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Growth tradeoffs produce complex microbial
communities on a single limiting resource
Michael Manhart 1 & Eugene I. Shakhnovich 1

The relationship between the dynamics of a community and its constituent pairwise inter-

actions is a fundamental problem in ecology. Higher-order ecological effects beyond pairwise

interactions may be key to complex ecosystems, but mechanisms to produce these effects

remain poorly understood. Here we model microbial growth and competition to show that

higher-order effects can arise from variation in multiple microbial growth traits, such as lag

times and growth rates, on a single limiting resource with no other interactions. These effects

produce a range of ecological phenomena: an unlimited number of strains can exhibit mul-

tistability and neutral coexistence, potentially with a single keystone strain; strains that

coexist in pairs do not coexist all together; and a strain that wins all pairwise competitions can

go extinct in a mixed competition. Since variation in multiple growth traits is ubiquitous in

microbial populations, our results indicate these higher-order effects may also be widespread,

especially in laboratory ecology and evolution experiments.
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Complex communities with a large number of distinct
species or strains abound in both nature1,2 and the
laboratory3,4. A fundamental problem in ecology is to

understand the relationship between a community’s behavior and
the pairwise interactions of its constituents5–8. In particular, the
key question is to what extent these pairwise interactions deter-
mine the behavior of the community as a whole. However,
ecologists have long considered the possibility of higher-order
effects such that the interaction between pairs of strains can be
altered by the presence of additional strains7–11. These higher-
order effects may cause a community to be fundamentally dif-
ferent than the sum of its pairwise interactions and can play an
important role in stabilizing coexisting communities12,13.
Although these higher-order effects may be essential to accurately
predict the ecological and evolutionary dynamics of a population,
their underlying mechanisms remain poorly characterized.

The relative simplicity and experimental tractability of
microbes make them convenient for studying this problem. Most
well-known ecological effects in microbes are mediated by cross-
feeding interactions or the consumption of multiple resources14.
For example, long-term coexistence of distinct strains is often
believed to depend on the existence of at least as many resource
types as coexisting strains, according to the principle of compe-
titive exclusion15,16. However, theoretical and experimental work
has demonstrated that tradeoffs in life-history traits alone—for
example, growing quickly at low concentration of a resource
versus growing quickly at high concentration, but with only a
single resource type and no other interactions—are sufficient to
produce not only stable coexistence of two strains17–20 but also
non-transitive selection21, in which pairwise competitions of
strains form a rock-paper-scissors game22.

Variation in multiple growth traits, such as lag time, expo-
nential growth rate, and yield (resource efficiency), is pervasive in
microbial populations23–25. Not only are single mutations known
to be pleiotropic with respect to these traits26,27, but even
genetically-identical lineages may demonstrate significant
variation28,29. The ecological effects of such variation, however,
are unknown in large populations with many distinct strains
simultaneously competing, as is generally the case for microbes.

Here we study a model that shows how covariation in growth
traits can produce complex microbial communities without any
interactions among cells beyond competition for a single limiting
resource. We focus on variation in lag times, exponential growth
rates, and yields since they are the traits most easily measured by
growth curves of individual strains30. We show that covariation
in these traits creates higher-order effects such that the magnitude
and even the sign of the selection coefficient between a pair of
strains may be changed by the presence of a third strain. These
higher-order effects can produce nontrivial ecological phenom-
ena: an unlimited number of strains can form a multistable
community or neutrally coexist, potentially with a single keystone
strain stabilizing the community31,32; strains that coexist in pairs
do not coexist in a community all together; and a strain that wins
all pairwise competitions can go extinct in a mixed competition.
Our model can be combined with high-throughput measure-
ments of microbial growth traits to make more accurate predic-
tions of the distribution of ecological effects and, in turn,
evolutionary dynamics. Altogether these results show how fun-
damental properties of microbial growth are sufficient to generate
complex ecological behavior, underscoring the necessity of con-
sidering ecology in studies of microbial evolution.

Results
Minimal model of microbial growth and competition over
serial dilutions. We consider a microbial population consisting of

multiple strains with distinct growth traits, all competing for a
single limiting resource. These strains may represent different
microbial species, mutants of the same species, or even
genetically-identical cells with purely phenotypic variation. We
approximate the growth of each strain i by the minimal model in
Fig. 1a, defined by a lag time λi, exponential growth time τi
(reciprocal growth rate, or time for the strain to grow e-fold), and
yield Yi, which is the population size supported per unit resource
('Methods')33. We assume resources are consumed in proportion
to the total number of cells; it is straightforward to modify the
model to other modes of resource consumption21. Therefore the
amount of resources strain i has consumed by time t is Ni(t)/Yi,
where Ni(t) is the population size of strain i. Growth stops when
the amount of resources consumed by all strains equals the initial
amount of resources; we define the initial density of resources per
cell as ρ ('Methods'). Although it is possible to consider additional
growth traits such as a death rate or consumption of a secondary
resource, here we focus on the minimal set of growth traits λi, τi,
and Yi since they are most often reported in microbial pheno-
typing experiments23–29,34. See Table 1 for a summary of all key
notation.

The selection coefficient between a pair of strains i and j
measures their relative ability to compete for resources35,36:

sij ¼ log
x′i
x′j

 !

" log
xi
xj

 !

; ð1Þ

where xi is the density (dimensionless fraction of population size)
of strain i at the beginning of the competition and x′i is the density
at the end. If new resources periodically become available, as
occur in both laboratory evolution experiments and seasonal
natural environments33, then the population will undergo cycles
of lag, growth, and saturation (Fig. 1b). Each round of
competition begins with the same initial density of resources ρ.
The population grows until all the resources are consumed, and
then it is diluted down to the original size again; we assume the
time to resource depletion is always shorter than the time
between dilutions. We also assume the growth traits λi, τi, and Yi
of each strain remain the same over multiple competition rounds.
The selection coefficients in Eq. 1 measure the rate of change of a
strain’s density xi over many rounds of these competitions
(‘Methods’).

Contribution of multiple growth traits to selection. We can
solve for the selection coefficients in Eq. 1 in terms of the strains’
traits {λk, τk, Yk}, the initial strain densities {xk}, and the initial
density of resources per cell ρ (Supplementary Note 1):

sij % slagij þ sgrowthij þ
X

k

scouplingijk ; ð2Þ

where

slagij ¼ " !τ
τiτj

Δλij;

sgrowthij ¼ " !τ
τiτj

Δτijlog ρ!Yð Þ;

scouplingijk ¼ " !τ!Y
τiτj

xk
τkYk

ΔτikΔλkj " ΔλikΔτkj
! "

:

ð3Þ

Here Δλij = λi−λj and Δτij = τi−τj denote the pairwise differ-
ences in lag and growth times, while

!τ ¼

P
k

xk
Yk

P
k

xk
τkYk

; !Y ¼ 1P
k

xk
Yk

ð4Þ
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are, respectively, the effective exponential growth time (reciprocal
growth rate) and effective yield for the whole population (Sup-
plementary Note 2). Since both of these quantities are harmonic
means over the population, they are dominated by the smallest
trait values. Therefore the effective growth time !τ for the whole
population will generally be close to the growth time of the
fastest-growing strain (smallest τk), while the effective yield !Y
will generally be close to the yield of the least-efficient strain
(smallest Yk).

As Eq. 2 indicates, selection consists of three distinct additive
components. The first is selection on the lag phase slagij , which is
nonzero only if i and j have unequal lag times (Eq. 3). The second
component is selection on the growth phase sgrowthij , which is
similarly nonzero only if i and j have unequal growth times. The
relative magnitude of selection on growth versus lag is modulated
by the density of resources ρ and the effective population yield !Y :

sgrowthij

slagij
¼

Δτij
Δλij

log ρ!Yð Þ: ð5Þ

In particular, increasing the resources ρ leads to an increase in
the magnitude of relative selection on growth versus lag, since it
means the growth phase occupies a greater portion of the total
competition time.

