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Mutations in a microbial population can increase the frequency of a geno-
type not only by increasing its exponential growth rate, but also by
decreasing its lag time or adjusting the yield (resource efficiency). The con-
tribution of multiple life-history traits to selection is a critical question for
evolutionary biology as we seek to predict the evolutionary fates of
mutations. Here we use a model of microbial growth to show that there
are two distinct components of selection corresponding to the growth and
lag phases, while the yield modulates their relative importance. The model
predicts rich population dynamics when there are trade-offs between
phases: multiple strains can coexist or exhibit bistability due to frequency-
dependent selection, and strains can engage in rock–paper–scissors inter-
actions due to non-transitive selection. We characterize the environmental
conditions and patterns of traits necessary to realize these phenomena,
which we show to be readily accessible to experiments. Our results provide
a theoretical framework for analysing high-throughput measurements of
microbial growth traits, especially interpreting the pleiotropy and corre-
lations between traits across mutants. This work also highlights the need
for more comprehensive measurements of selection in simple microbial
systems, where the concept of an ordinary fitness landscape breaks down.

1. Introduction
The life history of most organisms is described by multiple traits, such as
fecundity, generation time, resource efficiency and survival probability [1].
While all of these traits may contribute to the long-term fate of a lineage, it is
often not obvious how selection optimizes all of them simultaneously,
especially if there are trade-offs [2,3]. The comparatively simple life histories
of single-celled microbes make them a convenient system to study this problem.
Microbial cells typically undergo a lag phase while adjusting to a new environ-
ment, followed by a phase of exponential growth, and finally a saturation or
stationary phase when resources are depleted. Covariation in traits for these
phases appears to be pervasive in microbial populations. Experimental evol-
ution of E. coli produced wide variation of growth traits both between and
within populations [4,5], while naturally evolved populations of yeast
showed similarly broad variation across a large number of environments [6].
Covariation in growth traits appears to also be important in populations
adapting to antibiotics [7–10]. Even single mutations have been found to be
pleiotropic, generating variation in multiple phases [7,11].

Previous work has focused mainly on the possibility of trade-offs between
these traits, especially between exponential growth rate and yield (resource effi-
ciency) in the context of r/K selection [5,7,12–17], as well as between growth
rates at low and high concentrations of a resource [18–21]. However, new
methods for high-throughput phenotyping of microbial populations have
recently been developed to generate large datasets of growth traits [22], measur-
ing growth rates, lag times and yields for hundreds or thousands of strains
across environmental conditions [6]. Some methods can even measure these
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traits for populations starting from single cells [23,24]. These
data require a quantitative framework to interpret observed
patterns of covariation in an evolutionary context. For
example, while growth trade-offs have previously been pro-
posed to cause coexistence of multiple strains [19,21], we
lack a quantitative understanding of what patterns of traits
and conditions are necessary to achieve these effects, such
that they can be directly evaluated on high-throughput data.

Here we address this problem by developing a quantitat-
ive framework for selection on multiple microbial growth
traits. We derive an expression for the selection coefficient
that quantifies the relative selection pressures on lag time,
growth rate and yield. We then determine how these selec-
tion pressures shape population dynamics over many cycles
of growth, as occur in natural environments or laboratory
evolution. We find that selection is frequency dependent,
enabling coexistence and bistability of multiple strains and
distorting the fixation statistics of mutants from the classical
expectation. We also find that selection can be non-transitive
across multiple strains, leading to apparent rock–paper–
scissors interactions. These results are not only valuable for
interpreting measurements of microbial selection and
growth traits, but they also reveal how simple properties of
microbial growth lead to complex population dynamics.

2. Methods
Consider a population of microbial cells competing for a single
limiting resource. The population size N(t) as a function of time
(growth curve) typically follows a sigmoidal shape on a logarith-
mic scale, with an initial lag phase of sub-exponential growth,
then a phase of exponential growth, and finally a saturation
phase as the environmental resources are exhausted (figure 1a).
We consider a minimal three-phase model of growth dynamics
in which the growth curve is characterized by three quantita-
tive traits, one corresponding to each phase of growth [25,26]:
a lag time l, an exponential growth rate g and a saturation popu-
lation size Nsat (figure 1a; electronic supplementary material,
section S1). It is possible to generalize this model for additional
phases, such as a phase for consuming a secondary resource
(diauxie) or a death phase, but here we will focus on these

three traits as they are most commonly reported in microbial
phenotyping experiments [6,22].

The saturation size Nsat depends on both the total amount of
resources in the environment, as well as the cells’ intrinsic effi-
ciency of using those resources. To separate these two
components, we define R to be the initial amount of the limiting
resource and Y to be the yield, or the number of cells per unit
resource [4]. Therefore N(t)/Y is the amount of resources
consumed by time t, and saturation occurs at time tsat when
N(tsat) ¼ Nsat ¼ RY. The saturation time tsat is therefore deter-
mined intrinsically (i.e. by the growth traits of the strain) rather
than being externally imposed. It is straightforward to extend
this model to multiple strains, each with a distinct growth rate
gi, lag time li, and yield Yi, and all competing for the same
pool of resources (figure 1b; electronic supplementary material,
section S1). We assume different strains interact only by compet-
ing for the limiting resource; their growth traits are the same as
when they grow independently.

We focus on the case of two competing strains, such as a
wild-type and a mutant. We will denote the wild-type growth
traits by g1, l1, Y1 and the mutant traits by g2, l2, Y2. Assume
the total initial population size is N0 and the initial frequency
of mutants is x. As we are mainly interested in the relative
growth of the two strains (e.g. their changes in frequency over
time), only relative time scales and yields matter. To that end
we can reduce the parameter space by using the following
dimensionless quantities:

relative mutant growth rate: g ¼ g2 " g1

g1
,

relative mutant lag time: v ¼ (l2 " l1)g1,

relative wild-type yield: n1 ¼
RY1

N0

and relative mutant yield: n2 ¼
RY2

N0
:

9
>>>>>>>>>>=

>>>>>>>>>>;

ð2:1Þ

Each relative yield is the fold-increase of that strain if it grows
alone, starting at population size N0 with R resources.

Laboratory evolution experiments, as well as seasonal natural
environments, typically involve a series of these growth cycles as
new resources periodically become available [27]. We assume
each round of competition begins with the same initial popu-
lation size N0 and amount of resources R, and the strains grow
according to the dynamics of figure 1b until those resources are
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Figure 1. Growth and selection in a microbial population. (a) Schematic of a smooth growth curve (orange points, generated from a Gompertz function [25]) and
the minimal three-phase model (solid violet line); each phase is labelled with its corresponding growth trait. (b) Two example growth curves in the three-phase
model. Solid lines show the growth curves for each strain growing alone, while dashed lines show the growth curves of the two strains mixed together and
competing for the same resources. Note that the solid and dashed growth curves are identical until saturation, since the only effect of competition is to
change the saturation time. (c) Example growth curves over multiple rounds of competition. Each vertical dashed line marks the beginning of a new growth
cycle, starting from the same initial population size and amount of resources.
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exhausted. The population is then diluted down to N0 again
with R new resources, and the cycle repeats (figure 1c). In each
round, the total selection coefficient for the mutant relative to
the wild-type is

s ¼ log
N2(tsat)
N1(tsat)

! "
" log

N2(0)
N1(0)

! "
, ð2:2Þ

where time t is measured from the beginning of the round (elec-
tronic supplementary material, section S2) [28,29]. This definition
is convenient because it describes the relative change in fre-
quency of the mutant over the wild-type during each round of
competition. Let x(r) be the mutant frequency at the beginning
of the rth round of competition; the frequency at the end of the
round will be the initial frequency x(r þ 1) for the next round.
Using equation (2.2), the selection coefficient for this round is
s(x(r)) ¼ log(x(r þ 1)/[1 2 x(r þ 1)]) 2 log(x(r)/[1 2 x(r)]), which
we can rearrange to obtain

x(rþ 1) ¼ x(r)es(x(r))

1" x(r)þ x(r)es(x(r)) : ð2:3Þ

This shows how the mutant frequency changes over rounds as a
function of the selection coefficient. If the selection coefficient is
small, we can approximate these dynamics over a large number
of rounds by the logistic equation: dx/dr & s(x)x(1 2 x).
However, for generality we use the frequency dynamics over
discrete rounds defined by equation (2.3) throughout this work.

