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Abstract
The enormous size and complexity of genotypic sequence space frequently requires consideration of
coarse-grained sequences in empiricalmodels.We develop scaling relations to quantify the effect of
this coarse-graining on properties offitness landscapes and evolutionary paths.We first consider
evolution on a simpleMount Fujifitness landscape, focusing on how the length and predictability of
evolutionary paths scale with the coarse-grained sequence length and alphabet.We obtain simple
scaling relations for both theweak- and strong-selection limits, with a non-trivial crossover regime at
intermediate selection strengths.We apply these results to evolution on a biophysicalfitness landscape
that describes how proteins evolve new binding interactions whilemaintaining their folding stability.
We combine the scaling relationswith numerical calculations for coarse-grained protein sequences to
obtain quantitative properties of themodel for realistic binding interfaces and a full amino acid
alphabet.

1. Introduction

The enormous size and complexity of genotypic
sequence space are among the most salient features of
molecular evolution. These features not only present
technical challenges for experiments and computa-
tion, but raisemajor conceptual questions as well: how
can populations efficiently find high-fitness states in
such a large space? John Maynard Smith famously
tackled this issue [1], arguing that positive selection
acting on individual mutations is key to efficiently
evolving functional protein sequences. However, this
argument depends crucially on the structure of the
fitness landscape and the underlying evolutionary
dynamics. One expects a large population to ascend a
steep and perfectly-smooth landscape quickly, while
substantial landscape ruggedness or genetic drift will
slow adaptation down.

The effect of ruggedness (due to epistatic interac-
tions among genetic loci) on evolutionary paths has
been a major focus of previous work. These studies
have investigated both simple models of fitness land-
scapes—especially the uncorrelated random land-
scape [2–5] (also known as the ‘House of Cards’ [6])

and the rough Mount Fuji model [5, 7, 8]—as well as
landscapes empirically determined in specific organ-
isms [9, 10]. Populations in these studies are generally
assumed to be under strong selection, so that evolu-
tionary paths proceed strictly upward in fitness; a
major goal is to determine the number and length of
the accessible paths for different landscape topo-
graphies. More recent work has begun to consider the
effect of population dynamics (e.g., clonal inter-
ference) on evolutionary predictability [11], a topic of
central importance in evolutionary biology [12, 13].

Inmost cases the computational and experimental
cost of analyzing empirical models has required sim-
plified sequence spaces, especially binary sequences
(indicating only the presence or absence of a mutation
at each site) [3, 5, 8, 9], genomes or proteins with
reduced lengths [14–16], and reduced alphabets of
amino acids [16, 17] or protein structural components
[18]. However, it is not clear how properties of land-
scapes and evolutionary paths change under these
implicit coarse-graining schemes. Understanding
their scaling behavior is essential for extending these
models to more realistic biological systems. Specifi-
cally, we must determine how properties of a model
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scale with both the coarse-grained sequence length L
and the coarse-grained alphabet size k (number of
possible alleles at each site).

We first carry out this approach in a simple model
of monomorphic populations undergoing substitu-
tions on a smooth Mount Fuji landscape, showing
how the scaling properties of the model depend cru-
cially on the strength of selection relative to genetic
drift. We then consider evolution on a fitness land-
scape based on the biophysics of protein folding and
binding, describing how proteins evolve new binding
interactions while maintaining folding stability [17].
Using scaling relations, we are able to extend numer-
ical calculations carried out for coarse-grained repre-
sentations of proteins, obtaining quantitative
evolutionary properties for realistic binding interface
sizes and a full amino acid alphabet.

2. Evolutionary paths on a smoothMount
Fuji landscape

We first consider a simple fitness landscapemodel, the
smooth ‘Mount Fuji’ (i.e., single-peaked) landscape
[19]. Consider genotypic sequences of length L with k
possible alleles A A A…{ , , , }k1 2 at each site, resulting

in =n kL
seq possible genotypes.We assume the alleles

A A A…{ , , , }k1 2 are in increasing order of fitness rank.
The sites could be residues in a protein, nucleotides in
a DNA sequence, or larger genomic loci such as whole
genes. In general we will interpret the sequences in the
model as coarse-grained versions of actual biological
sequences. For example, a 12-residue binding interface
on a protein with 20 possible amino acids at each site
could be coarse-grained into L = 6 pairs of sites with
k = 5 alleles at each site, where each allele represents a
class of amino acids grouped by physico-chemical
properties (e.g., negative, positive, polar, hydropho-
bic, and other). This is analogous to block spin
renormalization in Isingmodels [20].

Let the occupation number σn ( )j of a sequence σ
be the number of A j alleles in the sequence, so that

σ∑ == n L( )j
k

j1 . We define the fitness of a sequence σ
to be

 σ =
∑ σ−
=f( ) , (1)

j n( 1) ( )
j

k

j

1

where ⩾f 1 is the minimum multiplicative fitness
change from a singlemutation: amutation A A→i j at

a single site changes fitness by a factor of −f j i. If f = 1,
the fitness landscape is flat and evolution is neutral,
while if >f 1, the landscape has a minimum at

A A Aσ = ⋯1 1 1 ( = 1) and a maximum at

A A Aσ = ⋯k k k ( = −f L k( 1)). The model is non-
epistatic since the fitness function factorizes over sites;
thus all mutations have the same fitness effect regard-
less of the genetic background on which they occur. A
more general Mount Fuji model could allow muta-
tions at different sites and between different alleles to

have different fitness effects, although this should not
affect the scaling properties of the model that are of
primary interest here.