If i and j are the only two strains present, then the total
selection on strain i relative to j is the net effect of selection on the
lag and growth phases: sij ¼ slagij þ sgrowthij

21. Figure 2a qualitatively
shows this selection coefficient as a function of strain i’s lag and
growth traits relative to those of strain j. If strain i’s traits fall in
the blue region, the overall selection on it relative to strain j will
be positive, while if strain i’s traits fall in the red region, it will be
negatively selected relative to strain j. Between these two regions
lies a conditionally-neutral region (green), where strain i will be
positively selected at some densities and negatively selected at
others21. The slope of the conditionally-neutral region is log ρ!Yð Þ
according to Eq. 5.

Pairwise selection coefficients are modified by additional
strains through higher-order effects. If more than two distinct
strains are present, then selection between i and j is modified by
higher-order effects from the other strains. These higher-order
effects are separate from the effects of increasing the initial
population size upon addition of more strains, which simply
decreases the initial density of resources ρ; we therefore hold ρ
constant (i.e., by scaling up the total amount of resources or
scaling down the initial population size for each strain) when
considering the addition of another strain. The higher-order
modifications occur through three mechanisms, all fundamentally
a consequence of having a finite resource. The first mechanism is
through changes to the effective population growth time !τ, which
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Fig. 1 Model of growth and competition. a Approximation of a hypothetical growth curve (orange points) by the minimal three-phase model (green; see
'Methods'). Each phase is characterized by a quantitative trait: lag time λ, growth time τ (reciprocal growth rate), and yield Y at saturation. b Growth curves
of two competing strains over multiple rounds of competition in the model. Vertical dashed lines mark the beginning of each round, where the population is
diluted down to the same initial population size with new resources ('Methods')

Table 1 Summary of key notation

Definition Notation

Lag time of strain i λi
Exponential growth time (reciprocal growth rate) of strain i τi
Yield (cells per resource) of strain i Yi
Density (fraction of population) of strain i at beginning of competition round xi
Density of resources per cell at beginning of competition round ρ
Effective exponential growth time of whole population (harmonic mean)

τ ¼
P

k

xk
YkP

k

xk
Yk τk

Effective yield of whole population (harmonic mean) Y ¼ 1P
k

xk
Yk

Lag-growth tradeoff c ¼ " λi"λj
τ i"τ j

! "
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rescales all selection coefficients (Eq. 3). For example, the addition
of a strain with much faster growth will reduce the time all strains
have to grow (Eq. 4), and thereby decrease the magnitude of all
selection coefficients. The second modification is through the
effective population yield !Y . Like !τ, !Y is a harmonic mean over
strains, and similarly it will be significantly reduced if a strain
with very low yield is added. This may change even the signs of
some selection coefficients, since changes in !Y modify the relative
selection on growth versus lag between strains (Eq. 5).

Higher-order effects in !τ and !Y are non-specific in the sense that
these parameters are shared by all pairs of strains in the population.
In contrast, the third type of modification is through the terms
scouplingijk , which couple the relative lag and growth traits of a pair i
and j with a third strain k (Eq. 3). This effect is specific, since each
additional strain k modifies the competition between i and j
differently, depending on its growth traits and density xk. We can
interpret this effect graphically by considering the space of lag and
growth times for strains i, j, and k (Fig. 2b). If strain k lies above the
straight line connecting strains i and j in lag-growth trait space,
then the coupling term will increase selection on whichever strain
between i and j has faster growth (assumed to be strain i in the
figure). This is because strain k has relatively slow growth or long
lag compared to i and j, thus using fewer resources than if the
strains all had the same lag times or growth times. This then leaves
more resources for i and j, which effectively increases the selection
on growth between the two strains beyond the sgrowthij term. If strain
k instead lies below the straight line, then it increases selection on
the strain with slower growth, since k uses more resources than if
the strains all had the same lag times or growth times. For example,
even if strain i has both better growth and better lag compared to
strain j, a third strain k could actually reduce this advantage by
having sufficiently short lag. Note that the coupling term is zero if
all three strains have equal lag times or equal growth times. These
coupling effects will furthermore be small if the relative differences
in lag and growth traits are small, since scouplingijk is quadratic in Δλ
and Δτ while slagij and sgrowthij are linear. In the following sections, we
will demonstrate how these three higher-order mechanisms lead to
nontrivial ecological dynamics.

Growth tradeoffs enable neutral coexistence and multistability
of many strains on a single resource. Selection is frequency-
dependent since sij (Eqs. 2 and 3) depends on the densities {xk}21.

It is therefore possible for the population dynamics to have a fixed
point (sij= 0 for all strains i and j) at a nontrivial set of densities,
giving rise to neutral coexistence or multistability (Supplementary
Note 3). An unlimited number of distinct strains can have this
property as long as they share a linear tradeoff between lag and
growth times (Fig. 3a):

λi ¼ "cτi þ constant ð6Þ

for all i and some parameter c > 0, which we define as the lag-
growth tradeoff. The resource density ρ must also fall in the range
(Fig. 3b)

ec

maxk Yk
<ρ<

ec

mink Yk
: ð7Þ

Note that ρ>1=mink Yk is necessary as well, since if ρ is below
this limit there will be insufficient resources for some strains to
grow at all. Since this limit is always lower than the upper bound
in Eq. 7 (because c > 0), there will always be some range of ρ at
which the population has a fixed point.

Intuitively, a fixed point occurs because the strains consume
resources in such a way to exactly balance selection on lag and
growth for all pairs of strains. The linear lag-growth tradeoff
across all strains from Eq. 6 causes the higher-order coupling
terms scouplingijk of the selection coefficient to be zero (Eq. 3,
Fig. 2b). It also means there is some value of the effective yield !Y
that will enable slagij þ sgrowthij ¼ 0 for all pairs i and j; this critical
value of the effective yield is !Y = ec/ρ (Eq. 5, Supplementary
Note 3). The constraint on resource density ρ (Eq. 7) ensures that
the population can actually achieve this required effective yield
given the yield values of the individual strains.

These fixed points give rise to neutral coexistence, multi-
stability, or a combination of both depending on the covariation
between growth and yield across strains. The space of fixed-point
densities is (M− 2)-dimensional if there are M strains in the
community satisfying the criteria in Eqs. 6 and 7 (Supplementary
Note 3, Supplementary Fig. 1). Density fluctuations within this
space are neutral, while fluctuations orthogonal to this space will
be stable if there is also a tradeoff in growth and yield
(Supplementary Note 3, Supplementary Fig. 2a), in addition to
the lag-growth tradeoff (Eq. 6). In this case, an unlimited number
of strains can neutrally coexist within this space of densities until
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genetic drift eventually leads to extinction of all but two strains.
However, the time scale of this neutral coexistence will typically
be very long compared to laboratory experiments or the time
scales of other perturbations (new mutations or environmental
changes), since the time scale of genetic drift (in units of
competition rounds) is of order the bottleneck population size.
While real strains will not exactly obey Eq. 6, even noisy tradeoffs
can allow effective neutral coexistence over finite but significant
time scales (Supplementary Note 3, Supplementary Fig. 3). If
growth and yield have a synergy across strains rather than a
tradeoff, the community will be multistable, dominated by
different individual strains or pairs of strains depending on the
initial conditions (Supplementary Fig. 2b, c).

