=
ð1− e−2NsÞ, where N is the effective population size (7). In the
strong-selection limit ðNjsj � 1Þ,

ϕðsÞ≈
�
1− e−2s for s> 0;
0 for s< 0:

[S2]

Thus, the effective population size N sets the overall time scale
ðNuÞ−1 of substitutions but does not affect fixation probabilities.
Far from the binding and folding thresholds the fitness land-

scape becomes nearly flat (Fig. 1A) and the strong-selection
assumption may be violated. To establish the limits of validity for
our model, we calculate average selection coefficients of acces-
sible substitutions, both throughout the landscape and at the
local maxima (Fig. S1). We observe that for typical values of
the effective population size N ∈ ð104; 107Þ (8, 9), the selection

strengths in the model justify our strong-selection approximation
for realistic choices of energy parameters.

Statistics of Adaptive Paths. We calculate statistical properties of
the adaptive paths using an exact transfer matrix-like algorithm
(10, 11). Let S be the set of all genotypes accessible to adapta-
tion, and let Sfinal be the set of final state genotypes (e.g., local
fitness maxima on F 2). Define W ðσ′jσÞ as the rate of making
a substitution from genotype σ to genotype σ′ (e.g., given by Eq.
S1). The rate matrix defines θðσÞ= ðPnn σ′ of   σW ðσ′jσÞÞ−1, the
mean waiting time in genotype σ before a substitution occurs,
where the sum is over all genotypes σ′ one mutation away from σ
(nearest mutational neighbors, “nn”). The substitution rates also
determine the probability Qðσ′jσÞ=W ðσ′jσÞθðσÞ of making the
substitution σ→ σ′, given that a substitution occurs out of σ.
For each substitution ℓ and intermediate genotype σ we cal-

culate PℓðσÞ, the total probability of all paths that end at σ in ℓ
substitutions; TℓðσÞ, the total average time of all such paths; and
ΓℓðσÞ, their total entropy. These quantities obey the following
recursion relations:

Pℓ
�
σ′
�
=

X

nn  σ   of   σ′
Q
�
σ′jσ�Pℓ−1ðσÞ;

Tℓ
�
σ′
�
=

X

nn  σ   of   σ′
Q
�
σ′jσ�½Tℓ−1ðσÞ+ θðσÞPℓ−1ðσÞ�;

Γℓ
�
σ′
�
=

X

nn  σ   of   σ′
Q
�
σ′jσ��Γℓ−1ðσÞ−

�
logQ

�
σ′jσ��Pℓ−1ðσÞ

�
;

[S3]

where P0ðσÞ= 1 if σ is the initial state and P0ðσÞ= 0 otherwise,
and T0ðσÞ=Γ0ðσÞ= 0 for all σ ∈S. The final states σ ∈Sfinal are
treated as absorbing to ensure that only first-passage paths are
counted. We use these transfer matrix objects to calculate the
path ensemble quantities described in the text:

ρðℓÞ=
X

σ∈Sfinal

PℓðσÞ; ψðσÞ=
XΛ

ℓ=1

PℓðσÞ; Spath =
XΛ

ℓ=1

X

σ∈Sfinal

ΓℓðσÞ;

τðσÞ=
XΛ

ℓ=1

θðσÞPℓðσÞ; τðℓÞ=
X

σ∈S
θðσÞPℓðσÞ;

t=
XΛ

ℓ=1

X

σ∈Sfinal

TℓðσÞ=
XΛ

ℓ=1

τðℓÞ=
X

σ∈S
τðσÞ:

[S4]

The sums are calculated up to a path length cutoff Λ, which we
choose such that 1−

PΛ
ℓ=1ρðℓÞ< 10−6. The time complexity of the

algorithm scales as OðγNΛÞ (10), where γ is the average connec-
tivity and N is the total size of the state space. For genotypic
sequences of length L and an alphabet of size k, γ ∼Lðk− 1Þ
and N ∼ kL.
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Fig. S1. Average selection strength. (A) Average log10s (where s is the selection coefficient) of all accessible beneficial substitutions as a function of Eref
f and