We assume that the population is monomorphic:
all organisms have the same genotype at any given
time. This approximation holds when ≪u

−LN N( log ) 1, where u is the per-site probability of
mutation per generation and N is the population size
[21]. In this regime the population evolves through a
series of substitutions, in which single mutants arise
and fix one at a time. A substitution from genotype σ
to σ′occurs at the rate [22]

σ σ ϕ′ =W Nu s( ) ( ), (2)

where ϕ s( ) is thefixationprobability of a singlemutant
with selection coefficient  σ σ= ′ −s ( ) ( ) 1. We
use the diffusion approximation to the Wright–Fisher
model for thefixationprobability [23]:

ϕ = −
−

−

−
s( )

1 e

1 e
. (3)

s

Ns

2

2

Note that when ∣ ∣ >N s 1 this can be approximated
by

ϕ ≈ − >
<

−
s s

s
( ) 1 e if 0,

0 if 0.
(4)

s2⎧⎨⎩
That is, when selection is much stronger than genetic
drift, deleterious mutations never fix, while beneficial
mutations fix with a probability commensurate with
their selective advantage. This is often referred to as
the ‘strong-selection weak-mutation’ (SSWM)
limit [24].

2.1. The ensemble of evolutionary paths
For concreteness we consider the following evolution-
ary process: the population begins at the least fit
genotype, A A A⋯1 1 1, and evolves according to (2) until
it reaches themost fit genotype, A A A⋯k k k, for thefirst
time. Define an evolutionary path φ as the ordered
sequence of genotypes φ σ σ σ= … ℓ( , , , )0 1 traversed
by the population during this process, where

A A Aσ = ⋯0 1 1 1 and A A Aσ = ⋯ℓ k k k. The probability
of making a single substitution σ σ→ ′, given that a
substitution out of σ occurs, is

σ σ σ σ θ σ′ = ′Q W( ) ( ) ( ), (5)

where θ σ σ σ= ∑ ′∣σ′
−( )W( ) ( )

1
is the mean waiting

time in σ before a substitution occurs. Thus the
probability of taking a pathφ is

∏Π φ σ σ=
ℓ

=

−

+( )Q[ ] . (6)
i

i i

0

1

1

Since the population is guaranteed to reach the final
state eventually, Π φ∑ =φ [ ] 1, where the sum is over
all first-passage paths φ between the initial and final
states.

We are interested in statistical properties of this
evolutionary path ensemble. We can calculate many
such properties using a numerical algorithm described

2
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in appendix A [25, 26]. Here we are especially inter-
ested in the distribution of path lengths ℓ, i.e., the
number of substitutions experienced by the popula-
tion before it first reaches the fitness maximum. The
path length distribution ρ ℓ( ) is defined as

∑ρ ℓ δ Π φ=
φ

ℓ φ( ) [ ], (7), [ ]

where  φ[ ] is the length of path φ, and δ is the
Kronecker delta. We can similarly express the mean ℓ̄
and variance ℓvar of path length. We also consider the
path entropy Spath, defined as

∑Π φ Π φ= −
φ

S [ ]log [ ]. (8)path

This quantity measures the predictability of evolution
in sequence space: if only a single path is accessible,

=S 0path , and evolution is perfectly predictable.
Larger values of Spath, on the other hand, indicate a
more diverse ensemble of accessible pathways, and
thus less predictable evolution.

2.2. Neutral limit
We first consider properties of the evolutionary path
ensemble in the case of neutral evolution (f = 1
in (1)). For simple random walks on finite discrete
spaces, previous work has shown that the mean first-
passage path length scales with the total number of
states [27, 28], while the distribution of path lengths is
approximately exponential [27]. Thus for neutral
evolution

ℓ ℓ ℓ∼ = ∼ ∼n k k¯ , ¯ . (9)L L
seq var

2 2

Conceptually, this means the population on average
must explore the entire sequence space before reach-
ing a particular point for the first time, and thus the
average number of substitutions grows exponentially
with the length of the sequence. Moreover, since the
standard deviation is of the same order as the mean,
pathsmuch longer than themean are likely.

Let γ be the average connectivity, defined as the
average number of single-mutant substitutions acces-
sible from each sequence; in neutral evolution all sin-
gle-mutant substitutions are accessible, so
γ = −L k( 1). Since all substitutions are equally likely,

σ σ γ′∣ = −Q ( ) 1 for σ and σ′ separated by a single
mutation. The entropy of the neutral path ensemble is
therefore [26]

∑Π φ γ

ℓ γ

= −

=
∼ −

φ

φ−S

k L k

[ ]log

¯ log

log ( 1). (10)L

path
[ ]

The path entropy consists of two distinct components:
the average path length and the average connectivity.
The factor of γlog is the average entropy contribution
from each jump in the path. It is worth noting that
mean path length (and the distribution of path lengths
in general) does not have explicit dependence on

connectivity: it only depends on the size of the space.
So it is the enormous size, not the connectivity, of
sequence space that causes neutral evolution to require
so many steps to reach a particular point. In contrast,
path entropy, and thus evolutionary predictability,
depends on both the size and connectivity of sequence
space.