Neutral coexistence may hinge on a single keystone strain.
Besides small fluctuations in densities, an even stronger pertur-
bation to a community is to remove one strain entirely. The
stability of ecosystems in response to removal of a strain or
species has long been an important problem in ecology; in par-
ticular, species whose removal leads to community collapse are
known as keystone species due to their importance in stabilizing
the community31,32.

Neutrally-coexisting communities in our model will have a
keystone strain for a certain range of resource density ρ. Figure 3b
shows a diagram of competition outcomes across ρ values for four
hypothetical strains (blue, red, green, orange): if ρ is in the orange
or blue ranges, then removal of the strain of corresponding color
(orange or blue) will cause rapid collapse of the community (all
remaining strains but one will go extinct), since ρ will no longer
satisfy Eq. 7 for the remaining strains. Therefore the orange or
blue strain is the keystone. However, if ρ is within the gray region,
then the community is robust to removal of any single strain.
This shows that the keystone must always be the least-efficient or
most-efficient strain (smallest or highest yield Yk) in the
community. Figure 3c shows the population dynamics with each
strain removed from a coexisting community where the orange
strain is the keystone.

Besides removal of an existing strain, another important
perturbation to a community is invasion of a new strain, either

by migration or from a mutation. If the lag and growth times of the
invader lie above the diagonal line formed by the coexisting strains’
traits (e.g., as in Fig. 3a), then the invader will quickly go extinct
(Supplementary Note 4). This would be true even if the invader has
a growth time or lag time shorter than those of all the coexisting
strains. On the other hand, if the invader lies below the diagonal
line in lag-growth trait space, then it will either take over the
population entirely or coexist with one of the original strains if it is
sufficiently close to the diagonal line. It cannot coexist with more
than one of the original strains, since all three points by assumption
will not lie on a straight line in the lag-growth trait space.

Pairwise competitions do not predict community behavior. A
fundamental issue for microbial ecology and evolution is whether
pairwise competitions are sufficient to predict how a whole
community will behave5–8. For example, if several strains coexist
in pairs, will they coexist all together? Or if a single strain wins all
pairwise competitions, will it also win a mixed competition with
all strains present? We now show that competition for a single
limiting resource with tradeoffs in growth traits is sufficient to
confound these types of predictions due to the higher-order
effects in the selection coefficient (Eqs. 2 and 3).

First, strains that coexist in pairs will generally not coexist all
together. Strains i and j that coexist as a pair are characterized by
a particular lag-growth tradeoff cij = −Δλij/Δτij (Eq. 6). For a set
of these pairs to coexist all together, these tradeoffs must all be
equal, which will generally not be the case. However, if the lag-
growth tradeoffs are equal for all pairs, then the strains can
indeed coexist in a community, but not at the same resource
densities as for the pairs (Supplementary Note 5).

Second, in a collection of strains, a champion strain that wins
all pairwise competitions may not prevail in a mixed competition
of all strains. For example, in Fig. 4a the green strain beats the
blue and orange strains one-on-one with a hoarding strategy—
shorter lag with lower yield, but slower growth—but together the
blue and orange strains consume resources efficiently enough to
use their faster growth to beat green (Fig. 4b). In purely
competitive models, this is a unique consequence of higher-order
effects in the selection coefficients: the presence of the orange
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strain actually changes the sign of the selection coefficient
between green and blue (from positive to negative), and the blue
strain similarly changes the sign of selection between green and
orange. In this example it occurs via modifications to the effective
population yield !Y . Even if the strains have identical yields, it is
possible for the pairwise champion to lose the mixed competition
over short time scales due to effects from the lag-growth coupling
terms scouplingijk (Supplementary Note 6, Supplementary Fig. 4).

Third, it is also possible that there is no pairwise champion
among a set of strains, meaning that selection is non-transitive22.
For example, in Fig. 4c, orange beats blue and green beats orange,
but blue beats green, forming a rock-paper-scissors game37,38.
This outcome relies crucially on the existence of tradeoffs
between growth traits, so that no single growth strategy always
wins (Supplementary Note 7, Supplementary Fig. 5). In this
example, orange beats blue by having a shorter lag time, green
beats orange by growing faster and using resources more
efficiently (higher yield), and blue beats green by having shorter
lag and hoarding resources (lower yield). Non-transitivity in this
model occurs only for pairwise competitions where each strain
starts with equal density (xi(0)= 1/2). Invasion competitions,
where each strain competes against another starting from very
low density (as would occur in an invasion by a migrant or a new
mutant), cannot demonstrate this type of non-transitivity;
however, invasions may not be simply transitive, either, if some
pairs are bistable (Supplementary Note 7, Supplementary Fig. 5).

Non-transitive competitions are particularly confounding for
predicting the behavior of a mixed community. Since there is no
clear champion, non-transitive pairwise competitions are often
hypothesized as the basis for oscillations or coexistence in mixed
communities22,37,38. However, a non-transitive set of strains will
not coexist all together in our model. Which strain wins, though,
is not directly predictable from the pairwise selection coefficients,
and in fact may depend on the initial conditions due to
frequency-dependent selection. For example, Fig. 4d shows the
outcomes of mixed competitions for a non-transitive set of strains
as a function of their initial densities. If green starts at sufficiently
high density, then it wins the mixed competition, but otherwise
orange wins. In the inset we show one such mixed competition,
with initial conditions on the boundary between the orange and
green regimes. Here the outcome is very sensitive to the initial
conditions, since frequency-dependent higher-order effects from
the decaying blue population draw the orange and green strains
toward their unstable fixed point, where they temporarily remain
until the blue strain goes extinct and either orange or green
eventually wins.

Discussion
Variation in multiple growth traits is widespread in microbial
populations23–25, since even single mutations tend to be pleio-
tropic with respect to these traits26,27. Genetically-identical cells
can also demonstrate significant growth variation28,29. We have
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Fig. 4 Pairwise competitions do not predict community behavior. a, b Example of three strains (blue, orange, green) with a single pairwise champion
(green). Panel a shows density dynamics xi(r) for pairwise competitions, while b shows outcome of mixed competition as a function of initial conditions:
orange marks space of initial densities where the orange strain eventually wins, while green marks initial densities where green eventually wins. Inset:
density dynamics starting from equal initial densities (marked by black dot in main panel). c, d Same as a, b, but for three strains without a pairwise
champion (non-transitivity). See Supplementary Note 8 for parameter values
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shown how this variation, with competition for only a single finite
resource and no other interactions, is sufficient to produce a
range of ecological phenomena, such as neutral coexistence,
multistability, keystones, non-transitivity, and other collective
behaviors where a community is more than the sum of its parts.
This is because variation in multiple growth traits creates higher-
order effects in which the pairwise selection coefficients them-
selves change in the presence of other strains. This goes beyond
the effects of ordinary clonal interference39; for example, even the
sign of the selection coefficients may change due to these higher-
order effects, so that a strain that is the best in pairwise compe-
titions actually goes extinct in the mixed community (Fig. 4a, b).
For example, a mutation that is apparently beneficial against the
wild-type alone may not only appear to be less beneficial in the
presence of other mutations, but it could even appear to be
deleterious. These results highlight the importance of considering
the mutational distribution of ecological effects, rather than just
fitness effects relative to a wild-type, for predicting evolutionary
dynamics.