3. Results
(a) Distinct components of selection on growth

and lag phases
We can derive an approximate expression for the selection
coefficient as a function of the underlying parameters in the
three-phase growth model. The selection coefficient consists
of two components, one corresponding to selection on
growth rate and another corresponding to selection on lag
time (electronic supplementary material, section S3, figure S1):

s & sgrowth þ slag, ð3:1aÞ

where

sgrowth ¼ Ag log
1
2

H
n1

1" x
,
n2

x

# $% &
,

slag ¼ "Av(1þ g)

and A ¼ (1" x)=n1 þ x=n2

(1" x)=n1 þ (1þ g)x=n2
,

9
>>>>>>=

>>>>>>;

ð3:1bÞ

and H(a, b) ¼ 2/(a21 þ b21) denotes the harmonic mean, x is
the frequency of the mutant at the beginning of the compe-
tition round, and g, v, n1 and n2 are as defined in equation
(2.1). The harmonic mean of the two yields is approximately
the effective yield for the whole population (electronic sup-
plementary material, section S4). Equation (3.1) confirms that
the relative traits defined in equation (2.1) fully determine
the relative growth of the strains.

We interpret the two terms of the selection coefficient
as selection on growth and selection on lag since sgrowth is
zero if and only if the growth rates are equal, while slag

is zero if and only if the lag times are equal. If the mutant
and wild-type growth rates only differ by a small
amount (jgj' 1), then sgrowth is proportional to the ordinary
growth rate selection coefficient g ¼ (g2 2 g1)/g1, while
2v ¼2(l2 2 l1)g1 is the approximate selection coefficient
for lag. This contrasts with previous studies that used

l ds/dl as a measure of selection on lag time [4,30], which
assumes that selection acts on the change in lag time relative
to the absolute magnitude of lag time, (l2 2 l1)/l1. But the
absolute magnitude of lag time cannot matter since the
model is invariant under translations in time, and hence
our model correctly shows that selection instead acts on the
change in lag time relative to the growth rate.

(b) Effect of pleiotropy and trade-offs on selection
Many mutations affect multiple growth traits simultaneously
(i.e. they are pleiotropic) [7,11]. Given a measured or pre-
dicted pattern of pleiotropy, we can estimate its effect on
selection using equation (3.1) (electronic supplementary
material, section S5). In particular, if a mutation affects both
growth and lag, then both sgrowth and slag will be non-zero.
The ratio of these components indicates the relative selection
on growth versus lag traits:

sgrowth

slag
¼ " g

v(1þ g)
log

1
2

H
n1

1" x
,
n2

x

# $% &
: ð3:2Þ

We can use this to determine, for example, how much faster a
strain must grow to compensate for a longer lag time. This
also shows that we can increase the magnitude of relative
selection on growth versus lag by increasing the relative
yields n1 and n2. Conceptually, this is because increasing
the yields increases the portion of the total competition
time occupied by the exponential growth phase compared to
the lag phase. As each relative yield ni is proportional to the
initial amount of resources per cell R/N0 (equation (2.1)),
we can therefore tune the relative selection on growth
versus lag in a competition by controlling R/N0. One can
use this in an evolution experiment to direct selection more
towards improving growth rate (by choosing large R/N0)
or more towards improving lag time (by choosing small
R/N0).

The ratio sgrowth/slag also indicates the type of pleiotropy
on growth and lag through its sign. If sgrowth/slag . 0, then
the pleiotropy is synergistic: the mutation is either beneficial
to both growth and lag, or deleterious to both. If sgrowth/
slag , 0, then the pleiotropy is antagonistic: the mutant is
better in one trait and worse in the other. Antagonistic pleio-
tropy means the mutant has a trade-off between growth and
lag. In this case, whether the mutation is overall beneficial
or deleterious depends on which trait has stronger selection.
As aforementioned, relative selection strength is controlled
by the initial resources per cell R/N0 through the yields
(equation (3.2)), so we can therefore qualitatively change
the outcome of a competition with a growth-lag trade-off
by tuning R/N0 to be above or below a critical value,
obtained by setting sgrowth ¼ slag:

critical value of
R

N0
¼ 2ev(1þ1=g)

H(Y1=(1" x), Y2=x)
: ð3:3Þ

The right side of this equation depends only on intrinsic
properties of the strains (growth rates, lag times, yields)
and sets the critical value for R/N0, which we can control
experimentally. When R/N0 is below this threshold, selection
will favour the strain with the better lag time: there are
relatively few resources, and so it is more important to start
growing first. On the other hand, when R/N0 is above the
critical value, selection will favour the strain with the better
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growth rate: there are relatively abundant resources, and so it
is more important to grow faster.

(c) Selection is frequency dependent
Equation (3.1) shows that the selection coefficient s depends
on the initial frequency x of the mutant (electronic sup-
plementary material, section S6, figure S2). This is
fundamentally a consequence of having a finite resource: if
resources were unlimited and selection were measured at
some arbitrary time t instead of tsat (which is intrinsically
determined by the strains’ growth traits), then the resulting
selection coefficient would not depend on x.

This frequency dependence means that some mutants are
beneficial at certain initial frequencies and deleterious at
others. The traits of these ‘conditionally neutral’ mutants
must satisfy

min (n1, n2) < ev(1þ1=g) , max (n1, n2), ð3:4Þ

which is obtained by determining which trait values allow
s(~x) ¼ 0 for some frequency 0 < ~x < 1. This condition is
only satisfied for mutants with a trade-off between growth
rate and lag time. For mutants satisfying equation (3.4),
the unique frequency at which the mutant is conditionally
neutral is

~x ¼ n1e"v(1þ1=g) " 1
n1=n2 " 1

: ð3:5Þ

If the mutant and wild-type have equal yields (n1 ¼ n2 ¼ n),
then the mutant is neutral at all frequencies if ev(1þ1/g) ¼ n.
Mutants not satisfying these conditions are either beneficial
at all frequencies (s(x) . 0) or deleterious at all frequencies
(s(x) , 0).

(d) Neutral, beneficial and deleterious regions
of mutant trait space

Figure 2a shows the regions of growth and lag trait space cor-
responding to conditionally neutral (green), beneficial (blue)
and deleterious (red) mutants. The slope of the conditionally
neutral region is determined by the magnitudes of the yields:
increasing both yields (e.g. by increasing the initial resources
per cell R/N0) makes the region steeper, as that increases
relative selection on growth (equation (3.2)).

We can further understand the role of the yields by
considering the trait space of growth rate and yield
(figure 2b,c), as commonly considered in r/K selection studies
[5,7,12–17]. If the mutant has a longer lag time, then having a
higher yield will be advantageous since the greater resource
efficiency gives the mutant more time to grow exponentially
to compensate for its late start (figure 2b). On the other hand,
if the mutant has a shorter lag time, then having a lower yield
is better since the mutant can hoard resources before the
wild-type grows too much (figure 2c). These diagrams also
show there are limits to how much a change in yield can
affect selection. For example, if a deleterious mutant with
slower growth (g , 0) but shorter lag (v , 0) reduces its
yield, the best it can do is to become conditionally neutral
(move down into the green region of figure 2c)—it can
never become completely beneficial. Likewise, a beneficial
mutant with faster growth but longer lag can never become
completely deleterious by varying its yield (figure 2b).
Furthermore, a mutant with worse growth and lag can

never outcompete the wild-type, no matter how resource-
efficient (high yield) it is. In this sense, there are no pure
‘K-strategists’ in the model [14]. Indeed, equation (3.1a) indi-
cates that there is no distinct selection pressure on yield, but
rather it only modulates the relative selection pressures on
growth and lag. Note that increasing the mutant yield
significantly above the wild-type value changes the selec-
tion coefficient very little, since the effective yield for the
combined population (which determines the selection coeffi-
cient) is dominated by whichever strain is less efficient
through the harmonic mean in equation (3.1).

(e) Growth-lag trade-offs enable coexistence or
bistability of a mutant and wild-type

Mutants that are conditionally neutral (satisfying equation
(3.4)) due to a growth-lag trade-off will have zero selection
coefficient at an intermediate frequency ~x (equation (3.5)).
Figure 3a shows the conditionally neutral region of trait
space coloured according to the neutral frequency. For the
two example mutants marked by blue and red points in
figure 3a, both with neutral frequency ~x ¼ 1

2, figure 3b shows
their selection coefficients s(x) as functions of frequency x.
Selection for the blue mutant has negative (decreasing)
frequency dependence, so that when the frequency is below
the neutral frequency ~x, selection is positive, driving the fre-
quency up towards ~x, while selection is negative above the
neutral frequency, driving frequency down. Therefore this
mutant will stably coexist at frequency ~x with the wild-type.
In contrast, the red mutant has positive (increasing)
frequency-dependent selection, so that it has bistable long-
term fates: selection will drive it to extinction or fixation
depending on whether its frequency is below or above the
neutral frequency. Bistability of this type has been proposed
as a useful mechanism for safely introducing new organisms
into an environment without allowing them to fix unintention-
ally [31]. Figure 3c shows example trajectories of the frequencies
over rounds of competitions for these two mutants.