2.3. Strong-selection limit
We now consider evolutionary paths in the strong-
selection limit. Here all beneficial mutations are
selected so strongly ( ≫f 1 in (1)) that their fixation
probabilities are all approximately 1, while deleter-
ious mutations never occur. Thus evolutionary
paths proceed strictly upward on the fitness land-
scape. This is sometimes called the ‘adaptive walk’
[2] or ‘random adaptation’ [29] scenario; it is similar
to zero-temperature Metropolis Monte Carlo
dynamics with energy replaced by negative fitness
[3]. Since the fitness landscape is non-epistatic and
reverse mutations are impossible, each site can be
considered to evolve independently. In particular,
we can decompose the total path length into a sum of
path lengths for individual sites, so that the path
length cumulants for the entire sequence are simply
sums of the cumulants for individual sites. (Note
that the restriction to first-passage paths effectively
couples all the sites because they must all reach their
final states simultaneously, and so site independence
is only valid when reverse mutations are
prohibited.)

In appendix B we show that the mean number of
substitutions for a single site in this limit is ℓ = −H¯

k 1

(the −k( 1)th harmonic number), consistent with
previous results [29, 30]. Hence the mean length for L
sites is −LHk 1, and since = + +−

−H k b klog ( )k 1
1 ,

themean length scales as

ℓ ∼ +L k b¯ (log ). (11)

We explicitly include the  (1) constant b here since it
may be comparable to klog if k is not too large. For the
harmonic numbers, b is equal to the Euler–Mascher-
oni constant γ ≈ 0.5772EM , but we use generic nota-
tion here since we will fit this scaling form to an
empirical model in the next section. Equation (11)
implies that ℓ̄ scales approximately logarithmically
with the size nseq of sequence space, compared to the
linear scaling seen in the neutral case (9). Moreover,
appendix C shows that ρ ℓ( ) is approximately Poisson,
and thus the variance ℓvar should obey the same scaling
as ℓ̄.

The average connectivity of sequence space is
reduced compared to the neutral case, since only bene-
ficial substitutions are allowed. The connectivity aver-
aged over all sequences is −L k( 1) 2 (appendix D);
the reduction by a factor of 2 is intuitively explained by
the fact that every allowed beneficial substitution has a
prohibited deleterious substitution. For the path
entropy under strong selection, we take as an ansatz

3

Phys. Biol. 12 (2015) 045001 MManhart andAVMorozov



the same dependence on ℓ̄ and γ as in (10), albeit with
different L, k scaling:

ℓ γ∼ ∼ + −S L k b L k¯ log (log )log
1

2
( 1). (12)path

We numerically verify this ansatz in the next section
(figure 1).

2.4. Coarse-graining and landscape-dependence of
scaling relations
The path scaling relations depend qualitatively on
whether thefitness landscape isflat (neutral evolution)
or steep (strong selection). How does the transition
between these two limits occur at intermediate selec-
tion strengths, where selection and stochastic

Figure 1. Scaling properties of evolutionary paths on theMount Fuji landscape (1) for different values ofNs, whereN = 1000 and s is
the total selection coefficient between the least fit and themostfit sequences on the landscape: (a) =Ns 0 (neutral evolution), (b)

=Ns 0.1, (c) =Ns 1, (d) =Ns 10, (e) =Ns 100, and (f) = ∞Ns . The left column showsmean path length ℓ̄ (number of
substitutions), themiddle column shows path length variance ℓvar, and the right column shows path entropy Spath. Each panel plots
numerical data against neutral scaling parameters on the bottom axes (blue circles and the solid blue line of slope 1;
γ = −L k( 1)neutral ), and strong-selection scaling parameters on the top axes (red squares and the dashed red line of slope 1;
γ = −L k( 1) 2ss ). Numerical values of the variance ℓvar arefitted to a function of the form +aL k b(log ) for each value ofNs
separately.We scan over all >L 1 and >k 2 such that < ×k 4 10L 4.
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fluctuations (genetic drift) compete more equally? We
now implement a renormalization scheme for coarse-
graining sequence space on the fitness landscape
of (1). Let s be the total selection coefficient between
the minimum and maximum fitness points on the
landscape; this corresponds to the actual selection
strength between two distinct biological genotypes.
For example, the minimum and maximum fitnesses
might correspond towild-type and antibiotic-resistant
genotypes in bacteria [9, 31], or to one protein
sequence that does not bind a target ligand and one
that does [17]. As we coarse-grain the sequence space
into smaller L and k, we must therefore hold fixed this
true overall selection strength. Since = −−s f 1L k( 1)

in the Mount Fuji model (1), we renormalize the
minimum fitness benefit f accordingly:

= + −f s(1 ) . (13)L k1 ( ( 1))

Thus the fitness benefit of each mutation increases as
we coarse-grain the sequence space (decrease L and k),
since each mutation in the model corresponds to
severalmutations on the true biological sequences.

We consider a range of total s values and numeri-
cally calculate path statistics for each L and k using the
method of appendix A. In figure 1 we show the scaling
of ℓ̄, ℓvar, and Spath calculated in this manner for sev-
eral values of relative selection strength Ns. For

=Ns 0, we not only confirm the neutral scaling
relations (9) but also observe that any proportionality
factors and additive constants are so negligible that the
scaling relations are actually approximate equalities
(figure 1(a)). The predicted relation for the path
entropy (10) also holds exactly. Moreover, weak selec-
tion appears to preserve these scaling relations: they
still hold even at =Ns 0.1 (figure 1(b)). When selec-
tion becomes comparable to genetic drift ( =Ns 1,
figure 1(c)), the neutral scaling relations hold qualita-
tively, although the slopes of ℓ ∼ k¯ L and ℓ ∼ k L

var
2

are no longer close to 1, indicating different pro-
portionality factors.