While previous work indicated that two strains may stably
coexist through tradeoffs in growth traits17–21, here we have
shown that an unlimited number of strains can in fact coexist
through this mechanism. Conceptually this is reminiscent of
other coexistence mechanisms, such as the storage effect40, where
tradeoffs in multiple life-history traits allow long-term balancing
of competition outcomes. A distinguishing feature of coexistence
in our model is its neutrality, suggesting an additional mechanism
by which neutrality may give rise to diversity41. Our work sup-
ports the hypothesis that higher-order effects should be wide-
spread in microbial ecosystems7,9. Experimental tests for these
effects and the predictive power of pairwise competitions remains
limited, however. A recent study found that pairwise competi-
tions of soil bacteria generally did predict the behavior of three or
more species together8, although there were important excep-
tions. Our results suggest an avenue for future investigations of
this problem.

Coexistence and other key outcomes of the model require
tradeoffs among lag, growth, and yield. The prevalence of these
tradeoffs in microbial populations has been the subject of many
previous studies, especially due to interest in the r/K (growth-
yield) selection problem. Some models of metabolic constraints
do imply a tradeoff between growth and yield42,43, while others
propose that both tradeoffs and synergies are possible depending
on the environment44; experiments have seen evidence of both
cases23–26.

The relationship between lag and growth has received less
attention. While models of the lag phase suggest a synergy, rather
than a tradeoff, with the growth phase (c < 0 in Eq. 6)45–47,
experimental support for this prediction has been mixed. For
example, Ziv et al. found that in a large collection of yeast strains,
faster growth mostly corresponded to shorter lag29,48. However,
other sets of strains in yeast and E. coli have found no such
trend24,27. Quantifying the prevalence and strength of these tra-
deoffs therefore remains an important topic for future investi-
gation. Regardless of general trends, though, it is clear that lag-
growth tradeoffs can be realized within some sets of microbial
strains. For example, the tradeoff was directly observed in E. coli
strains with certain mutations in adenylate kinase27.

Given a collection of microbial strains and their measured
growth traits, we can in principle use our model to predict the
population dynamics of any combination of strains. If we also
know the distribution of mutational effects on growth traits, we
can further predict evolutionary dynamics to determine what
patterns of traits are likely to evolve, which can be compared with
experimental data23–26. In practice, real populations will likely
contain more complex interactions beyond competition for a

single resource19, as well as more complex growth dynamics18.
Nevertheless, our model provides a valuable tool for interpreting
the ecological and evolutionary significance of growth trait var-
iation, especially for generating new hypotheses to be experi-
mentally tested. For example, it can be used to estimate what role
growth trait variation plays in the ecological dynamics of a
coexisting community.

Our results are especially relevant to laboratory ecology and
evolution experiments where populations undergo periodic
growth cycles. While the importance of interference among
mutants has been widely studied in these experiments39,49, it is
generally assumed that each mutant is described by a fixed
selection coefficient independent of the background population,
since the relative genetic homogeneity of the population suggests
there should be no additional ecological interactions beyond
competition for the limiting resource. But since even single
mutations will produce variation in multiple growth traits, our
results show that higher-order effects should actually be wide-
spread in these populations. Even genetically-identical popula-
tions may experience higher-order effects due to stochastic cell-
to-cell variation28,29,45, although the effects will fluctuate from
one round of competition to the next assuming cell-to-cell var-
iation does not persist over these timescales. We look forward to
quantifying the importance of these higher-order effects in future
work.

Methods
Model of population growth and competition. For a population consisting of a
single microbial strain, we approximate its growth dynamics by the following
minimal model (Fig. 1a)50:

NðtÞ ¼
Nð0Þ 0 ' t<λ;

Nð0Þeðt"λÞ=τ λ ' t<tsat;

Nð0Þeðtsat"λÞ=τ t ( tsat;

8
><

>:
ð8Þ

where λ is the lag time during which no growth occurs and τ is the exponential
growth time (reciprocal growth rate, or time over which the population grows e-fold).
The saturation time tsat at which growth stops is determined by the amount of
resources in the environment. We assume that the population size at saturation N(tsat)
is proportional to the total amount R of the limiting resource. Let Y denote this
constant of proportionality (N(tsat)= RY), which we will refer to as the intrinsic yield
since it is the total number of cells per unit resource33. Let ρ= R/N(0) be the initial
density of resources per cell. The saturation time then equals

tsat ¼ λþ τlog ρYð Þ: ð9Þ

If there are multiple distinct strains simultaneously competing for the same pool
of resources, let each strain i grow according to Eq. 8 with its own initial size Ni(0)
and growth traits λi, τi, and Yi. The initial density of each strain is therefore
xi ¼ Nið0Þ=

P
k Nkð0Þ and the initial density of resources is ρ ¼ R=

P
k Nkð0Þ.

Since the total amount of resources used by strain i by time t is Ni(t)/Yi, the
saturation time tsat for the whole population is defined by

R ¼
X

i

NiðtsatÞ
Yi

: ð10Þ

By solving this equation for tsat either numerically or analytically
(Supplementary Note 1), we can calculate all properties of the competition, such as
the densities of each strain at the end. While we have assumed here that resources
are consumed in proportion to the total number of cells, which holds for resources
such as space, it is straightforward to modify the model for other modes of resource
consumption21. For example, resources may be consumed in proportion to the
total number of cell divisions. The difference in these two models, however, will be
negligible if the fold-change of the population over the growth cycle is large.

Population dynamics over competition rounds. If the population undergoes
multiple rounds of dilution and resource renewal (Fig. 1b), the density of strain i at
the end of a round equals its density at the beginning of the next round (ignoring
stochastic effects of sampling21). Let xi(r) be the density of strain i at the beginning
of competition round r and x′iðrÞ be the density at the end, so that
x′iðrÞ ¼ xiðr þ 1Þ. The selection coefficients determine how the densities change
over the round. Using the selection coefficient definition sij ¼ log x′iðrÞ=x′jðrÞ

! "
"
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logðxiðrÞ=xjðrÞÞ (Eq. 1), we can obtain the recurrence relation for the change in
densities over each round:

xiðr þ 1Þ ¼ xiðrÞP
k xkðrÞeskiðxðrÞÞ

; ð11Þ

where x(r) is the vector of densities {xk(r)} at the beginning of round r. In all figures
we calculate density trajectories by numerically solving the saturation equation
(Eq. 10) for each competition round, and then iterating over rounds using Eq. 11.
These dynamics, however, can also be approximated by a differential equation over
a large number of rounds:

dxi
dr ¼

xiP
k
xke

ski ðxÞ
" xi

% xi
P
k
xksikðxÞ;

ð12Þ

where on the second line we have invoked the approximation that all ski values are
small. This is of Lotka-Volterra form where the selection coefficients encode the
effective (density-dependent) interaction coefficients between strains.

Data availability. Methods necessary to reproduce all analytical and numerical
results are fully described in the article and Supplementary Information.
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SUPPLEMENTARY NOTE 1.
DERIVATION OF THE SELECTION

COEFFICIENTS

Here we derive Eqs. 2 and 3, which show how the se-
lection coe�cients sij (Eq. 1) depend on the underly-
ing parameters. We assume the nontrivial case in which
the saturation time is longer than each strain’s lag time
(t

sat

> maxk �k). Using the minimal growth model in
Eq. 8, the selection coe�cient definition in Eq. 1 simpli-
fies to

sij =
1

⌧i
(t

sat

� �i)�
1

⌧j
(t

sat

� �j). (1)

We next rewrite the saturation condition (Eq. 10) in
terms of the selection coe�cients relative to strain i:

1 = e
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⇢Yk
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ski

!
, (2)

where we have inserted the initial density xk =
Nk(0)/

P
` N`(0) for each strain k and the initial resource

density per cell ⇢ = R/

P
` N`(0). We can then solve for

t

sat

and expand to first order in each ski:
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where Ȳ = (
P

k xk/Yk)
�1 is the harmonic mean of the

yields (Eq. 4). However, since we can freely choose a
di↵erent strain j to be the reference strain, we must also
have
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To be self-consistent these two expressions for t

sat

must
be equal for any i and j, which leads to the following
system of linear equations for the selection coe�cients:

sij � Ȳ
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where ��ij = �i � �j and �⌧ij = ⌧i � ⌧j .
We now take the solution for sij in Eqs. 2 and 3 as an

ansatz and show that it satisfies this system of equations.
If we substitute this expression for sij and skj in Supple-
mentary Eq. 5, the left-hand side (LHS) of the system in
Supplementary Eq. 5 becomes
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⇢Ȳ

⇤
+��ij + Ȳ
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Since
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because the summand is antisymmetric in the summation
indices, we drop the inner sum over ` and combine the
remaining sums over k to obtain
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We cancel out terms and factor to obtain
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where we have used the definitions in Eq. 4 to invoke
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This equals the right side of Supplementary Eq. 5, prov-
ing the solution is correct.