Coexistence of a conditionally neutral mutant and wild-
type requires a trade-off between growth rate and yield
(electronic supplementary material, section S6)—the mutant
must have faster growth rate and lower yield, or slower
growth rate and higher yield—in addition to the trade-off
between growth rate and lag time necessary for conditional
neutrality. For example, the blue mutant in figure 3 has
slower growth but shorter lag and higher yield compared
with the wild-type. Therefore, when the mutant is at low fre-
quency (below ~x ¼ 1

2), the overall yield of the combined
population (harmonic mean in equation (3.1)) is approxi-
mately equal to the wild-type’s yield, and since the wild-
type has lower yield, this results in stronger selection on
lag versus growth. This means positive selection for the
mutant, which has the shorter lag time. In contrast, when
the mutant’s frequency is high, the overall yield of the popu-
lation is closer to the mutant’s yield, and thus there is
stronger selection on growth versus lag. This favours the
wild-type strain, which has the faster growth rate, and there-
fore produces negative selection on the mutant. These
scenarios are reversed when the strain with faster growth
(and longer lag) also has greater yield (e.g. the red mutant
in figure 3), resulting in bistability. As figure 3a assumes
the mutant has yield higher than that of the wild-type, all
mutants in the lower branch of the conditionally neutral
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region have coexistence, while all mutants in the upper
branch are bistable.

Given any two strains with different yields and a trade-off
between growth and lag, it is always possible to construct
competition conditions such that the two strains will either
coexist or be bistable. That is, one may choose any neutral fre-
quency ~x and use equation (3.3) to determine the critical
value of the initial resources per cell R/N0; with R/N0 set
to that value, the competition will have zero selection at pre-
cisely the desired frequency. Whether that produces
coexistence or bistability depends on whether there is a
trade-off between growth and yield. As the bottleneck popu-
lation size N0 also controls the strength of stochastic
fluctuations (genetic drift) between competition rounds, we
can determine how to choose this parameter such that coex-
istence will be robust to these fluctuations (electronic
supplementary material, section S7).

Frequency-dependent selection may also significantly
distort fixation of the mutant. In particular, it is common to
measure selection on a mutant by competing the mutant
against a wild-type starting from equal frequencies (x ¼ 1

2)
[27]. If selection is approximately constant across all frequen-
cies, this single selection coefficient measurement s( 1

2 ) is
sufficient to accurately estimate the fixation probability and

time of the mutant (electronic supplementary material,
section S8). However, conditionally neutral mutants may
have fixation statistics that deviate significantly from this
expectation due to frequency-dependent selection. For
example, a mutant that is neutral at ~x ¼ 1

2 will have s( 1
2 ) ¼ 0

by definition, which would suggest the fixation probability of
a single mutant should be the neutral value 1/N0. However,
its fixation probability may actually be much lower than that
when accounting for the full frequency dependence of selection
(electronic supplementary material, section S8, figure S3).
Therefore, accounting for the frequency-dependent nature of
selection may be essential for predicting evolutionary fates of
mutations with trade-offs in growth traits.

( f ) Selection is non-additive and non-transitive
We now consider a collection of many strains with distinct
growth traits. To determine all of their relative selection
coefficients, in general we would need to perform compe-
titions between all pairs. However, if selection obeys the
additivity condition

sij þ sjk ¼ sik, ð3:6Þ

where sij is the selection coefficient of strain i over strain j in a
binary competition, then we need only measure selection
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2, where one mutant has coexistence (blue) and the other is bistable (red). (c) Mutant frequency
x(r) as a function of competition round r for blue and red mutants from (a) and (b), each starting from two different initial conditions. The black dashed line marks
the neutral frequency ~x ¼ 1

2. The yields are n1 ¼ 103 and n2 ¼ 104 in all panels.
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coefficients relative to a single reference strain, and from
those we can predict selection for all other pairs. The additiv-
ity condition holds, for example, if selection coefficients are
simply differences in scalar fitness values (Malthusian par-
ameters) for each strain (i.e. sij ¼ fi 2 fj). Therefore, the
extent to which equation (3.6) holds is indicative of the
existence of a fitness landscape.

Based on the selection coefficient definition (equation
(2.2)), the additivity condition would hold if the selec-
tion coefficient is measured at a fixed time t before
saturation occurs. In that case, there is a scalar fitness value
fi ¼ gi(t 2 li) for each strain, and the selection coefficients
are just differences in these values (electronic supplementary
material, section S2). However, if we only measure selection
after the finite resources are exhausted, then the selection
coefficient depends on the saturation time tsat, which is intrin-
sically determined by the traits of the two competing strains
and is therefore different for each binary competition (elec-
tronic supplementary material, section S4). This means that
the selection coefficient in this model does not obey additivity
in general, although it will be approximately additive in the
limit of small differences in growth traits between strains
(electronic supplementary material, section S9).

A condition weaker than additivity is transitivity, which
means that if strain 2 beats strain 1 and strain 3 beats strain
2 in binary competitions, then strain 3 must beat strain 1 in
a binary competition as well [32]. This must also hold for
neutrality, so if strains 1 and 2 are neutral, and strains 2
and 3 are neutral, then strains 1 and 3 must also be neutral.
This essentially means that equation (3.6) at least predicts
the correct sign for each binary selection coefficient.

If all three strains have equal yields, then selection in our
model is always transitive for any initial frequencies (elec-
tronic supplementary material, section S10). If the yields are
not all equal, then it is possible to find sets of three strains
with non-transitive selection: each strain outcompetes one
of the others in a binary competition (electronic supplemen-
tary material, section S10), forming a rock–paper–scissors
game [33]. In figure 4a, we show an example of three strains
forming a non-transitive set. Figure 4b shows the distribution
of these same three strains in trait space, where the shaded
regions indicate constraints on the strains necessary for
them to exhibit non-transitivity. That is, given a choice of

the blue strain’s traits, the red strain’s traits may lie anywhere
in the red shaded region, which allows the red strain to beat
the blue strain while still making it possible to choose the
green strain and form a non-transitive set. Once we fix the
red point, then the green strain’s traits may lie anywhere in
the green shaded region.

This trait space diagram reveals what patterns of traits are
conducive to generating non-transitive selection. The trait
space constraints favour a positive correlation between
growth rates and lag times across strains, indicating a
growth-lag trade-off. Indeed, these trade-offs between
growth strategies are the crucial mechanism underlying
non-transitivity. For example, in figure 4a, red beats blue
since red’s faster growth rate and higher yield outweigh its
longer lag time; green beats red due to its even faster
growth rate, despite its longer lag and lower yield; and
blue beats green with a shorter lag time and lower yield.
Non-transitive strains will generally have no significant corre-
lation between yield and growth rate or between yield and
lag time (figure 4b, insets); furthermore, the cycle of selective
advantage through the three strains generally goes clockwise
in both the lag-yield and growth-yield planes.

As each strain in a non-transitive set can beat one of
the others in a binary competition, it is difficult to predict
a priori the outcome of a competition with all three present.
In figure 4c, we show the population dynamics for a ternary
competition of the non-transitive strains in figure 4a,b. Non-
transitive and frequency-dependent selection creates com-
plex population dynamics: the red strain rises at first, while
the blue and green strains drop, but once blue has suffi-
ciently diminished, that allows green to come back (since
green loses to blue, but beats red) and eventually dominate.
Note that we do not see oscillations or coexistence in these
ternary competitions, as sometime occur with non-transitive
interactions [32,34].