At the other extreme ( = ∞Ns , figure 1(f)), the
strong-selection scaling relations (11) for path length
hold as expected. We also verify that ℓ γ∼S ¯ logpath

even for strong selection, albeit with a proportionality
factor less than 1. This scaling maintains at finite but
large selection strengths of =Ns 100 (figure 1(e)). At
intermediate selection strengths ( =Ns 10,
figure 1(d)), however, neither set of scaling relations
for ℓ̄ and ℓvar holds, indicating that path length statis-
tics are no longer simple functions of sequence space
size kL.

3. Evolutionary paths in a biophysical
model of protein adaptation

Simple model landscapes defined in genotype space,
such as (1), have produced many theoretical results
and guided analysis of experimental data [2–5, 8, 10].

However, their purely phenomenological nature
allows for little interpretation of their parameters,
which are not based on the underlying molecular
processes—interactions among proteins, DNA, RNA,
and other biomolecules—that govern cells. Thus a
promising alternative is to develop models of fitness
that explicitly account for molecular stability and
interactions [14, 16, 31–33]. We now consider the
scaling properties of evolutionary paths in a model
based on the biophysics of protein folding and binding
[17, 25, 26].

3.1. Protein energetics and coarse-graining
Consider a protein with two-state folding kinetics
[34]. In the folded state, the protein has an interface
that binds a target molecule. Because the protein can
bind only when it is folded, the protein has three
possible structural states: folded and bound, folded
and unbound, and unfolded and unbound. Let the free
energy of folding be Ef (often denoted by ΔG), so that
an intrinsically-stable protein has <E 0f . Let the free
energy of binding, relative to the chemical potential of
the target molecule, be Eb, so that <E 0b indicates a
favorable binding interaction. Note that Eb becomes
more favorable as the chemical potential of the target
molecule is increased.

The folding and binding energies depend on the
proteinʼs genotype (amino acid sequence) σ . We
assume adaptation only affects the L residues at the
binding interface, which, to a first approximation,
make additive contributions to the total folding and
binding free energies [35]:

∑

∑

σ ϵ σ

σ ϵ σ

= +

= +

=

=

( )

( )

E E i

E E i

( ) , ,

( ) , , (14)

i

L
i

i

L
i

f f
0

1

f

b b
0

1

b

where ϵ σi( , )if and ϵ σi( , )ib are entries of energy
matrices that capture the energetic contributions of
amino acid σ i at position i. Folding and binding
energetics are probed experimentally and computa-
tionally by measuring the changes (often denoted by
ΔΔG) in Ef or Eb resulting from single-point muta-
tions [36–38]. These studies generally indicate that
each positionmakes an energetic contribution of order
1 kcal mol−1 to the total energy. As a simple approx-
imation, we sample each energy contribution
ϵ σi( , )if,b independently from a Gaussian distribution
with zero mean and standard deviation 1 kcal mol−1.
The offsets Ef

0 and Eb
0 therefore correspond to the

folding and binding energies of the protein averaged
over all possible sequences at the binding interface; Ef

0

includes the folding stability contribution from all
residues in the protein away from the binding inter-
face. As long as it produces a physically realistic range
of total energies, the exact shape of the distributions
for ϵ σi( , )if,b is unimportant for large enough L due to
the central limit theorem.
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Numerical calculations over all kL sequences are
not possible for large L and a full amino acid alphabet
(k = 20). However, we can consider coarse-grained
versions of the model by grouping positions and
amino acids into classes, resulting in some effective
sequence parameters Leff and keff that are smaller than
their physical counterparts Lphys and =k 20phys . If we
then determine howproperties of themodel scale with
Leff and keff under such a coarse-graining procedure,
we can extrapolate these properties to the physical
values Lphys and kphys.

As we vary Leff and keff , we must renormalize the

distributions of energetic contributions ϵ σi( , )if,b for
the effective sequences such that the distribution of
total sequence energies remains constant, similar to
our coarse-graining scheme in the previous section.
Since the total sequence energies are sums of Gaussian
contributions from each site (14), coarse-graining the
sites amounts to sampling the effective ϵ σi( , )if,b

values from a Gaussian distribution with standard
deviation rescaled by a factor of L Lphys eff . For

example, if =L 12phys and =L 6eff (grouping posi-

tions into pairs), then each effective ϵ σi( , )if,b is the

sum of two physical ϵ σi( , )if,b values, and hence the

effective ϵ σi( , )if,b should have zero mean and stan-

dard deviation 2 kcal mol−1. Note that we analyti-
cally continue this rescaling to consider values of Leff

and keff that do not evenly divide Lphys and kphys. For
simplicity we will drop the ‘eff’ labels and hereafter
interpret L, k, ϵ σi( , )if , and ϵ σi( , )ib as these effective,
coarse-grained parameters, unless indicated
otherwise.

3.2. Evolutionarymodel
Without loss of generality, we assume that the protein
contributes fitness 1 to the organism when it is both
folded and bound. Let ∈f f, [0, 1]ub uf be the multi-
plicative fitness penalties for being unbound and
unfolded, respectively: the fitness is fub if the protein is
unbound but folded, and f fub uf if the protein is both
unbound and unfolded. Then the fitness of the protein
averaged over all three possible structural states is
given by [17]

 =
+ +

+ +

β β

β β

− + −

− + −
( )

( )

( )
E E

f f f
,

e e

e e 1
, (15)

E E E

E E E
f b

ub ub uf
f b f

f b f

where β = − −1.7 (kcal mol )1 1 is inverse room tem-
perature and the structural states are assumed to be in
thermodynamic equilibrium.