SUPPLEMENTARY NOTE 2.
SATURATION TIME AND OVERALL YIELD

FOR A MIXED POPULATION

Here we calculate expressions for the saturation time
and overall yield for a mixed population of multiple
strains, which provide interpretations of the quantities ⌧̄
and Ȳ (Eq. 4) as the e↵ective growth time and e↵ective
yield of the whole population. Using the approximation
for t

sat

in Supplementary Eq. 3, which holds for any refer-
ence strain i, we insert the selection coe�cients ski from
the expression in Eqs. 2 and 3:
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We eliminate the double sums over k and ` (using Supple-
mentary Eq. 7) and invoke the identity in Supplementary
Eq. 10 to obtain
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⌧kYk
+ ⌧̄ log

�
⇢Ȳ

�
. (12)

Comparing with the saturation time for a homogeneous
population of a single strain (Eq. 9), we see the weighted
sum over all lag times in Supplementary Eq. 12 corre-
sponds to the e↵ective time shift from the lag phase,
while the last term in Supplementary Eq. 12 deter-
mines the time during which exponential growth occurs.
In analogy with Eq. 9, ⌧̄ is therefore the mixed pop-
ulation’s e↵ective exponential growth time (reciprocal
growth rate), and Ȳ is the mixed population’s e↵ective
yield. Note that the e↵ective growth rate 1/⌧̄ is just an
arithmetic mean of the individual strains’ growth rates.

The quantity Ȳ is in fact the exact yield for a mixed
population when all strains are neutral. Let N

sat

=P
k Nk(tsat) be the total population size at saturation.

For a set of strains to all be neutral, they must have a
fixed lag-growth tradeo↵ cij = ���ij/�⌧ij = c for all
pairs of strains i and j (Eq. 6, Supplementary Note 3).
In that case the e↵ective yield is Ȳ = e

c
/⇢. Since all

sij = 0 by definition, then Supplementary Eq. 3 implies
that t

sat

= �k+c⌧k for any strain k, which we can rewrite
as (t

sat

� �k)/⌧k = c. We then calculate the total popu-
lation size at saturation to be

N

sat

=
X

k

Nk(0)e
(tsat��k)/⌧k

= e

c
X

k

Nk(0)

= ⇢Ȳ

X

k

Nk(0)

= RȲ ,

(13)

where we have used the definition ⇢ = R/

P
k Nk(0).

This shows that the total saturation size N

sat

is propor-
tional to the total amount of resources R, with propor-
tionality constant Ȳ , meaning that Ȳ is indeed the yield
for the whole population.

SUPPLEMENTARY NOTE 3.
CONDITIONS FOR NEUTRAL COEXISTENCE

AND MULTISTABILITY

Here we derive the conditions that lead to neutral
coexistence or multistability in population dynamics.
Both phenomena require the existence of nontrivial fixed
points in the space of densities, where all pairwise selec-
tion coe�cients are zero. We first determine the condi-
tions on parameters necessary for these fixed points to
exist.
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Conditions for fixed points

We substitute sij = 0 into the linear system for
the selection coe�cients (Supplementary Eq. 5), which
implies the right-hand side of the system must be
zero: �⌧ij log

�
⇢Ȳ

�
+ ��ij = 0, or equivalently ⇢Ȳ =

e

���ij/�⌧ij . Since this must hold for all pairs of strains
i and j, ��ij/�⌧ij is therefore a constant independent
of i and j:

c = ���ij

�⌧ij
. (14)

This is the first requirement for a fixed point (equivalent
to the linear lag-growth tradeo↵ condition in Eq. 6). The
second requirement is therefore

⇢Ȳ = e

c
. (15)

This equation implies that c > 0 (lag and growth must
have a tradeo↵, rather than a synergy, across strains),
since the left-hand side of Supplementary Eq. 15 is the
fold-change of the whole population’s growth and there-
fore must be greater than 1. Supplementary Equation 15
furthermore imposes a constraint on the initial density of
resources ⇢. Since Ȳ is the harmonic mean of the yields
{Yk} (Eq. 4), it is bounded by the minimum and maxi-
mum yields across strains:

min
k

Yk < Ȳ < max
k

Yk. (16)

Combining this constraint with Supplementary Eq. 15,
we obtain the limits on the resource density ⇢ in Eq. 7.

Space of fixed-point densities

The condition in Supplementary Eq. 15 also imposes
constraints on the strain densities that can be fixed
points. Substituting in the definition of Ȳ to Supplemen-
tary Eq. 15, a set of densities {x̃k} at which the strains
have a fixed point must satisfy the following linear equa-
tion:

X

k

x̃k

Yk
= ⇢e

�c
. (17)

If there are M total strains, then the space of fixed points
is a section of an (M � 2)-dimensional hyperplane, since
the M densities must satisfy two linear equations (Sup-
plementary Eq. 17 as well as normalization

P
k x̃k = 1).

Supplementary Fig. 1 shows these strain densities for
M = 3 (Supplementary Fig. 1a) and M = 4 strains (Sup-
plementary Fig. 1b) as functions of the resource density
⇢, which determines the relative proportion of each strain
at the fixed points. In general, smaller ⇢ leads to fixed
points with a greater density of high-yield strains, while
larger ⇢ leads to fixed points with more low-yield strains.

SUPPLEMENTARY FIGURE 1. Space of fixed-point
densities. (a) For three strains, the space of fixed-point den-
sities (satisfying Supplementary Eq. 17) is one-dimensional.

We project this one-dimensional region into the space of den-

sities for two strains x

1

and x

2

. Each line corresponds to

fixed points for a di↵erent value of the resource density ⇢ (in-

dicated by the color). (b) Same as (a) but for four strains,

where the space of fixed-point densities is two-dimensional.

See Supplementary Note 8 for parameter values.

Stability of density fluctuations at fixed points:
neutral coexistence or multistability

Density fluctuations will occur from both extrinsic and
intrinsic noise, such as the random sampling of the pop-
ulation from one round of competition to the next [1].
Let x̃ = {x̃k} be a set of densities satisfying the fixed-
point condition (Supplementary Eq. 17). To determine
the stability, we consider small fluctuations �x around
this point. Let the Jacobian of the selection coe�cients
at the fixed point be

Jijk =
@sij

@xk

����
x=˜x

(18)

so that

sij(x̃+�x) ⇡
X

k

Jijk�xk. (19)

For small fluctuations we can approximate the density
dynamics around the fixed point with the di↵erential
equations in Eq. 12:

d

dr

�xi = (x̃i +�xi)
X

k

(x̃k +�xk)sik(x̃+�x)

⇡ x̃i

X

k

x̃k

X

j

Jikj�xj

=
X

j

Wij�xj ,

(20)

where we have dropped higher-order terms in �x and
defined the matrix

Wij = x̃i

X

k

x̃kJikj . (21)
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SUPPLEMENTARY FIGURE 2. Phase portraits of neutral coexistence and multistability. Dynamics of three strains

(blue, red, green) projected into the space of densities x

blue

and x

red

. Gray streamlines show dxi/dr (Eq. 12), while the magenta

line indicates the set of fixed points (Supplementary Eq. 17). The orange curve is an example trajectory beginning at the orange

dot. Insets show the density xi(r) over competition rounds r for each strain along the orange trajectory. (a) Case where all

fixed points are stable to fluctuations o↵ the space of fixed points; (b) case where all fixed points are unstable; (c) case where

there is a mix of stable and unstable fixed points. The vertical gray lines in the insets of panels (b) and (c) indicate the time

at which the densities are perturbed away from unstable fixed points. See Supplementary Note 8 for parameter values.