Emin
b = Emin

b1
= Emin

b2
in the case of direct selection for binding only ðfuf = fub = 0Þ. Due to the Eb symmetry of this case (Fig. 1B), we can neglect differences in Emin

b1

and Emin
b2

without loss of generality. (B) Same as A but limited to accessible substitutions that end at local fitness maxima. (C) Average log10s of all accessible
beneficial substitutions as a function of Emin

b1
and Emin

b2
in the case of direct selection for folding only (fuf = 0, fub = 1, Eref

f =−5 kcal/mol). (D) Same as C but limited
to accessible substitutions that end at local fitness maxima. (E and F) Same as C and D but for Eref

f = 0 kcal/mol. Direct selection for both binding and folding
yields qualitatively similar results. All data points are averages over 104 realizations of the energy matrices (ef, eb1 , eb2 ).

Fig. S2. Examples of adaptation for stable and intrinsically unstable proteins with direct selection for binding only. Symbols and randomly generated
energy matrices (ef, eb1 , eb2

) are the same as in Fig. 2 A and B. (A and B) Stable protein (Eref
f =−15 kcal/mol). (C and D) Intrinsically unstable protein (Eref

f = 5 kcal/
mol). As in Fig. 2 A and B, fub = fuf = 0 and Emin

b1
= Emin

b2
=−5 kcal/mol.
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Fig. S3. Average genotype distributions for direct selection for binding only. As in Fig. 4C, the distribution of initial states is shown in green, intermediate
states in blue (weighted by their path densities), and final states in red (weighted by their commitment probabilities). (A) Stable proteins (Eref

f =−15 kcal/mol).
(B) Marginally stable proteins (Eref

f =−3 kcal/mol). (C) Intrinsically unstable proteins (Eref
f = 5 kcal/mol). All distributions are averaged over 105 realizations of the

energy matrices. As in Fig. 2 A and B, fub = fuf =0 and Emin
b1

= Emin
b2

=−5 kcal/mol.

Fig. S4. Examples of adaptation with direct selection for folding only. Symbols in top and middle panels are the same as in Fig. 2 A and B, and the color
scheme in the bottom panels is the same as in Fig. 4C and Fig. S3. (A) Strong binding to both old and new targets (Emin

b1
= Emin

b2
=−8 kcal/mol). (B) Weak binding

to old target and strong binding to new target (Emin
b1

= 0 kcal/mol, Emin
b2

=−8 kcal/mol). (C) Strong binding to old target and weak binding to new target
(Emin

b1
=−8 kcal/mol, Emin

b2
=0 kcal/mol). We use fub = 1, fuf = 0, and Eref

f = 0 kcal/mol in all cases. In the bottom panels, the distributions are averaged over 105

realizations of the energy matrices.
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Fig. S5. Probability of divergent fates. For proteins with direct selection for folding only (fub = 1, fuf = 0), the probability of divergent fates is shown as
a function of Emin

b2
= Emin

b1
. All points are averaged over 104 realizations of the energy matrices with Eref

f = 0 kcal/mol.

Fig. S6. Distribution of adaptation times over intermediate states. (A) The same landscape realization as in Fig. 2 A and B (selection for binding only in
a marginally stable protein), but with each intermediate state σ sized proportional to τðσÞ, the average time spent in that state. (B) The probability ρðℓÞ (solid,
green) of taking an adaptive path of exactly ℓ total substitutions and the average time τðℓÞ (dashed, blue) spent by paths at the ℓth intermediate substitution,
averaged over 105 realizations with fub = fuf = 0, Eref

f =−3 kcal/mol, and Emin
b1

= Emin
b2

=−5 kcal/mol. (C and D) Same as A and B, but with the landscape realization
used in Fig. 4 A and B (selection for both binding and folding, fub = 0:9, fuf = 0, Eref

f = Emin
b1

= Emin
b2

=−4 kcal/mol).
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