We assume that the population begins as perfectly
adapted to binding a target molecule characterized by
energy matrix ϵb1

with offset Eb
0
1
(defining a fitness

landscape 1). The population is then subjected to a
selection pressure which favors binding a new target,
with energy matrix ϵb2

and offset Eb
0

2
(fitness land-

scape 2).We assume that the binding energymatrices
for the new and old targets are uncorrelated, although

this assumption is not essential. The population
evolves in the monomorphic limit with the SSWM
dynamics in (2) and (4). Thus the evolutionary paths
are first-passage paths leading from the genotype cor-
responding to the global maximum on 1 to a local or
global maximum on 2, with fitness increasing mono-
tonically along each path.

3.3. Case 1: selection for binding strength
There are three qualitatively distinct cases of the
fitness landscape in (15), depending on the values of
the parameters fub and fuf [17]. These cases corre-
spond to different biological scenarios for the
selection pressures on binding and folding. In the
simplest scenario (‘case 1’), proteins are selected for
their binding function ( <f 1ub ), but misfolding
carries no additional fitness penalty (e.g., due to
toxicity of misfolded proteins) beyond loss of func-
tion ( =f 1uf ). Thus we say there is direct selection
for binding only. Three examples of adaptation in
this regime are shown in figure 2; the main determi-
nant of the qualitative nature of adaptation is the
overall folding stability Ef .

Although the model is non-epistatic at the level of
the energy traits (since (14) is additive), there is epis-
tasis at the level of fitness (15) due to its nonlinear
dependence on energy. Indeed, there is widespread
magnitude epistasis, which occurs when the fitness
effect of a mutation has different magnitude on differ-
ent genetic backgrounds, although it always remains
beneficial or deleterious. Sign epistasis, which occurs
when amutation can be beneficial on one background
but deleterious on another, manifests itself as curva-
ture in the fitness contours in energy space [17], as
shown in figure 2. However, we see that the landscape
is largely free of sign epistasis except near =E 0f ,
where there is a higher probability ofmultiple local fit-
ness maxima (figure 2(b)). Overall, this suggests that
the scaling relations from the non-epistatic Mount
Fuji model may provide a reasonable approximation
for this model of protein adaptation; the approxi-
mately additive nature of protein traits as in(14) has
previously led to applications of theMount Fuji model
to proteins [7, 31, 39, 40].

In figure 3 we show scaling properties of the geno-
typic fitness landscape for the three Ef regimes of the
model for case 1 (corresponding to the examples in
figure 2). The minimum path length ℓmin is the Ham-
ming distance between the initial and final states for
adaptation; for a randomly-chosen initial sequence,
ℓ = −L k(1 1 )min on average. Indeed, this relation
accurately describes the stable protein regime
(figure 3(a)). For proteins that are already sufficiently
stable, there is no selection pressure to improve stability
further, so the global fitness maximum is almost always
the best-binding sequence. Since the binding energetics
for the old and new targets are uncorrelated, the initial
and final states are therefore uncorrelated as well, which
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explains the ℓmin scaling. For marginally-stable and
unstable proteins, ℓmin still scales with −L k(1 1 ), but
with a reduced slope. This is because the initial and final
states become correlated in these two cases. We can
think of this effect as a reduction in the effective length L,

since some beneficial mutations are already present in
the initial state. We see similar behavior in the average
connectivity γ and accessible size nseq of sequence space
(figures 3(b) and (c)). Note that a random initial state
reduces the average connectivity of the accessible

Figure 2.Example landscapes of protein adaptationwith direct selection for binding only (case 1), zoomed into the region of energy
space accessible to evolutionary paths in ourmodel. (a) Stable proteinwith = −E 10f

0 kcal mol−1, (b) marginally-stable proteinwith
=E 3f

0 kcal mol−1, and (c) intrinsically-unstable proteinwith =E 8f
0 kcal mol−1. In all panels =f 0ub , =f 1uf , and = =E E 5b

0
b
0

1 2

kcal mol−1. The coarse-grained sequence parameters are L = 6 and k = 5, with effective energymatrices ϵf , ϵb1, and ϵb2 sampled
fromdistributions that were rescaled using =L 12phys . The black star indicates the initial state for adaptation (globalmaximumon
1); red triangles indicate localfitnessmaxima on 2, shaded according to their commitment probabilities (probability of reaching
that final state starting from the initial state); black circles indicate intermediate states along paths, sized proportional to their path
density (total probability of paths passing through them); small gray circles are genotypes inaccessible to adaptation. The black
contours indicate constant fitness 2 (thefitness difference between adjacent contours is non-uniform so that they are equidistant in
energy space), while example paths are shown in blue and green.

Figure 3. Scaling of landscape properties for three regimes of protein adaptationwith direct selection for binding only (case 1).
(a) Minimumpath length ℓmin, equal to theHamming distance between the initial andfinal states, versus −L k(1 1 ); (b) average
connectivity γ versus −L k( 1) 4; (c) average number nseq of accessible sequences versus +k(( 1) 2)L; and (d) average numberm of
localfitnessmaxima versus γ +n ( 1)seq . In all panels red circles are for stable proteins, blue squares are formarginally-stable proteins,
and green triangles are for intrinsically-unstable proteins, with all energy and fitness parameters the same as infigure 2. Each point
represents an average over 104 realizations of the folding and binding energymatrices; we exclude trivial realizationswhere the initial
state is already a localmaximumon 2.We scan over all >L 1 and >k 2 such that < ×k 4 10L 4, with energymatrices rescaled
using =L 12.phys Slope 1 lines from the origin are shown in gray to guide the eye.
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sequence space by an additional factor of 2, yielding
γ = −L k( 1) 4, and it also reduces the average size of
accessible sequence space to ((k + 1)/2)L (see
appendixD).