To analyze stability of fluctuations around the fixed
point, we must determine the eigenvalues of the matrix
Wij : negative eigenvalues will correspond to directions in
the space of densities that are stable to small fluctuations,
positive eigenvalues will indicate unstable directions, and
zero eigenvalues indicate neutral directions. We calculate
the Jacobian of the selection coe�cient using the formula
in Eqs. 2 and 3. We first note that the density derivatives
of ⌧̄ and Ȳ are

@⌧̄

@xk
= ⌧̄

Ȳ

Yk

✓
1� ⌧̄

⌧k

◆
,

@Ȳ

@xk
= � Ȳ

2

Yk
. (22)

Therefore the derivatives of the selection coe�cient are

@

@xk
s

lag

ij = � ⌧̄��ij

⌧i⌧j

Ȳ

Yk

✓
1� ⌧̄

⌧k

◆
,

@

@xk
s

growth

ij = � ⌧̄�⌧ij

⌧i⌧j

Ȳ

Yk

✓
1� ⌧̄

⌧k

�
log
⇥
⇢Ȳ

⇤
� 1

◆
,

@

@xk
s

coupling

ij` = � ⌧̄ Ȳ

⌧`Y`

✓
�⌧i`��`j ���i`�⌧`j

⌧i⌧j

◆

⇥
✓
�`k � x`

⌧̄ Ȳ

⌧kYk

◆
.

(23)

Combining these components and evaluating them at a
fixed point (Supplementary Eqs. 14 and 15) results in

Jijk =
⌧̄�⌧ij

⌧i⌧j

Ȳ

Yk
. (24)

Therefore the matrix for dynamics around a fixed point
is

Wij = x̃i

X

k

x̃k
⌧̄�⌧ik

⌧i⌧k

Ȳ

Yj

= x̃i
⌧̄ Ȳ

⌧iYj

 
⌧i

X

k

x̃k

⌧k
� 1

!
.

(25)

This matrix has outer-product form Wij = aibj . It is
straightforward to show that such a matrix has an eigen-
value µ =

P
i aibi, while all other eigenvalues are zero.

The zero eigenvalues correspond to the neutral directions
within the space of fixed points (Supplementary Fig. 1),
while the one nonzero eigenvalue is the only direction
orthogonal to this space. This eigenvalue is

µ =
X

i

x̃i
⌧̄ Ȳ

⌧iYi

 
⌧i

X

k

x̃k

⌧k
� 1

!

= ⌧̄

X

k

x̃k

⌧k
� 1,

(26)

where we have simplified using the definitions of ⌧̄ and
Ȳ (Eq. 4).
Density fluctuations are stable in the non-neutral di-

rection when µ < 0, which we can rewrite as

X

k

x̃k

⌧kYk
�
 
X

k

x̃k

⌧k

! 
X

k

x̃k

Yk

!
> 0. (27)

That is, fluctuations orthogonal to the space of fixed
points are stable when the covariance of reciprocal
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growth times and reciprocal yields is positive. If slower-
growing strains always have higher yields (growth-yield
tradeo↵), the covariance is positive for any set of densi-
ties {x̃k}, and so any fluctuations o↵ the space of fixed
points will be stabilized. In this case the fixed points
correspond to neutral coexistence of the strains. Sup-
plementary Fig. 2a shows an example for three strains;
selection drives the population to the space of fixed
points from any initial state. The population will then
fluctuate randomly within this space (neutral dynam-
ics, not shown). If slower-growing strains always have
lower yields (growth-yield synergy), then the covariance
is negative for any densities, and fluctuations o↵ the fixed
points will be unstable. This means the population is
multistable, such that it will converge to completely dif-
ferent compositions of strains depending on its initial
state relative to the space of fixed points. For example,
Supplementary Fig. 2b shows how a small perturbation
in one direction o↵ a fixed point leads to fixation of the
green strain, while a perturbation in the opposite di↵er-
ent direction would have led to fixation of the blue strain.
If no perfect correlation holds across the growth times
and yields of the strains, then the sign of the covariance
may depend on the densities {x̃k}, leading to a mix of
neutral coexistence and multistability as in Supplemen-
tary Fig. 2c. In that case it is possible for a population
that is perturbed away from a fixed point with an un-
stable non-neutral direction to evolve to a di↵erent fixed
point with a stable non-neutral direction.

Maximum entropy of strains with neutral
coexistence

For strains that can neutrally coexist, the set of densi-
ties {x̃k} with maximum diversity over strains is of par-
ticular interest. A common way to measure strain di-
versity in a population is by Shannon entropy, defined
as

S = �
X

k

x̃k log x̃k. (28)

This ranges from zero if only one strain is present, to
logM if M strains are equally abundant. The con-
dition on densities with neutral coexistence (Supple-
mentary Eq. 17) means that the reciprocal yield aver-
aged over densities must be ⇢e

�c. With this constraint
the maximum-entropy set of densities is of Boltzmann
form [2], with reciprocal yield in the role of energy:

x̃k =
1

Z

e

��/Yk
, (29)

where � is defined such that

P
k

1

Yk
e

��/Yk

P
k e

��/Yk
= ⇢e

�c (30)

SUPPLEMENTARY FIGURE 3. E↵ective coexistence of
strains with approximate lag-growth tradeo↵s. Each

green point represents a set of 100 strains with randomly-

generated trait values. We determine the empirical lag-growth

tradeo↵ c and correlation coe�cient from the linear regres-

sion of lag and growth times. The population starts at the

maximum-entropy set of densities that would allow neutral

coexistence (Supplementary Eq. 29) if the strains’ lag and

growth times fell exactly on the regression line. We exclude

realizations where ⇢ falls outside of the allowed range (Eq. 7)

given the tradeo↵ c and yields {Yk}, or if any of the maximum-

entropy densities is too small (< 10

�6

) to constitute meaning-

ful coexistence. We then evolve the densities over competition

rounds and determine the number of rounds until any strain

goes extinct (i.e., its density falls below 10

�6

), which we use

as the time of e↵ective coexistence. For each of the 100 com-

munities, this time is plotted on the vertical axis against the

empirical lag-growth correlation coe�cient on the horizontal

axis. Green points are transparent to show their density. See

Supplementary Note 8 for parameter values.

and Z =
P

k e
��/Yk is the normalization constant. The

maximum entropy is therefore

S

max

= �⇢e

�c + log

 
X

k

e

��/Yk

!
. (31)

The parameter � (analogous to inverse temperature)
sets a yield threshold determining how much of the pop-
ulation consists of strains with low yields versus those
with high yields. If ⇢ is close to e

c
/mink Yk (high end of

range in Eq. 7), then � will be negative and large in mag-
nitude, meaning the strains with the lowest yields will be
favored. Similarly, if ⇢ is close to e

c
/maxk Yk (low end of

range in Eq. 7), then � will be large and positive, so that
strains with the highest yields will be favored. All M
strains will be equally represented (xk = 1/M) if � = 0,
which occurs if the resource density is set to