4. Discussion
(a) Selection on multiple growth phases produces

complex population dynamics
Our model shows how basic properties of microbial growth
cause the standard concept of a scalar fitness landscape to
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Figure 4. Non-transitive selection over three strains. (a) An example of three strains (blue, red, green) forming a non-transitive set: in binary competitions starting
from equal frequencies (x ¼ 1

2), red beats blue, green beats red and blue beats green. (b) The three strains from (a) in the trait space of relative growth rate g and
lag time v (all relative to the blue strain); the red and green shaded regions indicate the available trait space for the red and green strains such that the three
strains will form a non-transitive set. Insets: strains in the trait space of lag time and yield n (upper left) and trait space of growth rate and yield (lower right).
Arrows indicate which strain beats which in binary competitions. (c) Dynamics of each strain’s frequency xi(r) over competition rounds r for all three strains in (a)
simultaneously competing.
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break down, revealing selection to depend fundamentally on
the multidimensional nature of life history. This occurs even
for the simple periodic environment (constant R and N0)
commonly used in laboratory evolution; fluctuating environ-
ments, as are expected in natural evolution, will probably
exaggerate the importance of these effects. In contrast with
previous theoretical work on trade-offs between different
phases of growth [19,21], we have obtained simple math-
ematical results indicating the environmental conditions
and patterns of traits necessary to produce complex popu-
lation dynamics such as coexistence and bistability. In
particular, we have shown how to tune the amount of
resources R and bottleneck population size N0 such that any
pair of strains with a growth-lag trade-off will coexist or be
bistable. In terms of ecology, this is an important demon-
stration of how life-history trade-offs can enable coexistence
of multiple strains even on a single limiting resource [18].
This conflicts with the principle of competitive exclusion
[35], which posits that the number of coexisting types
cannot exceed the number of resources. However, models
that demonstrate coexistence on multiple resources, such as
the MacArthur consumer-resource model [36], do not account
for multiple phases of life history, so that a single strain will
always have overall superiority on any one resource.

Our model furthermore provides a simple mechanism for
generating non-transitive interactions, in contrast to most
known mechanisms that rely on particular patterns of allelo-
pathy [33,37], morphology [34], or spatial dynamics [38]. Our
results emphasize the need for more comprehensive measure-
ments of selection beyond competition experiments against a
reference strain at a single initial frequency [27]. As we have
shown, these measurements may be insufficient to predict the
long-term population dynamics at all frequencies (due to fre-
quency-dependent selection), or the outcomes of all possible
binary and higher-order competitions (due to non-transitive
selection).

(b) Pleiotropy and correlations between traits
Trade-offs among growth, lag and yield are necessary for coex-
istence, bistability and non-transitivity. Whether these trade-
offs are commonly realized in an evolving microbial popu-
lation largely depends on the pleiotropy of mutations. Two
theoretical considerations suggest pleiotropy between growth
and lag will be predominantly synergistic. First, cell-to-cell
variation in lag times [23,24] means that the apparent popu-
lation lag time is largely governed by the cells that happen
to exit lag phase first and begin dividing, which causes the
population lag time to be conflated with growth rate [39].
Second, mechanistic models that attempt to explain how
growth rate and lag time depend on underlying cellular pro-
cesses also predict synergistic pleiotropy [40–42];
conceptually, this is because the product of growth rate and
lag time should be a positive constant corresponding to the
amount of metabolic ‘work’ that the cell must perform to
exit lag and begin to divide. Pleiotropy between growth rate
and yield, on the other hand, is generally expected to be
antagonistic due to thermodynamic constraints between the
rate and yield of metabolic reactions [43,44], although this
constraint may not necessarily induce a correlation [45].

Distributions of these traits have been measured for both
bacteria and fungi. Correlations between growth rate and
yield have long been the focus of r/K selection studies; some

of these experiments have indeed found trade-offs between
growth rate and yield [15–17,44], but others have found
no trade-off, or even a positive correlation [5–7,12,13].
Measurements of lag times have also found mixed results
[6,11,41,42,46]. However, most of these data are for evolved
populations, which may not reflect the true pleiotropy of
mutations: distributions of fixed mutations may be correlated
by selection even if the underlying distributions of mutations
are uncorrelated. Our model shows that higher yield is only
beneficial for faster growth rates, and so selection will tend
to especially amplify mutations that increase both traits,
which may explain some of the observed positive correlations
between growth rate and yield. Indeed, data on the distri-
butions of growth rates and yields from individual clones
within a population show a negative correlation [5]. The
model developed here will be useful for further exploring
the relationship between the underlying pleiotropy of
mutations and the distribution of traits in evolved populations.

(c) Analysis of experimental growth curves
and competitions

Given a collection of microbial strains, we can measure their
individual growth curves and determine growth rates, lag
times and yields. In principle, we can use the model
(equation (3.1)) to predict the outcome of any binary compe-
tition with these strains. These strains need not be mutants of
the same species, as we primarily discuss here, but can even
be different species. In practice, however, there are several
challenges in applying the model to these data. First, real
growth dynamics are undoubtedly more complicated than
the minimal model used here. There are additional time
scales, such as the rate at which growth decelerates as
resources are exhausted [19]; other frequency-dependent
effects, such as a dependence of the lag time on the initial
population size [47]; and more complex interactions between
cells, such as cross-feeding [20], especially between different
species. In addition, the measured traits and competition
parameters may be noisy, due to intrinsic noise within the
cells as well as the extrinsic noise of the experiment.

Nevertheless, the simplicity of the model investiga-
ted here makes it a useful tool for identifying candidate
strains from a collection of individual growth curves that
may have interesting dynamics in pairs or in multi-strain
competitions, which can then be subsequently tested by
experiment. Existing technologies enable high-throughput
measurement of individual growth curves for large numbers
of strains [22–24], but systematic measurements of compe-
titions are limited by the large number of possible strain
combinations, as well as the need for sequencing or fluor-
escent markers to distinguish strains. The model can
therefore help to target which competition experiments are
likely to be most interesting by computationally scanning
all combinations and setting bounds on various parameters
to be compared with experimental uncertainties. For
example, we can identify pairs of strains with growth-lag
trade-offs and predict a range of competition conditions
R/N0 that will lead to coexistence. We can also identify can-
didate sets of strains for demonstrating non-transitive
selection. Even for sets of strains with additional interactions
beyond competition for a single resource, which will almost
certainly be the case when the strains are different species,
our results can serve as a null model for testing the
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importance of these other interactions in shaping population
dynamics.
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S1. MINIMAL THREE-PHASE MODEL OF
POPULATION GROWTH

Let each strain i have lag time �
i

, growth rate g
i

, and
initial population size N

i

(0), so that its growth dynamics
obey (figure 1a)

N
i

(t) =

8
<

:

N
i

(0) 0  t < �
i

,
N

i

(0)egi(t��i) �
i

 t < t
sat

,
N

i

(0)egi(tsat��i) t � t
sat

.
(S1.1)

The time t
sat

at which growth saturates is determined
by a model of resource consumption. Let R be the initial
amount of resources. We assume that each strain con-
sumes resources in proportion to its population size, for
example, if the limiting resource is space. Let the yield Y

i

be the number of cells of strain i per unit of the resource.
Therefore the resources are exhausted at time t = t

sat

such that

X

i

N
i

(t
sat

)

Y
i

= R. (S1.2)

We can alternatively assume that each strain consumes
resources in proportion to its total number of cell divi-
sions, rather than its total number of cells. The number
of cell divisions for strain i that have occurred by time t
is N

i

(t) � N
i

(0). Redefining the yield Y
i

as the number
of cell divisions per unit resource, saturation now occurs
at the time t = t

sat

satisfying

X

i

N
i

(t
sat

)�N
i

(0)

Y
i

= R. (S1.3)

For simplicity we use the first model (equation (S1.2))
throughout this work, but it is straightforward to trans-
late all results to the second model using the transforma-
tion R ! R +

P
i

N
i

(0)/Y
i

. This correction will gener-
ally be small, though, since

P
i

N
i

(0)/Y
i

is the amount
of resources that the initial population of cells consume
for their first divisions, and this amount will usually be
much less than the total resources R. It is also straight-
forward to further generalize this model to include other
modes of resource consumption, such as consuming the
resource per unit time during lag phase.