Whereas stable and unstable proteins almost
always have a single fitness maximum, marginally-
stable proteins have a sizable probability of multiple
maxima owing to greater sign epistasis (figure 2(b)).
In a purely random, uncorrelated fitness landscape,
the average number of local maxima is

= − +m k L k( ( 1) 1)L [2]. This has the form
γ +n ( 1)seq : the number of maxima increases with

the total size of the space and decreases with the con-
nectivity. We empirically test this scaling for the aver-
age number of maxima in a marginally-stable protein,
finding good agreement (figure 3(d)). By fitting
numerically-calculated values of m as a power law of

γ +n ( 1)seq , we obtain an anomalous scaling expo-
nent of ≈0.09; the fact that this is much less than 1
reflects the highly-correlated nature of our fitness
landscape. The fitted scaling relation allows us to
determine the average number of local maxima for
binding interfaces and amino acid alphabetsmuch lar-
ger than we can directly calculate. By also fitting γ as a
linear function of −L k( 1) 4 (appendix D,
figure 3(b)) and nseq as a power law of +k(( 1) 2)L

(appendix D, figure 3(c)), we estimate the number of
localmaxima to be ≈11 for amarginally-stable protein
with =L 12phys binding interface residues and an

amino acid alphabet of size =k 20phys . This number
of maxima is much smaller than the total number of

sequences ( ≈ ×k 4 10L 15) and the expected number
of maxima on an uncorrelated random landscape of
the same size ( − + ≈ ×k L k( ( 1) 1) 1.8 10L 13).

In figure 4 we show the scaling of path statistics ℓ̄,
ℓvar, and Spath. We find that the strong-selection scaling
relations describe this case of the protein model very
well, despite the complexities of the energy and fit-
ness model relative to the simple Mount Fuji case.
The main discrepancy is in the path length variance,
indicating that the distributions ρ ℓ( ) are not as close
to Poisson as in the Mount Fuji model. We expect
that this is mainly due to the small amount of epis-
tasis present in the protein model. Nevertheless,
the scaling is accurate enough to extend the model to
larger binding interfaces and a full amino acid alpha-
bet. For example, using the fitted coefficients a
and b (figures 4(a) and (b)), we estimate ℓ ≈¯ 26 and
ℓ ≈ 9.6var for a marginally-stable protein with

=L 12phys and =k 20phys . Comparing these against
the estimated ℓ ≈ 10min (fitted as a linear function of

−L k(1 1 ); figure 3(a)), we see that many more sub-
stitutions than theminimum are likely.

3.4. Cases 2 and 3: selection for folding stability
The fitness landscape changes qualitatively when there
are additional selection pressures against misfolding
beyond loss of function [17], e.g., for proteins that
form toxic aggregates when misfolded [41–43]. The
first possibility is that the protein has a non-functional
binding interaction ( =f 1ub ) but is deleterious when

misfolded ( <f 1uf ; ‘case 2’). Here the relative binding

Figure 4. Scaling of path properties for three regimes of protein adaptationwith direct selection for binding only (case 1). (a) Mean
path length (average number of substitutions) ℓ̄ and (b) path length variance ℓvar versus +aL k b(log ), where the parameters a and b
are fitted separately for ℓ̄ and ℓvar and for stable,marginal, and unstable proteins. (c) Path entropy Spath versus ℓ γ¯ log . All symbols
are the same as infigure 3.
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strengths of the old and new targets lead to different
patterns of adaptation. In figure 5(a), we show an
example of adaptation when both the old and new
targets have potentially strong (but non-functional)
binding affinity, while figure 5(b) shows an example
when the old target has weak affinity while the new one
has strong affinity. Figure 5(c) shows the case when the
old target has strong affinity and the new target has
little to no affinity.

Finally, the most general case is to have distinct
selection pressures on both binding and folding
( < <f0 1ub and <f 1uf ; ‘case 3’). Adaptation in this
scenario often resembles binding-only selection
(figure 2), except when both binding and folding are of
marginal strength (i.e., ≃E 0f and ≃E 0b ). In this
case, the distribution of genotypes in energy space
straddles a straight diagonal fitness contour, leading to
a distinct pattern of evolutionary paths that gain extra
folding stability first, only to lose it later as binding
improves (figure 5(d)).

We show the scaling properties of the evolutionary
paths for cases 2 and 3 in figure 6. In general, the pre-
dicted scaling relations are less accurate compared to
binding-only selection (case 1, figure 4). This is likely
due to increased sign epistasis in these regimes. Selec-
tion for both binding and folding (case 3) is particu-
larly epistatic in the ≃E 0f , ≃E 0b regime, leading to

the largest deviations from the Mount Fuji scaling
(figure 6). On the other hand, the degree of epistasis
here is still far from the maximally-epistatic, uncorre-
lated random landscape [2, 6]; in that model
ℓ ∼ L¯ log [3], which is clearly not the case in our bio-
physicalmodel.