⇢ =
e

c

M

X

k

1

Yk
. (32)
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E↵ective coexistence with noisy tradeo↵s

The condition for neutral coexistence in Eq. 6 is an ex-
act linear tradeo↵ between lag and growth times. How-
ever, a tradeo↵ among real strains will never be exactly
linear for more than two strains. But even if the tradeo↵
is noisy, with some fluctuations around a linear trend,
this will still lead to e↵ective coexistence over some fi-
nite time scale, which may be su�ciently long to be bi-
ologically relevant (e.g., to observe in a laboratory ex-
periment, or before new mutations arise or the environ-
ment changes). To illustrate this, we randomly generate
communities (sets of strains with distinct growth traits)
with di↵erent correlations of lag and growth times across
strains. We initialize each community at a set of den-
sities {xk} such that it would coexist if all the traits
exactly obeyed the linear regression of growth traits. We
then measure the time (number of competition rounds) it
takes for the first strain to go extinct, i.e., for its density
to drop below a certain threshold. Supplementary Fig. 3
shows that while communities with only weak lag-growth

correlations will generally not coexist for very long, as ex-
pected, the apparent coexistence time increases rapidly
as the correlation becomes stronger. Thus, a commu-
nity with even moderate correlation may still practically
coexist over a significant time.

SUPPLEMENTARY NOTE 4.
SELECTION ON AN INVADER TO A

COEXISTING COMMUNITY

Consider a strain that invades a community of
neutrally-coexisting strains. We assume the invader en-
ters at infinitesimally-low density. In this case, the quan-
tities ⌧̄ and Ȳ (Eq. 4) for the coexisting strains com-
bined with the invader are essentially the same as their
values for the coexisting strains alone. In particular,
log
�
⇢Ȳ

�
⇡ c (Supplementary Eq. 15), where c is the

lag-growth tradeo↵ for the coexisting strains. The selec-
tion coe�cient of the invader relative to each coexisting
strain j is therefore

s

inv,j = � ⌧̄

⌧

inv

⌧j

 
��

inv,j +�⌧

inv,j log
⇥
⇢Ȳ

⇤
+ Ȳ

X

k

xk

⌧kYk
[�⌧

inv,k��kj ���

inv,k�⌧kj ]

!

⇡ � ⌧̄

⌧

inv

⌧j
(��

inv,j + c�⌧

inv,j)

0

@1� e

c

⇢

X

k 6=inv

xk

⌧kYk
�⌧kj

1

A

= � 1

⌧

inv

(��

inv,j + c�⌧

inv,j)

= � 1

⌧

inv

(c⌧
inv

+ �

inv

� constant) ,

(33)

where we have used �j = �c⌧j + constant (Eq. 6) for
the coexisting strains. This shows that the selection co-
e�cients between the invader and each of the coexisting
strains j are the same: if the invader’s lag and growth
times are above the diagonal line of the coexisting strains
(e.g., Fig. 3a), then the the invader will have negative se-
lection coe�cient relative to all coexisting strains, and so
its densities will decay to zero. Otherwise, its selection
coe�cient will be positive and the invader will take over.

SUPPLEMENTARY NOTE 5.
PAIRWISE VERSUS COMMUNITY

COEXISTENCE

A collection of strains that neutrally coexist in pairs
will only coexist all together if they share the same lag-
growth tradeo↵ c (Eq. 6). In this case, though, the re-
source densities ⇢ at which each pair coexists will not be
the same, nor will they be the same as the values of ⇢
at which the whole community coexists. Consider three

strains with a lag-growth tradeo↵ c and in order of in-
creasing yields, so that e

c
/Y

3

< e

c
/Y

2

< e

c
/Y

1

. For
strains 1 and 2 to coexist, ⇢ must be between e

c
/Y

2

and
e

c
/Y

1

, while for strains 2 and 3 to coexist, ⇢ must be
between e

c
/Y

3

and e

c
/Y

2

. These constraints are mu-
tually exclusive, so strains 1 and 2 will not coexist in
the same environmental conditions as strains 2 and 3.
Furthermore, all three strains can coexist as long as
e

c
/Y

3

< ⇢ < e

c
/Y

1

, but for any value of ⇢ in that range,
one of the pairs will not coexist. Therefore some, but
not all, pairs of strains from a coexisting community will
coexist on their own in the same environment.

SUPPLEMENTARY NOTE 6.
PAIRWISE CHAMPION MUST WIN MIXED

COMPETITION WITH EQUAL YIELDS

Figure 4a,b gives an example of strains where the pair-
wise champion (green strain, which wins each pairwise
competition) does not necessarily win the mixed com-
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SUPPLEMENTARY FIGURE 4. Pairwise champion al-
ways wins with equal yields. (a) Density dynamics xi(r)

for pairwise competitions between three strains (blue, red,

green) with a single pairwise champion (green). (b) Density

dynamics xi(r) for a competition of all three strains starting

from equal densities. See Supplementary Note 8 for parame-

ter values.

petition with all strains present. However, that out-
come requires the three strains to have significantly dif-
ferent yields. Here we show that if the strains have equal
yields, then the pairwise champion must always win the
mixed competition, although it can still lose on short
time scales.

Define the signed component of the selection coe�cient
to be

�ij =
⌧i⌧j

⌧̄

sij . (34)

That is, we remove the overall factor of ⌧̄/(⌧i⌧j) from
sij (Eqs. 2 and 3) since it is always positive and there-
fore does not a↵ect the overall sign. For a set of strains
with equal yields, these signed components are conve-
nient because their values for the mixed competition
�

mixed

ij , where all strains are present, have a simple rela-

tionship to their values for pairwise competitions, �pair

ij ,
where only i and j are present:

�

mixed

ij = (xi + xj)�
pair

ij

+
X

k 6=i,j

xk

⌧k

⇣
⌧j�

pair

ik � ⌧i�
pair

jk

⌘
. (35)

That is, the signed component of the selection coe�cient
on i relative to j in the mixed competition is a linear
combination of the selection coe�cient from their pair-
wise competition, weighed by the fraction of the mixed
population consisting of i and j, with the pairwise selec-
tion coe�cients of i and j relative to all other strains k,
each weighed by the density of that other strain.

In the case of equal yields, selection coe�cients for
pairwise competitions must obey transitivity [1], and

therefore there must be one strain that wins all of the
pairwise competitions, and another strain that loses all
of them. If i is the winner of all pairwise competitions
(�pair

ik > 0 for all k) and j the loser (�pair

jk < 0 for all

k), then Supplementary Eq. 35 shows that �

mixed

ij > 0,
i.e., the pairwise winner must always beat the pairwise
loser in the mixed competition. Therefore the loser j is
guaranteed to go extinct before i can. But once j goes ex-
tinct, the same argument holds for the next-worst strain
among the remaining ones, so that it, too, must go ex-
tinct before i. Eventually i will be left with just one
other strain, in which case i must win because it wins all
pairwise competitions. Therefore the the winner of the
pairwise competitions inevitably wins the mixed compe-
tition.
However, the pairwise champion i may still lose tran-

siently, i.e., �mixed

ik < 0 for some other intermediate strain
k 6= j. For example, this occurs in Supplementary Fig. 4,
where the green strain beats both blue and red in pairwise
competitions (Supplementary Fig. 4a) but loses tran-
siently to red in the mixed competition at early times
(Supplementary Fig. 4b). This e↵ect is due to a higher-
order modification to the selection coe�cient from the
lag-growth coupling term s

coupling

ijk (Eq. 3). However, it
only persists until the worst remaining strain (blue) ef-
fectively goes extinct, after which green then beats red.