S2. DEFINITION OF SELECTION
COEFFICIENT

The selection coe�cient per unit time is

�(t) =
d

dt
log

✓
N

2

(t)

N
1

(t)

◆
. (S2.1)

In the minimal three-phase growth model (equa-
tion (S1.1)), we can write the growth curve as N

i

(t) =
N

i

(0)egi(t��i)⇥(t��i), where ⇥(t) is the Heaviside step
function. Then the instantaneous selection coe�cient is:

�(t) =
d

dt


g
2

(t� �
2

)⇥(t� �
2

)� g
1

(t� �
1

)⇥(t� �
1

)

�

= g
2

⇥(t� �
2

)� g
1

⇥(t� �
1

),
(S2.2)

for t < t
sat

, and �(t) = 0 for t > t
sat

.
Since we are mainly concerned with how the mutant

frequency changes over whole cycles of growth, it is more
convenient to integrate this instantaneous selection coef-
ficient to obtain the total selection coe�cient per cycle:

s =

Z
tsat

0

dt �(t)

= g
2

(t
sat

� �
2

)⇥(t
sat

� �
2

)

� g
1

(t
sat

� �
1

)⇥(t
sat

� �
1

),

(S2.3)

which, using equation (S2.1), is equivalent to the defini-
tion in equation (2.2) from the main text. If we exclude
the trivial case where the time to saturation is less than
one of the lag times (so that one strain does not grow at
all), the selection coe�cient simplifies to

s = g
2

(t
sat

� �
2

)� g
1

(t
sat

� �
1

). (S2.4)

S3. DERIVATION OF SELECTION
COEFFICIENT EXPRESSION

To determine how s explicitly depends on the under-
lying parameters, we must solve the saturation condition



2

FIG. S1. Test of selection coe�cient approximation.
Comparison of the approximate selection coe�cient formula
(equation (3.1)) with the exact result obtained using the def-
inition in equation (2.2) and a numerical solution to the sat-
uration equation (equation (S3.1)). Each orange point corre-
sponds to a di↵erent set of randomly-generated growth traits
(�, !, ⌫1, ⌫2; see equation (2.1)) and initial mutant frequen-
cies x. The black dashed line is the line of identity.

in equation (S1.2) for t
sat

:

R =
N

0

x
1

Y
1

eg1(tsat��1) +
N

0

x
2

Y
2

eg2(tsat��2), (S3.1)

where N
0

is the total initial population size and x
1

, x
2

are
the initial frequencies of the wild-type and mutant. We
ignore the trivial case where one strain saturates before
the other starts to grow. While we cannot analytically
solve this equation in general, we can obtain a good ap-
proximation in the limit of weak selection (|s| ⌧ 1). We
first rewrite the equation in terms of the selection coe�-
cient using equation (S2.4):

R = N
0

eg1(tsat��1)

✓
x
1

Y
1

+
x
2

Y
2

es
◆
. (S3.2)

We then solve for t
sat

and expand to first order in s:

t
sat

⇡ �
1

� 1

g
1

log
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✓
x
1
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1

+
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2
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2

◆�
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2
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1

+ x
2

/Y
2

)
s. (S3.3)

Self-consistency requires this expression for t
sat

to be in-
variant under exchange of the mutant and wild-type in-
dices and switching the sign of s; equating these two
equivalent expressions for t

sat

allows us to solve for s,
which gives the main result in equation (3.1).

In figure S1 we compare the selection coe�cient cal-
culated from this approximate expression with the exact

result obtained by numerically solving equation (S3.1) for
t
sat

and then directly calculating s using the definition
of equation (2.2). This empirically shows that although
the derivation relies on the approximation of weak se-
lection (|s| ⌧ 1), equation (3.1) is extremely accurate
over a wide range of parameter values, even up to rather
strong selection strengths |s| ⇠ 1. Furthermore, the ex-
pression is exact in two special cases: when the mutant
and the wild-type are selectively neutral (s = 0), and
when the mutant and wild-type have equal growth rates
(g

1

= g
2

= g), since s = �(�
2

� �
1

)g = �! according to
equation (S2.4).

S4. SATURATION TIME AND TOTAL
POPULATION SIZE

Here we derive expressions for the saturation time t
sat

and the total population size at saturation

N
sat

= N
1

(t
sat

) +N
2

(t
sat

)

= N
0

x
1

eg1(tsat��1) +N
0

x
2

eg2(tsat��2).
(S4.1)

We again assume the nontrivial case of t
sat

> �
1

,�
2

.
First, if the growth rates are equal (g

1

= g
2

= g), we
can obtain exact solutions since the two-strain satura-
tion condition (equation (S3.1)) is analytically solvable
for t

sat

:

t
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(S4.2)

If the growth rates are unequal (g
1

6= g
2

), then we must
rely on the small s approximation. We can rearrange
equation (S2.4) to obtain t

sat

as a function of s:

t
sat

=
s+ g

2

�
2

� g
1

�
1

g
2

� g
1

. (S4.3)

We can then substitute the approximate expression for s
(equation (3.1)) into equation (S4.3):
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. (S4.4)

To obtain an expression for N
sat

in this approximation,
we rewrite its definition (equation (S4.1)) in terms of s
using equation (S4.3):
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N
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For small s, we can show from equation (3.1) that

eg1g2(�2��1)/(g2�g1) ⇡ 1

2N
0

H

✓
RY

1

x
1

,
RY

2

x
2

◆
exp


�
✓

s

g
2

� g
1

◆✓
g
1

x
1

/Y
1

+ g
2

x
2

/Y
2

x
1

/Y
1

+ x
2

/Y
2

◆�

⇡ 1

2N
0

H

✓
RY

1

x
1

,
RY

2

x
2

◆
1�

✓
s

g
2

� g
1

◆✓
g
1

x
1

/Y
1

+ g
2

x
2

/Y
2

x
1

/Y
1

+ x
2

/Y
2

◆�
.

(S4.6)

Substituting this into equation (S4.5) and expanding to
first order in s shows that the saturation population size
is approximately
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Therefore the saturation size in the neutral case (s = 0)
is

N
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since RY
i

= N
sat,i

, where N
sat,i

is the saturation popula-
tion size of strain i if no other strains are present. So for
a neutral pair of strains, the total population grows to
the harmonic mean of the saturation population sizes of
the individual strains; this shows that we can interpret
the harmonic mean of both strains’ yields as the e↵ective
yield for the combined population. When selection is
nonzero, the e↵ective yield is perturbed above this value
if the strain with higher yield is also positively selected
(e.g., Y

2

> Y
1

and s > 0), while otherwise it is perturbed
below the neutral value.

S5. EFFECT OF CORRELATED PLEIOTROPY
ON SELECTION

Mutational e↵ects on growth traits may not only be
pleiotropic, but they may also be correlated. The sim-
plest case is a linear correlation between growth traits
across many mutations or strains:

� ⇡ a

g
+ constant, ⌫ ⇡ bg + constant, (S5.1)

where a and b are proportionality constants. We take lag
time to be linearly correlated with growth time (recip-
rocal growth rate), rather than growth rate, since then
both traits have units of time and the constant a is di-
mensionless. Various models predict linear correlations
of this form [1–6], which have been tested on measured
distributions of traits [5, 7–12] (see section 4 in the main
text).

We can combine this model with the selection coe�-
cient in equation (3.1) to quantify how much selection is
amplified or diminished by correlated pleiotropy. That
is, if a mutation changes growth rate by a small amount
�g = g

2

�g
1

from the wild-type, then according to equa-
tion (S5.1) it will also change lag time by �� ⇡ �a�g/g2

and yield by �⌫ = b�g, and hence the expected selection
coe�cient will be (using � = �g/g)

s ⇡ �(log ⌫ + a). (S5.2)

This shows that correlations between growth and yield
have no e↵ect on selection to leading order, since selec-
tion only depends logarithmically on yield. Correlations
between growth and lag, however, can have a significant
amplifying or diminishing e↵ect. Since log ⌫ > 0 al-
ways, synergistic pleiotropy (a > 0) will tend to increase
the magnitude of selection, while antagonistic pleiotropy
(a < 0) will tend to reduce it. The significance of this ef-
fect depends on the relative value of a compared to log ⌫;
in general, the logarithm and the dimensionless nature of
a suggest both should be order 1 and therefore compara-
ble.
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S6. FREQUENCY DEPENDENCE OF
SELECTION

The selection coe�cient in equation (3.1) depends on
the initial mutant frequency x. Here we show that s(x) is
a monotonic function of the frequency x; this is important
because it means that conditional neutrality (s(x̃) = 0)
occurs at a unique frequency x̃ (equation (3.5)). We use
an exact argument starting from the original model be-
cause the approximate s(x) function in equation (3.1) has
spurious non-monotonic behavior in some regimes. For
simplicity we again use the dimensionless growth param-
eters defined in equation (2.1).

If the mutant and wild-type have equal growth rates
(� = 0), then we have previously showed that s(x) = �!,
so it is constant (and hence monotonic) in x. Now we
consider � 6= 0. In this case we can write the saturation
condition in terms of s(x) by substituting equation (S4.3)
for t

sat

in equation (S3.1):

e!(1+�)/�


(1� x)

⌫
1

es(x)/� +
x

⌫
2

e(1+1/�)s(x)

�
= 1. (S6.1)

We can di↵erentiate with respect to x and solve for ds/dx
to obtain the di↵erential equation

ds

dx
=

�
�
1� es(x)⌫

1

/⌫
2

�

(1� x) + x(1 + �)es(x)⌫
1

/⌫
2

. (S6.2)

The only way s(x) can be non-monotonic is if ds/dx = 0
for some x without s(x) being constant. Since the denom-
inator of equation (S6.2) is always positive, ds/dx = 0
only if s(x) = log(⌫

2

/⌫
1

) for some x. However, if
s(x) = log(⌫

2

/⌫
1

) for any x, then it must be constant
at log(⌫

2

/⌫
1

) for all x. We show this by substituting
s(x) = log(⌫

2

/⌫
1

) into the saturation equation (equa-
tion (S6.1)). The x-dependence drops out and we are
left with

⌫
1/�

2

⌫
1+1/�

1

e!(1+1/�) = 1. (S6.3)

Therefore if the parameters satisfy this condition, then
s(x) = log(⌫

2

/⌫
1

) for all x. Therefore ds/dx only equals
zero when s(x) is constant, and so s(x) can never be a
non-monotonic function of x.