4.Discussion

Developing models of fitness landscapes based on the
physics of proteins and other biomolecules has
emerged as a powerful approach for understanding
molecular evolution [14, 16, 31–33]. However, the
empirical nature of these models often makes explicit
analytical treatments impossible, while the enormous
size of sequence space restricts numerical calcula-
tions or simulations to short sequences or reduced
alphabet sizes. While analyses with small L and kmay
preserve qualitative properties of the models, quanti-
tatively extending these results to more realistic
parameter values is essential for comparison with
experimental data. Here we have developed a scaling
approach in which we empirically fit small L and k
calculations to scaling relations in order to obtain
precise quantitative properties of the model for
arbitrarily large L and k. The scaling analysis supports
the hypothesis that small L and k calculations largely

Figure 5.Example landscapes of protein adaptationwith selection for folding stability (cases 2 and 3). (a) Direct selection for folding
only ( =f 1ub , =f 0uf ) where both the old and new targets have potentially strong binding ( = =E E 3b

0
b
0

1 2 kcal mol−1); (b) same

selection as (a) butwhere the old target hasweak binding ( =E 10b
0
1 kcal mol−1) and the new target binds strongly ( =E 3b

0
2

kcal mol−1); (c) same selection as (a) butwhere the old target has strong binding ( =E 3b
0
1 kcal mol−1) and the new target binds

weakly ( =E 10b
0
2 kcal mol−1); and (d) direct selection for both binding and folding ( =f 0.9ub , =f 0uf ) withmarginal folding

stability and binding strength ( = = =E E E 5f
0

b
0

b
0

1 2 kcal mol−1). All symbols are the same as infigure 2. The coarse-grained sequence
parameters are L = 6 and k = 5, with energymatrices rescaled using =L 12phys .
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preserve qualitative properties of the model expected
for realistic sequence spaces. Although the scaling
relations are derived for a much simpler, purely non-
epistatic Mount Fuji landscape, they are surprisingly
robust to the widespread magnitude epistasis and
limited sign epistasis observed in the more realistic
biophysical model of protein evolution.

We also gain important conceptual insights
from the scaling analysis. In particular, we find
that the neutral evolution scaling (ℓ ∼ =n k¯ L

seq ,

ℓ ℓ∼ ∼ k¯ L
var

2 2 ) holds even when selection is present,
provided that it is not too strong ( ⩽Ns 1,
figures 1(a)–(c)). This means that the average number
of substitutions on the way to a global fitness max-
imum, even in the presence of weak selection, grows
exponentially with L. On the other hand, strong selec-
tion enables populations to find the global maximum
much faster: the mean path length scales with the loga-
rithm of sequence space size, and the distribution of
path lengths is approximately Poisson rather than expo-
nential. However, extremely strong selection
( ≈Ns 100, figure 1(e)) is required for this more effi-
cient behavior to take over. Selection of this magnitude
may be produced by sudden environmental changes, as
in our model of protein adaptation [17]. When selec-
tion is of more moderate strength ( ≈Ns 10), path
length statistics are not simple functions of sequence
space size (figure 1(d)). We expect the more complex

relations in this case to depend on the specific details of
the landscape and evolutionary dynamics.

Moreover, these insights are valuable for other
types of randomwalks on complex landscapes, e.g., in
spin models where L is the number of spins and k is
the number of individual spin states. The scaling
properties of first-passage paths have been well-stu-
died for random walks in the absence of an energy or
fitness landscape [28, 44], but the effects of a land-
scape on scaling are less well-known. Although the
substitution dynamics of (2) considered here are dif-
ferent from the typical dynamics used in spin models
and random walks in other systems (e.g., Metropolis
Monte Carlo) [20], we expect our qualitative findings
to remain valid. Thus we expect the pure random
walk scaling ( = ∞T ) to hold for temperatures down
to the size of the largest energy differences on the
landscape. There should be a non-trivial crossover
regime at temperatures around the size of these land-
scape features, and then at small T the T = 0 scaling
will take over. Investigating the nature of this cross-
over in both evolutionary and physical models is an
important topic for future work.
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Figure 6. Scaling of path properties for protein adaptationwith selection for folding stability (cases 2 and 3). Panels are the same as
figure 4 but with numerical data calculated using energy and fitness parametersmatching examples infigure 5: red circles are for case 2
(direct selection for folding only) proteins with strong binding to both old and new targets (figure 5(a)); blue squares are for case 2
proteins withweak binding to the old target but strong binding to the new one (figure 5(b)); green triangles are for case 2 proteins with
strong binding to the old target but weak binding to the newone (figure 5(c)); and purple crosses are for case 3 (direct selection for
both binding and folding) proteins (figure 5(d)).
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AppendixA.Numerical algorithm for
statistics of the path ensemble

We calculate statistical properties of evolutionary
paths using a numerical algorithm based on transfer
matrices [25, 26]. Let σ σ′∣Q ( ) be the jump probability
defined by a ratematrix as in (5). For each substitution
ℓ and intermediate genotype σ , we calculate σℓP ( ),
the total probability of all paths that end at σ in ℓ
substitutions, as well as Γ σℓ ( ), the total entropy of
such paths. These quantities obey the following recur-
sion relations:

∑

∑

σ σ σ σ

Γ σ σ σ Γ σ

σ σ σ

′ = ′

′ = ′

− ′

ℓ
σ

ℓ

ℓ
σ

ℓ

ℓ

−

−

−

P Q P

Q

Q P

( ) ( ) ( ),

( ) ( ) ( )