SUPPLEMENTARY NOTE 7.
TRAIT CONSTRAINTS FOR NON-TRANSITIVE

COMPETITIONS

Consider a set of three strains: blue, orange, and green.
For competitions starting from equal densities to be non-
transitive, the pairwise selection coe�cients must satisfy
s

orange,blue > 0, s

green,orange > 0, and s

blue,green > 0,
which simplify to

�⌧

orange,blue log
⇣
⇢Ȳ

equal

orange,blue

⌘
+��

orange,blue < 0,

�⌧

green,orange log
�
⇢Ȳ

equal

green,orange

�
+��

green,orange < 0,

�⌧

blue,green log
⇣
⇢Ȳ

equal

blue,green

⌘
+��

blue,green < 0,

(36)

where Ȳ

equal

ij =
�
Y

�1

i /2 + Y

�1

j /2
��1

is the harmonic
mean of Yi and Yj with equal densities (cf. Eq. 4). In
the top panel of Supplementary Fig. 5a, these three in-
equalities are represented by the violet, red, and cyan
lines, respectively. These inequalities are satisfied by the
blue, orange, and green strains as shown here and demon-
strated by the competitions in Fig. 4c.
For invasions (where one strain starts at low density

and ultimately fixes) to be non-transitive, each strain
must beat another strain not just at equal densities, but
at all densities. This results in the following inequalities:
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��

orange,blue <

⇢
��⌧

orange,blue log (⇢min [Y
blue

, Y

orange

]) for �⌧

orange,blue < 0
��⌧

orange,blue log (⇢max [Y
blue

, Y

orange

]) for �⌧

orange,blue > 0
(37a)

��

green,orange <

⇢
��⌧

green,orange log (⇢min [Y
orange

, Y

green

]) for �⌧

green,orange < 0
��⌧

green,orange log (⇢max [Y
orange

, Y

green

]) for �⌧

green,orange > 0
(37b)

��

blue,green <

⇢
��⌧

blue,green log (⇢min [Y
blue

, Y

green

]) for �⌧

blue,green < 0
��⌧

blue,green log (⇢max [Y
blue

, Y

green

]) for �⌧

blue,green > 0.
(37c)

These three inequalities define the violet, red, and cyan
lines, respectively, in the bottom panel of Supplemen-
tary Fig. 5a. However, the green traits cannot simulta-
neously satisfy both Supplementary Eqs. 37b and 37c,
which we can prove by geometrically showing that the
red and cyan lines can never intersect. Without loss of
generality we assume the blue strain has the smallest
yield (Y

blue

< Y

orange

, Y

green

). Now first consider the case
where Y

orange

< Y

green

. Then the left branch of the red
line has slope � log (⇢Y

orange

), while the left branch of
the cyan line has the steeper slope � log (⇢Y

green

). Thus
the lines diverge in this direction. They also diverge to
the right, since the right branch of the red line has slope
� log (⇢Y

green

), which is steeper than the cyan line’s slope
of � log (⇢Y

blue

). Since the red line is also constrained to
be below the violet line at ⌧ = 0 (by the constraints
on the orange strain, Supplementary Eq. 37a), the red
and cyan lines therefore never intersect. A similar argu-
ment holds if we flip the ordering of the orange and green
yields, so that Y

green

< Y

orange

. Therefore it is not possi-
ble for three strains to invade each other non-transitively.

However, it is not necessarily true that one strain must
always be able to invade all others. For example, Sup-
plementary Fig. 5b shows all invasion competitions for
the same three strains in Fig. 4c,d, where they are non-
transitive in equal competitions. In this case orange can
invade blue, but orange cannot invade green, and green
cannot invade either blue or orange. This is because both
the blue-green and orange-green pairs are bistable, with
an unstable fixed point at some intermediate density.

SUPPLEMENTARY NOTE 8.
ADDITIONAL PARAMETER VALUES FOR

FIGURES

Figure 3. Lag and growth times are shown in panel
(a); yields are Y

blue

= 500, Y

red

= 600, Y

green

= 750,
and Y

orange

= 1000 in all panels. In panel (b), the three
values of ⇢ are 0.75, 1.5, and 2.25. In panel (c), ⇢ = 1.32.

Figure 4. (a, b) Growth times are ⌧
blue

= 1, ⌧
orange

=
0.978, and ⌧

green

= 1.025; lag times are �

blue

= 0.15,
�

orange

= 0.28, and �

green

= 0; and yields are ⇢Y

blue

=
⇢Y

orange

= 103 and ⇢Y

green

= 200. (c, d) Growth times
are ⌧

blue

= 1, ⌧
orange

= 1.1, and ⌧

green

= 0.8; lag times
are �

blue

= 1, �
orange

= 0, and �

green

= 2.2; yields are
⇢Y

blue

= 102, ⇢Y
orange

= 103, and ⇢Y

green

= 104.

Supplementary Figure 1. The lag-growth tradeo↵
is c = log 1000, and the yields are Y

1

= 500, Y
2

= 600,
Y

3

= 750, and Y

4

= 1000.

Supplementary Figure 2: (a) Growth times are
⌧

blue

= 1, ⌧
red

= 1.01, and ⌧

green

= 1.02. (b) Growth
times are ⌧

blue

= 1.02, ⌧

red

= 1.01, and ⌧

green

= 1.
(c) Growth times are ⌧

blue

= 1.01, ⌧

red

= 1.02, and
⌧

green

= 1. In all panels the lag-growth tradeo↵ (which
defines the lag times from the growth times via Eq. 6)
is c = log(21/4 ⇥ 103), and the yields are ⇢Y

blue

= 103,
⇢Y

red

= 21/2 ⇥ 103, and ⇢Y

green

= 2⇥ 103.

Supplementary Figure 3: We sample the yields
{Yk} from a Gaussian distribution with mean 103 and

SUPPLEMENTARY FIGURE 5. Invasions cannot be
non-transitive. (a) Diagrams of lag-growth trait space for

the same three strains (blue, orange, green) as in Fig. 4c,d.

The dots mark the same three strains in both top and bot-

tom panels. For non-transitivity to occur, the orange strain

must lie below the violet line (so that it beats the blue strain)

and the green strain must lie both below the red line (so that

it beats the orange strain) and above the cyan line (so that

it loses to the blue strain). The top panel shows these con-

straints for competitions starting at equal densities (Fig. 4c,

Supplementary Eq. 36), while the bottom panel shows these

constraints for invasions (Supplementary Eq. 37). Note the

violet and cyan lines practically overlap in the top panel,

since their slopes� log

⇣
⇢

¯

Y

equal

orange,blue

⌘
and� log

⇣
⇢

¯

Y

equal

blue,green

⌘

(Supplementary Eq. 36) are nearly equal because the blue

strain has the lowest yield and

¯

Y is a harmonic mean (Eq. 4).

(b) Invasion competitions for each pair of strains from (a).
See Supplementary Note 8 for parameter values.
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standard deviation 102. We sample growth times {⌧k}
from a Gaussian with mean 1 and standard deviation
10�2; we then generate correlated lag times {�k} from
the growth times using a “true” correlation coe�cient
uniformly sampled between �1 and 0. The resource den-

sity is ⇢ = 1.
Supplementary Figure 4: Growth times are ⌧

blue

=
1, ⌧

red

= 1.01, and ⌧

green

= 2; lag times are �

blue

=
6.9195, �

red

= 6.8395, �

green

= 0; yields are ⇢Y

blue

=
⇢Y

red

= ⇢Y

green

= 103.
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