Figure S2a shows the sign of ds/dx over growth-lag
trait space for strains with equal yields (⌫

1

= ⌫
2

); fig-
ure S2b shows the case of unequal yields (⌫

1

6= ⌫
2

). The
boundaries between signs of ds/dx are where s(x) is a
constant, and thus they are given by � = 0 and equa-
tion (S6.3). Note that for equal yields, s(x) is constant
at zero along the neutral boundary (figure S2a), whereas
for unequal yields there is a separate boundary, away
from the conditionally-neutral region, where s(x) has a

constant but nonzero value (figure S2b).
Another way to measure the frequency dependence of

selection is to consider its total variation across the whole
range of frequencies. We define the relative variation of
selection as |(s

max

� s
min

)/s(1/2)|, where s
max

and s
min

are the maximum and minimum values of s(x) across all
frequencies, and s(1/2) is selection at the intermediate
frequency x = 1/2. Since s(x) is always a monotonic
function of x, the maximum and minimum values are
attained at the endpoints x = 0 and x = 1. The selection
coe�cient is not technically defined for these values (since
either the mutant or the wild-type is extinct), but we can
determine its value in the limits x ! 0 and x ! 1. In
the limit of x ! 0, the saturation time must be the time
for the wild-type alone to consume all the resources, and
vice-versa for x ! 1:

lim
x!0
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sat
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+
1
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1

log
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RY
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+
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2

log
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RY

2

N
0

◆
.

(S6.4)

Using the relationship between s and t
sat

in equa-
tion (S2.4) and converting to dimensionless parameters
(equation (2.1)), we have

lim
x!0

s(x) = � log ⌫
1

� !(1 + �),

lim
x!1

s(x) =

✓
�

1 + �

◆
log ⌫

2

� !.
(S6.5)

Hence the total variation of selection coe�cients is

|s
max

� s
min

| =
��� lim
x!1

s(x)� lim
x!0

s(x)
���

=

�����
✓
log ⌫

2

1 + �
� log ⌫

1

+ !

◆���� .
(S6.6)

This result is exact (no weak selection approxima-
tion), but the approximate s(x) expression in equa-
tion (3.1) gives an identical result.
Normalizing this total range of selection by its magni-

tude at some intermediate frequency, such as x = 1/2,
measures the relative variation in s(x) over frequencies.
For equal yields (⌫

1

= ⌫
2

), the relative variation simpli-
fies to

����
s
max

� s
min

s(1/2)

���� =
����
�(2 + �)

2(1 + �)

���� . (S6.7)

It is small over a large range of the trait space (fig-
ure S2c), indicating that the frequency dependence of
selection is relatively weak for equal yields. In contrast,
when the yields are unequal (⌫

1

6= ⌫
2

), the variation be-
comes very large near the conditionally-neutral region
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FIG. S2. frequency dependence of the selection coe�cient over growth-lag trait space. (a) For a mutant and
wild-type with equal yields (⌫1 = ⌫2 = 103), the gray and white regions indicate where the selection coe�cient s(x) increases
as a function of mutant frequency (ds/dx > 0) or decreases (ds/dx < 0). The neutral boundary is in blue. (b) Same as (a)
but for a mutant and wild-type with unequal yields (⌫1 = 103, ⌫2 = 104). The conditionally-neutral region is shown in green.
(c) Relative variation of the selection coe�cient over mutant frequencies when the mutant and wild-type have equal yields.
Yield values and the neutral boundary are the same as (a). (d) Same as (c) but for a mutant and wild-type with unequal yields;
yield values and the conditionally-neutral region are the same as (b). The relative variation diverges in the conditionally-neutral
region since s(1/2) = 0 for some points.

(figure S2d). This is because s(1/2) goes to zero for some
points in the conditionally-neutral region, while the total
range |s

max

� s
min

| remains finite. Thus, the frequency
dependence of selection is most significant for mutants
in the conditionally-neutral region; this is expected since
these are the mutants that can coexist or be bistable with
the wild-type.

S7. ROBUSTNESS OF COEXISTENCE TO
GENETIC DRIFT

If the bottleneck population size N
0

at the beginning
of each round is small, then stochastic e↵ects of sam-
pling from round to round (genetic drift) may be signifi-
cant. We can gauge the robustness of coexistence to these
fluctuations by comparing the magnitude of those fluc-
tuations, which is of order 1/N

0

, with ds/dx measured
at the coexistence frequency x̃ (equation (S6.2)), which
estimates the strength of selection for a small change in
frequency around coexistence. Coexistence will be robust
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against fluctuations if

����
�(1� ⌫

1

/⌫
2

)

(1� x̃) + x̃(1 + �)⌫
1

/⌫
2

���� >
1

N
0

. (S7.1)

This tells us the critical value of the bottleneck size N
0

,
which we can control experimentally, needed to achieve
robust coexistence. For example, if the mutant has 10%
slower growth rate (� = �0.1) but 10% higher yield
(⌫

2

/⌫
1

= 1.1), and coexistence occurs at x̃ = 1/2, then
N

0

must be greater than 100 for stabilizing selection at
the coexistence frequency to be stronger than genetic
drift.

S8. FIXATION UNDER
FREQUENCY-DEPENDENT SELECTION

If the population at the end of a competition round
is randomly sampled to populate the next round, this
is equivalent to a Wright-Fisher process with frequency-
dependent selection coe�cient s(x) and e↵ective popu-
lation size N

0

[13]. In the limit of a large population
(N

0

� 1) and weak selection (|s(x)| ⌧ 1), the fixation
probability of a mutant starting from frequency x is

�(x) =

R
x

0

dx0 e2N0V (x

0
)

R
1

0

dx0 e2N0V (x

0
)

, (S8.1a)

where V (x) is the e↵ective selection “potential”:

V (x) = �
Z

x

0

dx0 s(x0). (S8.1b)

This is defined in analogy with physical systems, where
selection plays the role of a force and V (x) is the cor-
responding potential energy function. The mean time
(number of competition rounds) to fixation, given that
fixation eventually occurs, is

✓(x) =

Z
1

x

dx0  (x0)�(x0)(1� �(x0)) (S8.2a)

+

✓
1� �(x)

�(x)

◆Z
x

0

dx0  (x0) (�(x0))
2

,

where

 (x) =
2N

0

e�2N0V (x)

x(1� x)

Z
1

0

dx0 e2N0V (x

0
). (S8.2b)

These results assume that mutations are rare enough to
neglect interference from multiple mutations simultane-
ously present in the population.

For simplicity we focus on the case of a single mu-
tant cell (frequency 1/N

0

) at the beginning of a compe-
tition round. To test the e↵ect of frequency dependence
on fixation, we compare the true fixation probabilities
and times, calculated from equations (S8.1) and (S8.2)
using s(x) (equation (3.1)), with the fixation probabili-
ties and times predicted if selection has a constant value
at s(1/2), as is often measured in competition experi-
ments [14]. When selection is a constant across frequen-
cies, equation (S8.1) simplifies to Kimura’s formula [13]:

�(1/N
0

) =
1� e�2s

1� e�2N0s
. (S8.3)

Deviations from this relationship between � and s(1/2)
are therefore indicative of significant frequency depen-
dence.
For several sets of mutants, figure S3a shows their se-

lection coe�cients s(1/2) versus their fixation probabil-
ities �(1/N

0

). In orange are mutants obtained by uni-
formly scanning a rectangular region of growth-lag trait
space (e.g., the trait space shown in figure 2a). The black
line shows the prediction from Kimura’s formula (equa-
tion (S8.3)) assuming s = s(1/2) is a constant selection
coe�cient for all frequencies; this frequency-independent
approximation appears to describe these mutants well.
The mean fixation times ✓(1/N