(log ( )) ( ) , (A.1)

1

1

1

⎡⎣
⎤⎦

where σ =P ( ) 10 if σ is the initial state and σ =P ( ) 00

otherwise, and Γ σ =( ) 00 for all σ . Final states are
treated as absorbing to ensure that only first-passage
paths are counted. We use these transfer-matrix
objects to calculate the path ensemble quantities
described in the text:





∑

∑ ∑

ρ ℓ σ

Γ σ

=

=

σ
ℓ

ℓ

Λ

σ
ℓ

∈

= ∈

P

S

( ) ( ),

( ), (A.2)path

1

final

final

where final is the set of final states. The sums are
calculated up to a path length cutoff Λ, which we
choose such that ρ ℓ− ∑ <ℓ

Λ
=

−1 ( ) 101
6. The time

complexity of the algorithm scales as  γ Λn( ) [25],
where γ is the average connectivity and n is the total
size of the state space.

Appendix B.Mean path length in the
strong-selection limit

Since sites can be considered independent in the
strong-selection limit, we need only calculate themean
path length for a single site with k possible alleles. A
path begins at A1, and initially all k alleles are of equal
or higher fitness and are therefore accessible. The first
substitution can go to any A A A A∈ …{ , , , }j k2 3 with

equal probability − −k( 1) 1, after which there are
− +k j 1 remaining alleles. Thus the mean path

length ℓ̄k for k alleles must satisfy the recursion
relation

∑ℓ ℓ= +
− =

− +
k

¯ 1
1

1
¯ , (B.1)k

j

k

k j

2

1

where ℓ =¯ 01 . This is satisfied by

ℓ = −H¯ , (B.2)k k 1

whereHn is the nth harmonic number defined by

∑=
=

H
j

1
. (B.3)n

j

n

1

Toprove this, wefirst note that
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= + − + − + ⋯ +

=
+ −

= + −
= + − +

=

=

+

H n
n n

n

n j

j

n H n

n H n

1

2

2

3

1

1

( 1)

( 1) ( 1), (B.4)

j

n

n

j

n

n

n

1

1

1

where we have used the property =+Hn 1

+ + −H n( 1)n
1. Now we substitute ℓ = −Hj̄ j 1 on the

right-hand side of (B.1) and invoke (B.4) to obtain

∑

∑

+
−

= +
−

= +
−

− − −

=

=
−

=

−
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−
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1
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1
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k

k j

j

k

j

k

k

2

1

2

1

1

This proves (B.2) is the solution to the recursion
relation.

AppendixC.Distribution of path lengths in
the strong-selection limit

Here we address the whole path length distribution

ρ ℓ( ) for a single site in the strong-selection limit.With
alleles ordered byfitness rank, a path of ℓ substitutions
is of the form A A A A→ → ⋯ → →

ℓ−j j k1 1 1
, where

< < ⋯ < <ℓ−j j k1 1 1 . Since all beneficial substitu-

tions are equally likely in this limit, each jump
probability out of allele A j is − −k j( ) 1. Therefore the

probability of taking a path of length ℓ is

∑ ∑

∑

ρ ℓ =
− − −

⋯

×
−

ℓ ℓ

ℓ

=

− −

= +

− −

= +

−

−ℓ ℓ− −

k k j k j

k j

( )
1

1

1 1

1
. (C.1)

j

k

j j

k

j j

k

2

( 1)

1 1

( 2)

2

1

1

1

1 2 1

1 2

Themean of this distribution is ℓ = −H¯
k 1 as shown in

appendix B. Here we obtain an approximate form for
the entire distribution. Define ϵ = −k 1 and =x j ki i .
For ≫k 1 (ϵ ≪ 1) we can take the continuum limit of
the exact expression to obtain
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By changing variables to ϵ= − +y x i( 1)i i , we
rewrite this as
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Each integral is dominated by its integrandʼs value
near the upper limit. However, because the domain of
integration requires ordering of the yi variables
( ℓ ϵ< < < < < − +ℓ−y y y0 ... 1 ( 1)1 2 1 ), the inte-
grand for ℓ−y 1 has the greatest support near its upper
limit. Since the integrands are all similar near their
lower limits, we thus approximate each integrand by
the one for ℓ−y 1:
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This approximation allows us to use the identity
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In the limit of ≫k 1and ℓ ≪k 1,
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Thus ρ ℓ( ) is approximately a Poisson distribution
with mean and variance klog . This is consistent with
the exact solution since ℓ = ≈−H k¯ logk 1 for large k.

AppendixD. Size and connectivity of
sequence space in the strong-selection limit

Each sequence σ has σ∑ −= k j n( ) ( )j
k

j1 possible

beneficial mutations in the Mount Fuji model (1).
Thus the connectivity averaged over all sequences is
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We can also determine the average connectivity of the
accessible sequences starting from a random initial
sequence. We first consider a single site. The initial
allele A j is chosen with probability k1 , leaving

− +k j 1 accessible alleles. Thus the average connec-
tivity of this accessible space is
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Since multiple sites contribute additively to the
connectivity, the total average connectivity of the
accessible space is −L k( 1) 4.

Starting from the sequence with minimum fitness,
all kL sequences are accessible in the strong-selection
limit. More generally, if the population begins at

sequence σ , there are ∏ − + σ
=

k j( 1)
j

k n
1

( )j acces-

sible sequences, including σ itself. If the initial
sequence is chosen at random, then the average num-
ber of accessible sequences is
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