0

) (figure S3b) for these
mutants are also well-described by assuming constant se-
lection coe�cient s(1/2). This is because the frequency
dependence for these mutants is weak, as shown in fig-
ure S2c,d. Therefore a single measurement of the selec-
tion coe�cient for these mutants at any initial frequency
provides an accurate prediction of the long-term popula-
tion dynamics.
The plots of selection variation in figure S2c,d indi-

cate that the most significant frequency dependence oc-
curs for mutants in the conditionally-neutral region with
unequal yields, i.e., mutants with coexistence or bista-
bility. We thus calculate the fixation probabilities and
times for mutants with neutrality at particular frequen-
cies, and compare these statistics to their selection co-
e�cients at x = 1/2 as would be measured experimen-
tally (figure S3a,b). As expected, the fixation statistics
show significant deviations from the predictions for con-
stant selection. In particular, mutants with neutrality
at x̃ = 1/2 (equation (3.5)) have s(1/2) = 0 by defini-
tion, but they nevertheless show a wide range of fixation
probabilities and times, some above the neutral values
(� = 1/N

0

, ✓ = 2N
0

) and some below.
Figure S3c,d shows the fixation probabilities and times

of conditionally-neutral mutants as functions of their rel-
ative growth rates �, which separates mutants with co-
existence from those with bistability: the mutant has
higher yield than that of the wild-type in this example
(⌫

2

> ⌫
1

), so the mutants with worse growth rate (� < 0)
have coexistence while the mutants with better growth
rate (� > 0) are bistable. Bistable mutants with a neu-
tral frequency of x̃ = 1/2 fix with lower probability than



7

FIG. S3. Fixation probabilities and times of a mutant. (a) Fixation probability �(1/N0) as a function of the selection
coe�cient at frequency x = 1/2. Orange points correspond to mutants uniformly sampled across a rectangular region of
growth-lag trait space: (�,!) 2 [�10�3

, 10�3] ⇥ [�5 ⇥ 10�3
, 5 ⇥ 10�3]. Other points correspond to mutants with neutrality

at specific frequencies (blue for x̃ = 1/4, red for x̃ = 1/2, green for x̃ = 3/4). We calculate fixation probabilities using the
frequency-dependent selection coe�cient s(x) (equation (3.1)) and equation (S8.1); for comparison, the solid black line indicates
the prediction from Kimura’s formula (equation (S8.3)), assuming a frequency-independent selection coe�cient s = s(1/2). The
horizontal dashed line marks the neutral fixation probability � = 1/N0. (b) Same as (a), but with the mean fixation time
✓(1/N0) (conditioned on eventual fixation) on the vertical axis. The solid black line marks the prediction for a frequency-
independent selection coe�cient (equation (S8.2)), and the horizontal dashed line marks the neutral fixation time ✓ = 2N0.
(c) Fixation probability �(1/N0) as a function of the relative growth rate � for conditionally-neutral mutants. Colors indicate
the same neutral frequencies as in (a) and (b). Mutants with � < 0 have coexistence, while mutants with � > 0 are bistable
(since ⌫2 > ⌫1 in this example). Dashed lines are the same as in (a). (d) Same as (c), but with the mean fixation time ✓(1/N0)
on the vertical axis. Dashed lines are the same as (b). In all panels, the relative yields are ⌫1 = 103 and ⌫2 = 104, and the
initial population size is N0 = 103.

would a purely neutral mutant (figure S3c), but if they
do fix, they do so in less time (figure S3d). We can
understand this bistable case in analogy with di↵usion
across an energy barrier, using the e↵ective selection po-
tential defined in equation (S8.1b). The mutant starts at
frequency 1/N

0

, and to reach fixation it must not only
survive fluctuations from genetic drift while at low fre-

quency, but it also must cross the e↵ective selection po-
tential barrier at the neutral frequency x̃. Indeed, the
mutant is actually deleterious at low frequencies (below
the neutral frequency), and thus we expect the fixation
probability to be lower than that of a purely neutral mu-
tant. If such a mutant does fix, though, it will do so
rapidly, since it requires rapid fluctuations from genetic
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drift to cross the selection barrier. This e↵ect is most
pronounced for neutrality at relatively high frequencies;
for low neutral frequencies, such as x̃ = 1/4, the barrier
is su�ciently close to the initial frequency 1/N

0

that it is
easier to cross, and thus the fixation probability is closer
to the neutral value (figure S3c).

Mutants with coexistence, on the other hand, are de-
scribed by a potential well at the neutral frequency. The
fixation of these mutants is determined by a tradeo↵ be-
tween the initial boost of positive selection toward the
neutral frequency, which helps to avoid immediate extinc-
tion, and the stabilizing selection they experience once at
coexistence. In particular, once at the neutral frequency,
the mutant must eventually cross a selection barrier to
reach either extinction or fixation. However, the barrier
to fixation is always higher than the barrier to extinc-
tion, and thus the mutant has a greater chance of going
extinct rather than fixing. As we see for mutants with
coexistence at x̃ = 1/2, decreasing � from zero initially
improves the probability of fixation over neutrality, but
eventually it begins to decrease. Thus, the frequency de-
pendence of mutants with coexistence or bistability plays
a crucial role in shaping their fixation statistics, and their
ultimate fates depend crucially on their individual trait
values (i.e., �).

S9. ADDITIVITY OF THE SELECTION
COEFFICIENT

The additivity condition (equation (3.6)) is approxi-
mately satisfied if strains i, j, and k have only small dif-
ferences in growth rates, lag times, and yields. Conceptu-
ally, this is because the saturation times t

sat

for each bi-
nary competition between pairs of strains are all approx-
imately equal, but we can also show this directly using
the selection coe�cient formula. Let �

ij

= (g
i

� g
j

)/g
j

,
!
ij

= (�
i

� �
j

)g
j

, and µ
ij

= (⌫
i

� ⌫
j

)/⌫
j

be the relative
di↵erences in growth rate, lag time, and yield for strains
i and j. If these relative di↵erences are all small, then
they each approximately obey the additivity condition
across strains:

�
ik

= (1 + �
ij

)(1 + �
jk

)� 1 ⇡ �
ij

+ �
jk

,

!
ik

=
!
ij

1 + �
jk

+ !
jk

⇡ !
ij

+ !
jk

, (S9.1)

µ
ik

= (1 + µ
ij

)(1 + µ
jk

)� 1 ⇡ µ
ij

+ µ
jk

.

In this same limit, the total selection coe�cient for
strains i and j is approximately

s
ij

⇡ �
ij

log ⌫
j

� !
ij

. (S9.2)

Note that, to leading order, the change in yield µ
ij

does
not appear. Using equation (S9.1) and ⌫

j

= (1+ µ
jk

)⌫
k

,
we have

s
ij

+ s
jk

⇡ �
ij

log ⌫
j

� !
ij

+ �
jk

log ⌫
k

� !
jk

⇡ �
ik

log ⌫
k

� !
ik

⇡ s
ik

.

(S9.3)

Therefore the selection coe�cient is approximately addi-
tive when di↵erences between traits are small.

S10. TRANSITIVITY OF THE SELECTION
COEFFICIENT

Since we are only concerned with the sign of selec-
tion in determining transitivity, we focus on the signed
component of the selection coe�cient in equation (3.1).
It is also more convenient to use growth times ⌧

i

=
1/g

i

rather than growth rates, and the quantity h
ij

=

log
h
1

2

H( ⌫j

1�x

, ⌫i
x

)
i

for the logarithm of the harmonic

mean yield. We define the signed component of the se-
lection coe�cient for strain i over strain j to be

(⌧
j

� ⌧
i

)h
ij

+ �
j

� �
i

. (S10.1)

That is, s
ij

is proportional to this quantity up to an
overall factor that is always nonnegative.
We first consider whether neutrality is a transitive

property of strains. Three strains are all pairwise neutral
if their traits satisfy

(⌧
1

� ⌧
2

)h
21

+ �
1

� �
2

= 0,

(⌧
2

� ⌧
3

)h
32

+ �
2

� �
3

= 0,

(⌧
3

� ⌧
1

)h
13

+ �
3

� �
1

= 0.

(S10.2)

If all three strains have equal yields ⌫
1

= ⌫
2

= ⌫
3

(h
21

= h
32

= h
13

for all frequencies), then any two of
these equations imply the third (e.g., by adding them to-
gether), which means that neutrality is transitive when
all strains have equal yields. If two of the yields are equal
while the third is distinct, then transitivity only holds if
two of the strains are identical (equal growth and lag
times). For example, if ⌫

1

= ⌫
2

6= ⌫
3

, then we can add
together the last two equations in equation (S10.2) to
obtain

(⌧
2

� ⌧
1

)h
13

+ �
2

� �
1

= 0, (S10.3)

(using h
32

= h
13

), but this is only consistent with the
first equation in equation (S10.2) if ⌧

1

= ⌧
2

and �
1

= �
2

,
i.e., strains 1 and 2 are identical in all traits.
If all the yields have distinct values, then transitiv-

ity will generally not hold for arbitrary values of the
growth traits. However, it is still possible for three strains
with distinct yields to all be pairwise neutral, but only
with very specific values of the traits. Note that with



9

unequal yields, neutrality at all frequencies is not pos-
sible, so pairs of strains are only conditionally neutral,
where strain i is neutral at frequency x̃

ij

with strain j
(equation (3.5)). These frequencies are encoded in the

quantities h
ij

= log
h
1

2

H( ⌫j

1�x̃ij
, ⌫i
x̃ij

)
i
. We thus fix the

yields and the desired neutral frequencies to arbitrary
values, and without loss of generality, we can assume
h
21

< h
13

< h
32

(e.g., by putting the strains in order of
increasing yields). We can also choose any values of ⌧

1

and �
1

since this amounts to a rescaling and shift of time
units. Therefore we are left with three linear equations
(equation (S10.2)) for four unknowns: ⌧

2

, ⌧
3

,�
2

,�
3

. If we
choose any value of the strain 2 growth time that obeys

⌧
2

>

✓
h
13

� h
21

h
32

� h
21

◆
⌧
1

(S10.4)

(note the factor in parentheses is always positive by as-
sumption), then equation (S10.2) has a unique solution
for the remaining quantities:

⌧
3

=
⌧
2

(h
32

� h
21

)� ⌧
1

(h
13

� h
21

)

h
32

� h
13

,

�
2

= (⌧
1

� ⌧
2

)h
21

+ �
1

,

�
3

= (⌧
1

� ⌧
2

)

✓
h
32

� h
21

h
32

� h
13

◆
h
13

+ �
1

.

(S10.5)

The linear system actually has a unique solution regard-
less of equation (S10.4), but without that condition ⌧

3

may be negative. Therefore a set of three strains with
unequal yields can all be pairwise conditionally neutral
only if the growth traits for strains 2 and 3 satisfy equa-
tions (S10.4) and (S10.5). For example, in this manner
one can construct three strains that all coexist in pairs.

We now turn to constructing sets of three strains such
that there is a nontransitive cycle of selective advantage
in binary competitions, i.e., strain 2 beats strain 1 in a
binary competition, strain 3 beats strain 2, but strain 1
beats strain 3. Therefore the growth traits of the three
strains must satisfy

(⌧
1

� ⌧
2

)h
21

+ �
1

� �
2

> 0,

(⌧
2

� ⌧
3

)h
32

+ �
2

� �
3

> 0,

(⌧
3

� ⌧
1

)h
13

+ �
3

� �
1

> 0.

(S10.6)

All three yields cannot be equal; if they are, adding to-
gether any two of the inequalities in equation (S10.6)
gives an inequality that is inconsistent with the third

one. Otherwise, the three yields can take arbitrary
values, including two of them being equal. Since we
can cyclically permute the strain labels, without loss
of generality we assume strain 1 has the smallest yield
(⌫

1

< ⌫
2

, ⌫
3

). Therefore the harmonic mean logarithms
obey h

32

> h
21

, h
13

. We can also choose any values of ⌧
1

and �
1

as before.
We must now choose the growth traits of strains 2

and 3 (⌧
2

, ⌧
3

,�
2

,�
3

) to satisfy the inequalities of equa-
tion (S10.6). We use a geometrical approach to under-
stand the available region of trait space for these strains.
The lag time for strain 3 is bounded from above and
below according to (combining the second and third in-
equalities in equation (S10.6)

(⌧
1

� ⌧
3

)h
13

+ �
1

< �
3

< (⌧
2

� ⌧
3

)h
32

+ �
2

. (S10.7)

The upper and lower bounds are both functions of ⌧
3

.
The upper bound will be above the lower bound as long
as ⌧

3

satisfies

⌧
3

<
⌧
2

h
32

� ⌧
1

h
13

+ �
2

� �
1

h
32

� h
13

. (S10.8)

Since ⌧
3

must be positive, this upper bound of ⌧
3

must
also be positive. The denominator of the right-hand side
of equation (S10.8) is positive by assumptions about the
yields, so therefore the numerator must be positive as
well. This leads to a lower bound on the lag time �

2

of
strain 2; we can combine this with an upper bound on
�
2

from the first equation of equation (S10.6) (strain 2
beats strain 1) to obtain

⌧
1

h
13

� ⌧
2

h
32

+ �
1

< �
2

< (⌧
1

� ⌧
2

)h
21

+ �
1

. (S10.9)

Finally, the upper bound for �
2

will be above the lower
bound as long as ⌧

2

satisfies

⌧
2

> max

✓✓
h
13

� h
21

h
32

� h
21

◆
⌧
1

, 0

◆
. (S10.10)

Altogether, we can construct a set of nontransitive strains
by choosing any yields ⌫

1

, ⌫
2

, ⌫
3

satisfying ⌫
1

< ⌫
2

, ⌫
3

,
and any values for the growth traits ⌧

1

,�
1

of strain 1;
we then choose ⌧

2

according to equation (S10.10) and
�
2

according to equation (S10.9); finally, we choose ⌧
3

according to equation (S10.8) and �
3

according to equa-
tion (S10.7). These inequalities determine the shaded
areas of trait space in figure 4b.

[1] Baranyi J, Roberts TA (1994) A dynamic approach to
predicting bacterial growth in food. Int J Food Microbiol
23:277–294.

[2] Baranyi J (1998) Comparison of stochastic and determin-
istic concepts of bacterial lag. J Theor Biol 192:403–408.

[3] Pfei↵er T, Schuster S, Bonhoe↵er S (2001) Cooperation



10

and competition in the evolution of ATP-producing path-
ways. Science 292:504–507.

[4] Swinnen IAM, Bernaerts K, Dens EJJ, Geeraerd AH,
Impe JFV (2004) Predictive modelling of the microbial
lag phase: a review. Int J Food Microbiol 94:137–159.

[5] MacLean RC (2007) The tragedy of the commons in mi-
crobial populations: insights from theoretical, compara-
tive and experimental studies. Heredity 100:471–477.

[6] Himeoka Y, Kaneko K (2017) Theory for transitions be-
tween exponential and stationary phases: Universal laws
for lag time. Phys Rev X 7:021049.

[7] Novak M, Pfei↵er T, Lenski RE, Sauer U, Bonhoe↵er
S (2006) Experimental tests for an evolutionary trade-
o↵ between growth rate and yield in E. coli. Am Nat
168:242–251.

[8] Fitzsimmons JM, Schoustra SE, Kerr JT, Kassen R
(2010) Population consequences of mutational events: ef-
fects of antibiotic resistance on the r/K trade-o↵. Evol

Ecol 24:227–236.
[9] Warringer J et al. (2011) Trait variation in yeast is de-

fined by population history. PLOS Genet 7:e1002111.
[10] Jasmin JN, Zeyl C (2012) Life-history evolution and

density-dependent growth in experimental populations of
yeast. Evolution 66:3789–3802.

[11] Jasmin JN, Dillon MM, Zeyl C (2012) The yield of exper-
imental yeast populations declines during selection. Proc
R Soc B 279:4382–4388.

[12] Bachmann H et al. (2013) Availability of public goods
shapes the evolution of competing metabolic strategies.
Proc Natl Acad Sci USA 110:14302–14307.

[13] Crow JF, Kimura M (1970) An Introduction to Popula-
tion Genetics Theory. (Harper and Row, New York).

[14] Elena SF, Lenski RE (2003) Evolution experiments with
microorganisms: the dynamics and genetic bases of adap-
tation. Nat Rev Genet 4:457–469.


	Trade-offs between microbial growth phases lead to frequency-dependent and non-transitive selection
	Introduction
	Methods
	Results
	Distinct components of selection on growth and lag phases
	Effect of pleiotropy and trade-offs on selection
	Selection is frequency dependent
	Neutral, beneficial and deleterious regions of mutant trait space
	Growth-lag trade-offs enable coexistence or bistability of a mutant and wild-type
	Selection is non-additive and non-transitive

	Discussion
	Selection on multiple growth phases produces complex population dynamics
	Pleiotropy and correlations between traits
	Analysis of experimental growth curves and competitions
	Data accessibility
	Author’s contributions
	Competing interests
	Funding

	Acknowledgments
	References


